German1972 Ni3Ti
German1972 Ni3Ti
EXPERIMENTAL
A Bendix Model 3012 t i m e - o f - f l i g h t m a s s s p e c t r o m -
e t e r equipped with a Model 1031 K n u d s e n cell inlet 1600
s y s t e m 6-8 was u s e d in this i n v e s t i g a t i o n . I n i t i a l l y ,
t h o r i a c r u c i b l e s w e r e used to hold the a l l o y s ; however,
the c r u c i b l e s c r a c k e d f r e q u e n t l y d u r i n g heating. Hence,
it w a s n e c e s s a r y to u s e y t t r i a - s t a b i l i z e d - z i r c o n i a 14o0
c r u c i b l e s and l i d s for m o s t of the m e a s u r e m e n t s .
Sample e x a m i n a t i o n after each r u n r e v e a l e d no e v i - o~
dence of c r u c i b l e d e g r a d a t i o n . An o u t e r t a n t a l u m cell ~ ~20o
was used as a s u s c e p t o r . T e m p e r a t u r e m e a s u r e m e n t s 2
w e r e made with a L e e d s and N o r t h r u p Model 8634 ~<
P r e c i s i o n Optical P y r o m e t e r , a m i c r o f o c u s i n g , d i s a p - ~-
p e a r i n g f i l a m e n t type. P y r o m e t e r s i g h t i n g s w e r e made ~ 10oo
on the K n u d s e n cell o r i f i c e through a p r i s m and v i e w -
ing port. The p y r o m e t e r was c a l i b r a t e d at the m e l t i n g
points of gold, i r o n and nickel as well a s the 7 ~ 6
t r a n s f o r m a t i o n point for i r o n . T e m p e r a t u r e d e t e r m i n a - 8oo
t i o n s w e r e within a r a n g e of +3 ~ C of the set point.
The K n u d s e n cell o r i f i c e had a d i a m e t e r of 0.117 cm.
Sponge t i t a n i u m of 99.98 pct p u r i t y and r o d nickel of
6O0
R. N. GERMAN is with MetallurgyDivisionII, Sandia Laboratories,
Livermore, Calif. 94550. G. R. ST. PIERRE is Professor of Metallurgi-
cal Engineering,The Ohio State University, Columbus, Ohio. This
paper is based upon a thesis by R. M. GERMANis partial fulfillment Ni 20 40 60 80 TI
of the requirements of the degree of Master of Science at The Ohio
State University. ATOM IC ~/o Ti
Manuscript submitted December 8, 1971. Fig. 1--The Ni-Ti binary phase diagram.
3 , f i S~)UD
I I . . . . It
I .r
I
_~/'1
' ' 't
I
o
I I
-I
LIQUID I I
-2 SOLID - ~ -2
-3
?
-5 -5
-7
-a
-9
-7
-e 7' T= I ~ ' c
I I t I
T= I~"C 20 4o 6o ~ lq o 2o 40 6o eo too
, ~ i 1 i
1.0 ' ' T = 1700e C ' ' /
,\ 17!i' '-
O8
\xN LIQUID /4
"N
LQoo //
/ / I I
o8 \ L,oo,o / "7
\ ,, ..... / / : \', // i,, 9 , ~'% // ,
i-
O6 06
\ % ' ../.
J 1 t-
h.,\ /" ~
, sou0--T7
I I
0.2 /
,'\
\
I
I \
i'
= m_
o.l /x/ "\,
/
2O 4O 6O 80 I00
l/I/ 20 4O 6O ~0 I00
DISCUSSION O F R E S U L T S
D a r k e n 1~ d e f i n e s the e x c e s s s t a b i l i t y a s the s e c o n d
-I .0
p a r t i a l d e r i v a t i v e of the e x c e s s Gibbs e n e r g y with r e -
o s p e c t to the c o m p o s i t i o n . M a t h e m a t i c a l l y , the e x c e s s
A X s t a b i l i t y can be r e d u c e d to a f i r s t d e r i v a t i v e of In Yt,
t h e r e b y m a k i n g it a m o r e m e a n i n g f u l quantity with r e -
s p e c t to the p r e s e n t e x p e r i m e n t a l d a t a . The r e l a t i o n -
+~-~
ship is shown by Eq. [12].
