INSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
[ETT a Salqwap of rep G. Tan weNgna’ |
Aa [Ter W te o Sulawap grep CG. They w Qari
is a normal Seabarocep of CG.
set: Ler a= ghgt aud be gig! be hwo alenante
of Khan [ a08'- fa! neu |
att = ghg'(ghg')!
= gh tay Ki )
= gag! git?
= gh gq”!
Noe Wye ond His o kabpoup of G. tne bijou.
Shea from CF) above
abt =9 (bk! de guy!
Hence gue lea subgroup of G tov oul qea
Since Ka interseetion of Sobqroupe ig a ubogroup ,
Wis a Subqwup G. Le 1eG,wew tan wegug! vgea.
voc have to chew hat awe gut gec , which in tum
will yield Hat avoir ew.
Wee qeq and tar at Aapgnte Mak ant egug!.
thea nor! = ghg' for dome hey
hut G1 wig = hey
=e (qa) eu
fer Ye tig. They qeay. Hence in order bo show thar
-awet equq! fr a given Geo,
Sat wo weed to find YeG Auch that Te
BA ZLREY scconacorcr evo ansuy no rcon-roorwo mos sence Auta soo aca DIO SETI TENSE. ewesINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
Since 4 = a (09),
Wwe Cau choote y= x"
So there enists YEG Auch that 474°
Sime YEG, we have wey yt and we phy! far came her.
Her wor! = a (yy! )i"
= ayhyetct
= (m4) b(ayy!
=qhy! € qug!
Sica gee wo arbitra ;
aot! © guy! for all ges.
dan, WS a norval Gakorup of G.
BAY FEY cconar corn vososm, movioon, nota ma nxssanchan'’ ue swme Ssosceh nbs” MUEEHSG sestais. ww eamINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
Atopy Mt Re PS 2) Javexy aud Jat ¢ be Hee
wneppiing thar mes [2 4] to ab .
O) stew frat g Ba homomorphism +
Gy Petermitne too Eernel of p-
Gi) hew that R/rerg & Komorphic +o Z-
GM tek gi RZ huek tone
afta] eet
we hawt —
a > arty b+ ‘)
a(t +02 2))= [oo ae
= (ata) — (+4)
= we “Hla bi)
g(ocjre(4 a)
gp homomonent
ed fe) J /elee ok
ooce # ERR) = arb
=)» ab=
wa a=b
marge f(e 2) faex
for each aezg 4g ACK gum tw
OCA) =
* @ & onto.
By Furdamental tadere ef Hormomorphitm.
BA ZLREY scconacorcr evo ansuy no rcon-roorwo mos sence Auta soo aca DIO SETI TENSE. ewesINSTITUTE FOR 1AS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS 5K. Venkanna
tae Hayes eee here e128
nie shat -f ig Rremann regs mal
oud ftoy=o. Prove
; Weegee et Net ---
SAm 2 Peyy =} HD nar ni
= ° Ata
> a eee
= %> s1eh
=O ,w= oO
=> fay is bounded al continuout on [0:1]
encept a Ms points ity er %--
the Sek of re of — digembinuity of fon [or']]
is 1%) hy BG ob which hos Om Leite point
Qe Cre et poiots OF — digconhnuily — OF fon
[on] bos o Ainite no.of Gimit poiots
2, Hig integrable on Co.
oO
‘waar
57 OW IAENOE NAGAR MAT DEG 6a BIANGNOFFE 10-1 oP DOR MURAER TOWER MOOT AGAR, TLR. OLAS, ORT
ecionat Onc: WN. 10597, NO FLOOR ROOM NO. 202 RAS ARCANE PPR
NAGAR HPO SSRIS, SEIETIS. went conLA)
INSTITUTE FOR 1AS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
Aids} O se i tuedem ad for Comedy
wdealic Rormuta BG evalurte fre lla
oS \ a de ay ae da.
yatey
jaa-te %
Gare Given that as da.
(te a. jaine
Yee fevre at ee anckghts nt =.
