0% found this document useful (0 votes)
19 views2 pages

Calc Formula

Uploaded by

Hartz I
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
19 views2 pages

Calc Formula

Uploaded by

Hartz I
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

MA Mathematical analysis Derivatives 04.

2023

Here come the basic rules:

((af ± bg)(x))Õ = af Õ (x) ± bg Õ (x) (x– )Õ = –x–≠1 (– ”= 0)


(f (x)g(x))Õ = f Õ (x)g(x) + f (x)g Õ (x) (–x )Õ = ln – –x (0 < – ”= 1)
3 4 1
f (x) Õ f Õ (x)g(x) ≠ f (x)g Õ (x) (loga |x|)Õ = x ln (0 < – ”= 1)
= (sin x) = cos x
Õ
a
(cos x)Õ = ≠ sin x
g(x) g 2 (x)
1 1
((f ¶ g)(x)) = f (g(x)) · g Õ (x)
Õ Õ (arcsin x)Õ = Ô1≠x 2
(arccos x)Õ = ≠ Ô1≠x 2
1
–Õ = 0 (–—a constant) (arctan x)Õ = 1+x2
.

Exercise 1. In each case provide the derivative of the given function.


1 1
1. x ‘æ ex 28. x ‘æ 52. x ‘æ 2x sin x2 77. x ‘æ Ô 2
x ( x+1)
1
2. x ‘æ 2x3 ≠ 3x2 ≠ 7 29. x ‘æ x≠1 53. x ‘æ e 2
x
78. x ‘æ Ô
x
2
( x+1)
3. x ‘æ x100 ≠ x 30. x ‘æ 1
54. x ‘æ ln x1
x2 +1 x2
79. x ‘æ Ô 2
4. x ‘æ (x + 2)50 1 1 ( x+1)
31. x ‘æ x2 ≠1
55. x ‘æ ln x Ô
5. x ‘æ (x2 ≠3x+2)50 80. x ‘æ Ô
x
2
32. x ‘æ x
x+1 56. x ‘æ x ln 1
x
( x+1)
Ò
6. x ‘æ tan x 57. x ‘æ 1 81. x ‘æ
33. x ‘æ x+1 x+1
x ln x1 x≠2
7. x ‘æ cot x Ò
34. x ‘æ x≠1
x+1 58. x ‘æ sin x 82. x ‘æ x≠1
1≠sin x x+2
8. x ‘æ ln x sin x Ô
35. x ‘æ x+1
tan x 83. x ‘æ tan x
x≠1 59. x ‘æ tan x≠2
9. x ‘æ sin2 x
36. x ‘æ 2x≠1
sin x
84. x ‘æ arcsin2 x
x+2 60. x ‘æ
10. x ‘æ cos2 x 1≠cos x
85. x ‘æ 1
2x≠1
37. x ‘æ 1
arcsin x
11. x ‘æ tan2 x
2x+2 61. x ‘æ sin Ô
2x≠1
x
86. x ‘æ arccos x
38. x ‘æ 3x+1 x2 +1
12. x ‘æ sin x2 62. x ‘æ sin x≠2 87. x ‘æ arcsin(2 sin x)
x2 +1
39. x ‘æ 1
Ô
13. x ‘æ cos x2 x≠1 63. x ‘æ sin x
88. x ‘æ arcsin sin x
x2 ≠1
14. x ‘æ tan x2 40. x ‘æ x+2 64. x ‘æ 1 89. x ‘æ arcsin( fi2 tan x)
sin2 x
Ô
15. x ‘æ sin x cos x 41. x ‘æ x2 +1
65. x ‘æ x 90. x ‘æ arcsin x
x2 ≠1 1≠cos x