d(ln Yi)
-3.0 excess stability = -RT d[(1 - Xi) 2] [12]
F o r m o s t s o l u t i o n s the e x c e s s s t a b i l i t y i s l i n e a r in
the t e r m i n a l c o m p o s i t i o n r e g i o n s . The o c c u r r e n c e of
-4.0
p e a k s in the e x c e s s s t a b i l i t y function for l i q u i d p h a s e
m e a s u r e m e n t s u s u a l l y c o r r e s p o n d s to the c o m p o s i -
t i o n s of s t a b l e s o l i d p h a s e c o m p o u n d s . F i g . 7 shows
-5.0 the e x c e s s s t a b i l i t y a s a function of c o m p o s i t i o n for
the liquid p h a s e m e a s u r e m e n t s a t 1500 ~ 1600 ~ and
l I l I 1700 ~ C. The t e r m i n a l r e g i o n s exhibit the e x p e c t e d
20 40 60 80 100 l i n e a r b e h a v i o r . At the l o w e r t e m p e r a t u r e , p e a k s o c -
ATOM IC ~ TJ
c u r at c o m p o s i t i o n s c o r r e s p o n d i n g to the Ni3Ti and
Fig. 5--The variation of the temperature coefficient integra- N i T i i n t e r m e t a l l i c c o m p o u n d s in the s o l i d p h a s e . No
tion function a In ( I ~ i / I ~ i )/~ (l/T), with composition. i n d i c a t i o n s of an e x c e s s s t a b i l i t y p e a k c o r r e s p o n d i n g
to NiTi2 w e r e found. The o c c u r r e n c e of an e x c e s s s t a -
b i l i t y c o r r e s p o n d i n g to the NiTi2 c o m p o s i t i o n w a s not
I i i i
e x p e c t e d at t h e s e t e m p e r a t u r e s . The compound i s r e l -
T = 1600~
a t i v e l y u n s t a b l e , a s e v i d e n c e d by the p h a s e d i a g r a m ,
hence p o s s i b l e liquid p h a s e a s s o c i a t i o n s would be d e -
20 I I I I
-2
E
o
-4
r
-6
I~JI
-8 4
. . . . . '~. . . . . 17oo.
\ ---1;ooi:---
c--
Z I I I
-10
0 20 40 60 BO 100 0 20 40 60 80 1O0
ATOMI C % Ti ATOMIC I~ Ti
Fig. 6--The integral thermodynamic quantities of the liquid Fig. 7--Excess stabilities of liquid Ni-Ti alloys from 1500 ~
Ni-Ti system at 1600~ to 1700~
REFERENCES
CONCLUSIONS
1. O. Kubaschewska:Trans. Faraday Soc.. 1958, vol. 54, pp. 814-20
The thermodynamic properties of the Ni-Ti system 2. P. A. Cherkasov, V. V. Avenn, and A. M. Samarm: Russ. J. Phys. Chem., 1968,
exhibit strong negative deviations from ideality. The vol 42, pp. 401-04.
3. M. Hansen and K Anderko: Constitution of Binary Alloys, 2nd ed., p. 1049,
activity data demonstrate large negative deviations McGraw-Hill Book Co., New York, 1958.
from Raoult's Law. Similarly, the enthalpy and excess 4. R. P. Elhott: Constitution of Binary Alloys, First Suppl., p. 559, McGraw-Hill,
entropy exhibit negative characteristics. Indications Book Co., New York, 1965.
are that unlike atom bonding is preferred in the liquid 5 F A. Shunk: Constitution of Binnary Alloys, Second Suppl., p. 676, McGraw-
solution. Activity data indicate strong ordering tenden- Hill Book Co., New York, I969.
6. G. R. Belton and R. J. Fruehan: J. Phys Chem., 1967, vol. 71, pp. 1403-09.
cies in the low temperature liquid at both 25 and 50 pct 7. R B. Reese, R. A. Rapp, and G. R. St. herre Trans. TMS-AIME, 1968, vol
Ti. The increased atomic mobility at higher tempera- 242, pp. 1719-26.
tures destroys this tendency. Accordingly, the role of 8. S. W. Gilby and G. R. St. Pmrre: Trans. TMS-AIME, 1969, vol. 245, pp. 1749-
temperature in affecting tlle ordering tendencies is 58.
easily seen in the excess stability function. The excess 9. R. Speiserand J. W. Spretnak Vacuum Metallurgy, J. M. Blocher,ed., p. 155,
The ElectrochemicalSoc, Boston, 1955.
stability function has pronounced peaks at compositions 10. L S Darken: Trans. TMS-AIME, 1967,vol. 239, pp. 80-89.
c o r r e s p o n d i n g t o N i z T i a n d N i T i a t 1500 ~ C. H o w e v e r , 11. V. A. Geiderildland Y. 1. Gerasimov:Russ. Z Chem., 1963, vol. 37, pp. 1274-
the peaks are destroyed with increasing temperature. 76.