Comparing Ata gen inbegeat ost is
“4
we dere
fen do
{B33
analytic te WHE.
Sewt Can ope! tee subagrnt
Bo cmuta. “ 3
feuds ant fcr)
lee © a8
Ine
Gin
o te
ar"
ya 4 =sI4
we have Yar-r-tl= F ka civck with ate
ab es ti amd Radia, Ty
fe ak te OE 1,
wo 2-1-0
ee sl
7 mtu)
=P R= A wy bey ined C7 ”
ber feta ge waist & CLanty matte ar
every qo ait tt, and er C.
- | tea
= {[A& de hur Bat
=) a
awe $C)
= arta es See.
‘gi
ERD OFCE 15/8, OW RAENDER HAGA WARE DED 6 BRANCH OFFICE 10506, TOP FLOOR MUGIENEE TOWER MONDE NAGHR, DENS. aH 2581765
IONAL OFFICE M 40140237, 20D FLOOR, OOM NO 202RIESAANCHAN'S LE SAPPHIRE ASHOK NAGAR HYDID SHSPISIIS, 6SIGGIS2. wma40D
INSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
Sol
Ave the dual of tte LP problem: minx] 214 Sarhg
Susjak to te. tonsreiatt + Qa 4o4%L4 Sag 722,
Sou AWLATAGET MAURO SC, WMT On
tag TS un veshtcted +
late Ha Venfabte Ag Ts unvehtoed Tr Sign rHe
Fuco Lp pavlem COM be tmosfocmd Rn be Stendord
+ gt
pied fore wy Subs MS gs MAME rele
s
aro, WZ Garfoe Stadard 0
Detomay »
sas
fram AL Hany BAW Cg HE >
Latfured 40 Lao Seroi ahd t
ermeBar-§ (rere IS -d
Ba amet Cagh-a') <3
y
mtu enr -#Oag meds 3
mravara g Cag) ac
Lea MS saa! Zo.
i dual ofc stve Yerdaed peal th,
fin ety = HRW AT Co! tot Dae Soy
Sul jel totta noted a)
pape we say
2b) 42 lug! tay! Ja Wy Z-E , tee:
‘i opal ee
ety 4 og otal 4 Weg z-3 ME Re eats Say
= DAABWAAW, >
Sua, AF Cro! tol!) 4bwg2-4 “ ae
Sw AWA WOT -S
Sey — Flay)! Jb wy ‘ “3
Lon Ses) Peja?
Uy lap, , Wz 70
wey Wy zd ond
—_ to, os Unvesricred ,
BAY FEY cconar corn vososm, movioon, nota ma nxssanchan'’ ue swme Ssosceh nbs” MUEEHSG sestais. ww eamINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS », K. Venkanna
Let M be othe def Of aU 3X3 rmatricer Of
i : aoo
othe folowing form: ~ S
boca
where a,b, C & % - Show that with étandlaxd matrix
addition and muttiplication (over h)Mwa commuta-
time xing - Find aul uke idempotent elements | M.
0
0 | 546 CEB
a
°
a
@
a, 0
het rele an
5 4G, i
Aysb 4 Be
Solution grey Matrix Ma |O
Oo
b
oO
9, —[% oo fa 00 fe °
Arte a a, 0 0, 0 ai %
br % i bak, at F%
4 © 0 4,00 Gita. ©
O76; =}0 % 0 04,0 © att 2
b, Co Ma} |b, er % bth, FS Ate
2Gt
Since Ot4, =9279, bees Ot Hf
As 049451 Baty
hci
and addition of tw? is 4 WSS 2
Hence, M us commutaHve un Giandard metix
addition.
For _Madaix Muttiplicection
@,0 07/400} fA, 9 O
Ayan =]o a offo 40 }=|0 aa ©
b, a Nf fb, & 4% bi449)b, oan aa,
FA Kay 120 re ccs even ncaa ancy eta tec Ome 15-5, TOP LOOK MOREE: TOWER MOGIEUEE WAGAR OBIS, CUL
0 Ce) Cy)
Let cay) > 0:0) og ai
‘a
4'to) a
ee
am
= tae
. spe da on™.