16. x ‘æ x sin x x2 +1
91. x ‘æ arcsin Ô1x
42. x ‘æ 2x2 ≠1 66. x ‘æ sin(x2 )
Ô
17. x ‘æ x2 sin x Ô 92. x ‘æ arctan x
43. x ‘æ x2 +1 67. x ‘æ cos x
2x2 ≠2
93. x ‘æ arctan Ô1x
18. x ‘æ x sin2 x Ô
68. x ‘æ x + 1
x2 +1
44. x ‘æ x2 ≠x≠1
Ô
19. x ‘æ sin x Ô 94. x ‘æ sin x
x
1+ x1 69. x ‘æ x2 + 1 2
45. x ‘æ 95. x ‘æ ln x≠1
x
20. x ‘æ x 1≠ x1
Ô1
sin x 70. x ‘æ
1+ x1
x≠1 96. x ‘æ ln cos x
x2
21. x ‘æ 46. x ‘æ
sin x x 71. x ‘æ Ôx
x≠1 97. x ‘æ ln sin x
sin x
22. x ‘æ x2
1+ 1
1+ x x
47. x ‘æ 72. x ‘æ Ô 1 98. x ‘æ sin ln x
x x2 +1
23. x ‘æ ex ln x
48. x ‘æ 1 99. x ‘æ cos ln x
2 1+ x1 73. x ‘æ Ô x
x2 +1
24. x ‘æ ln x 100. x ‘æ cos ln sin x
1 Ô
49. x ‘æ 74. x ‘æ x2 +1
25. x ‘æ x3 ln x 1+ 1 1
1+ x x 101. x ‘æ ln ln x
Ô 2
26. x ‘æ (ln x ≠ 1) ln x 50. x ‘æ sin 2x 75. x ‘æ ( x + 1) 102. x ‘æ sin(fi sin x)
Ô 2
27. x ‘æ x2 ex sin x 51. x ‘æ cos 3x 76. x ‘æ ( 3 x + 1) 103. x ‘æ cos(fi cos x)

1
Ô
104. x ‘æ cos(fi sin x) 110. x ‘æ ln2 x 116. x ‘æ ln tan x2 122. x ‘æ logx x
Ô
105. x ‘æ ln(ex + 1) 111. x ‘æ ln sin x 117. x ‘æ ee 123. x ‘æ sinx x
x

2 +2
106. x ‘æ ex 112. x ‘æ esin ln x 118. x ‘æ xx 124. x ‘æ ln xx
Ô
107. x ‘æ e 113. x ‘æ ln cos ex 119. x ‘æ xx 125. x ‘æ (ln x)ln x
x≠1 x

Ô 1
108. x ‘æ eln x≠1 114. x ‘æ cos x2 120. x ‘æ x x 126. x ‘æ (sin x)sin x
Ô Ô Ô Ôx
109. x ‘æ ln x2 115. x ‘æ cos2 x 121. x ‘æ x 127. x ‘æ (sin x)ln x .

Exercise 2. Given the functions f , g and h determine the derivatives of the following
functions:

1 2 Ô
1. f 2 11. x ‘æ f 1
g
21. f 31. f f 41. f ¶ g ¶ f
! " Ô 1 2
‘ f x2
2. x æ 12. x ‘æ !11 " 22. g · f 32. ln ef + g 42. f ¶ f ¶ f ¶ f
f g Ò
3. f · g · h !g" 23. f
33. f ¶ g ¶ h 43. f ¶ f ¶ g ¶ g
13. x ‘æ f h
g
4. f ·g
Ô 44. f ¶ g ¶ f ¶ g
h
14. x ‘æ 1 24. f ¶ g 34. f g¶h
f( g
)
5. f Ô
h
g·h 25. f ¶ f 35. f g
h
45. f ¶ g ¶ g ¶ f
15. f ¶ ln
6. ln f 46. (f ¶ g)h
16. sin ¶f 26. ef 36. (ln f )g
7. ln ¶(f · g) 47. logf (g ¶ h)
17. f ¶ sin 27. f eg 37. f ¶ ln ¶g
1
8. f
18. f g 28. ef g 38. f ¶ f 48. logf ¶g h
1 2
1
9. x ‘æ f f
29. e g 39. f ¶ ln ¶f 49. ln f
x 19. logf g ln g
1 Ô
10. x ‘æ f ( x1 ) 20. x ‘æ f ( x) 30. ef ¶g 40. f ¶ f ¶ f 50. (logf g) ¶ h.

You might also like