« Pleo) dort not enist-
4 10)
. does vol — dfFerentionle ar (0.0
. £2) he given fusoieo
‘rie not
othe Given Stabmenr Is tas e
4 sanefian CR egpaations ott hovgh
digferantiable of (0,0)
— =
ADOT 90 ROR GARE IRENE OD MITRE EMER RMT GAR ORI, GPE RITES
stoma rr: NO 30337, 290 GDR, NOON. 22 RAS-EANOUN MAAR, wr SSPISLISR ELEGISD. emINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
he Integra) -feurchion F(R) Sobishier everqarhere the
Inequality LR)[< All” where Aad Kare pative
Constonts. Prove Haat 22) 18 a polyvomtol of degren rel
Crcaeding K.
GAY Sieg fa) Ie oxalic in tha Flaite port af Hr plane,
-Hadafhe by Sgt tarde
Peoye SF g.ar , whre l2leR
np”
trole
Now, if man Hea) = MO) °" we
Thea (rep) , thy by Couche inequay we have
\on| < MeL bral 9
© AUSIK) — Since mta)= Head] alee
» esha 3}
£ ae = Ayh
Here Of yo , the right hand fund 1D BED,
Sate nrk.
ta. Qy=d Aor nk,
Le. all tee. Cofffedents On for which nok beema Rev.
OPQ) = ag tayd 4a,2% 4 --- 40,28
tohick te a pobpromial Hf degree
BBS nO ETO NAR AEB OUNCES OD MURR TONER MRREIEMAGHS DIR OREN SITS
IONAL OFFICE M WO140237, 210 FLOOR, OOM NO 202RISAAACHAN'S LE SAPPHIRE ASHOK NAGAR WYDID SPL, 666152.INSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
3)| dy fin a wing R , with Unity (xy ear y” forall a. 4eQ
TF tay chow Hat Q If Commutative.
QL) chou Prat Ake Tg R Of Meo) Vatiud Continuous
functions 8 foi] has Perv divisors.
sot ch we have (myrery™ VIER —O
Reslacing y by WHER WO, we ge
faCyro Tee 4”
=e (aya y= er Cray)
=> (aya) Cage) =O CP 2gF
Ey (uy Cry ya Fa (ey r™= Wy bay + a” —@)
=r Gy Gy) a 4 ctayea” = Gy fH avyia™
=> Mryjag a(ry) any Cr Lec eece inR,+))
Sy zyx gaye an’y
Spayacayv ayee (ecr)—@
Replace aA bY AHER IN®,
Gey y Cat Hy
=> (asi (yxty) =@4+) (ry+y)
=p Uy + Ay yay = ay Fayrry ty
=¥ Yreay VTMER Crlee we Rel mMQ@,+))
Rig & Commubative wg -
(i) Comtider Hie tere $e) = Lin fa ) ,
Itna™
Late tou |= be 7
lor ys _%
4 Vw
thoy dy | (4m) (120). dx : Em” -
ax (amr) ry
For mart. torr OY
\ F 9
=p lewd => wee
>. 2 Cte”) 20%
ho 4. Gre) Gow - Unt
ay Qan')*
Lani (ta wet) nt (lat)
~ yawa™)$
ot| RUD ey,
a” ~ Cry - z
nate
iy
=” | Te mattinuus worhou xe and marin]
Volus # 4
a
~ ar = ah
BAY FEY cconar corn vososm, movioon, nota ma nxssanchan'’ ue swme Ssosceh nbs” MUEEHSG sestais. ww eamINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
‘ cman, atw-Fiar} = x
Ma = rae ag Hamo—Fool = eat aba
s tL aL N-r 0d
aw? I
Houee peseH:
pete) Wher Age
Mag & she lst
+ GaHuUhe Be genes
A WUuRe = HUSH
sp hee cl4
Bas aH 4 26G,
HAG.
The tonverte of tHe atove weed rox
be trues .
1 —
= andes
TAD OFC 2, 1D BAER NAGAR WARE DLN ANH OFIE 05106, TOP FLOOR, MUNHEWE TOWER MURMERIEWAGAR DEMS. OUL- Ss os
h To
: Using Newton's poseeond inden otahion
fprmata, » we ge
gas = Yuot PAYae + PPD ary,
+ pler) (P39) A®yy,
3
BAY FEY cconar corn vososm, movioon, nota ma nxssanchan'’ ue swme Ssosceh nbs” MUEEHSG sestais. ww eamINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
= 4, + oS xya + 0-S(-0-5) x9 + 0-S(-0-S)A9
2 6
x-as)+ os(ro-OMS)C2S) . 35
24
= 3lt+ 21—- |-12S— 1-Séas — 144s
= 47-87 , 61 simblibicatin
The numben of shidents with monks Jers tan
4s d+ 47-87 je 48.
But she numben + students wilh monks
dos tan Yo js 3).
Hence dhe number oh shidends acting manles
bahseen Yo and 4s = 4e@-3|
BA ZLREY scconacorcr evo ansuy no rcon-roorwo mos sence Auta soo aca DIO SETI TENSE. ewesINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »,K. Venkanna
Using Gauss Seidel iterative method and
tthe starting sourtion %)=%2=%,=0 deleamine the
Solution 4 dhe following eyatem of equations in
use iteration, }0%,-%, —X%3= 8
My -% + OXWeIoO,
5 UHL Omaha = 12
Solution day y tn equation can be
Aewritten a—
A, = BAA 2 OB +OID+ONG
10
wD (2 -%Mi- Xe - DONT — OND
—|-
Ke = (O-Y%+X2 = 14 - OFM FON
to
Also given that = %y=%A,=%y =O
ond use meed to find Abe olution of
he Ayatom 4 equation in tio ateration,
Cteration -41
Taking ; UW =%, =%MZzO
HM) = OB FOIKO4O1XO = og
coe 2— O1K0.%§ —OlXO = Leda,
Hy = t- O1xX0-8 +041xtI2 = 1.032,
After pirat Steration ; = 0-8
Me = ASD
Ma, = 1-032.
EAD OFC: OLD RARNDER HAGA MARKT DEIR BANG OFCE 105 6 TOP FLOOR MURHENEE TOWER MURHUEE RAGAN OBA, 2087, 01075
REGINA FC: NO-10337, 24D FLOOR, ROOM WO 202 BLUE SAPPHINEASMOK HAG, HYDZE, 95235152, 965266152. wwowmedmathscomINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wy K. Venkanna
eration -2
aaa
=
Gs tN2 5 Wye 4032
%G =
= 10152
Me = 42 — OAK 10152 — O1% 1032
OR +> ONKINID + OVKVOBD
= £2 — 0-10152 —o:lo32 = 019953
1- O-1KIOIS2 + O0-1% 0:9953
L - 010152 + 0-09953
= 0-998o4,
% = 0:9953
%z = 0-99801
EAD OFC: 15/8, OW PAEIOEN AR
(MARNE DEIN BRANCH OFC 105106, TOP ROOR MURVENEE TOWER WAAR Dea, OLE AECIBT,oRBLTORS
RelONAL OFF: H NO 30-227, 2N0100R, ROOM NO. 02 RAS 4ANCHAM'S BLUE SAPPHIRE ASHOK AGAR HYD-20.SES2S1I52, ES26SIS2, wormlmAmathomINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
52) | Prove that te mecemary and Culticient Condition tat
vorten hints be ak wight to the Atreamblueg
oe wv =H (28, B42) , where H oud fore
Functions of 7,4 2,6.
ls The differantial eqpabions of streamlines ound
vortor linet are spectively.
du. dy, de
ea —é
ad dt - dy Ge
— 4 & ©
Daud © win “terse arthogovally iE
UE +0, +¥G=0
oO _ yy (du _ dup wy i) 5
= 1% a )4u(5 #2) w0(St- 5)
But Hale ie “HL Condition tal
tudx + vdy 4 ode fe perfed differential
Spades Udy tude =pdy
cy 3
= (% y da tahagt Hae)
hig => Ujywe on(st it)
—=——_
BA ZLREY scconacorcr evo ansuy no rcon-roorwo mos sence Auta soo aca DIO SETI TENSE. ewesINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »K. Venkanna
Elo Fea a partiak Afferotial equation by tren
Cbc fom ye Wy Bor
ot We
SP! Give tar ate TU ar — @)
e
2 wegen
Dffvertintey © wrt mond Yr Q
an | 2 Wee acater FO —8
av te >
od 4 HOA) Ch+be Bod -é&
pte %y 1
stfferentinbing @ ort nao Qerh ye
howe - .
ea OR 4 oe =O -—Q
’ Glin e 0 —©)
fon @, c= 6) ”
pectin tris vla oh @ at Hey
by owe oats .
ht @8) 4 P59 —©
Lutte. hes OG,
ay +1By-2% =O
pifferntiating gy pentbay 9 ho yt]
BA DLBEY scconacorcr evo ansny norton nooo mons sence At aon soko hacam DIO SETI, TENSE. owesINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wK. Venkanna
GUD Reduce Ate eauotion Yr Cary) La ats 0 bo CanoSeal
fourm dnd hente ed Vs Jerexal Sdudton-
SINE] Given Ya tnayySane=o 90
tompaseng (1) with byt Set Te 4 Cmiy,2 Py) =O
hee PeySenty aud Tom So-tat
Suet « (nay eunys @-yd70 for wEY.
ans 40D ts lyperbolte. The A-Awadeahe canahion
CA SAET=EO vedutey to Yara Cary)At AE O
(or) CYyAtan( att) =o
So-ttak Ae ay «Ran ty Lomyponding
Carel eauations are Stven by
Ste ad Ay (44) =0
Smtesrabing Hye gree ak WZ =O
Qn order to reduute Oe (1) to F Canont tol form .
use Uhoote -
us Yr ad ve gy of —-®
“pe Ot -B% Ou 4 Bt Sv
Fi. Bu Be “av On
= (FE er B)O-®
yo 2k 28% Qu 4 Ot W_ 23% ay2*), uy)
‘ay Oe By av 94 Bu “0
eign ew Nos027, OMOOR OOW NO OER HaNCHANS NUE OPEL SDK MAG HYOGO MEETS NEED. mcaINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS wy K. Venkanna
ee
ve 229
Now, 423% = 9 f arr $(E3 2)
Oy im; Qu
Oe aed A Bats Bufo
2(B)- PLS) S(F)
“18 (7-3
a (eyerZ (eye) -
o(h ( a Ee my 2ueB (2 x | ae
Urapiies
ve a ton a at Tt a
Dut a an
tage ) 46
2( wer
212) 2 (a mga yf R (Bist
2(2 ne at
9
ov 5) ON
Mt 4 ay2t y
ovr
Se 7 Bua ee aINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »K. Venkanna
’ 3; %
fo te dh a 3h, 13e
bas Sou 4 ve OV
Bio $23 « 2(®)-2 wey 2%) ops)
ay an
BF (93) 220g G)
ar\a (2 av ary
af a ~ +2 ( Bu “ont sox (3 aN
ot) av
+ 3( 8 nl
3 Jt. uy 3h _
° 7 Jom ar FO
a
“Bt (wg 2h 99 Se
Quy
° b®
ufing 5) (6) ey tn) we ser -
4 By ame aoe &
Ot” WN
ae
Cw] FE ae - -ow ~ ae)
or 43
sy % tt wre
wins wn
+
: By Ly a Seo
(9 drag- trash BEd Sa
2 a ar) Bro
PB ea BE RRR a, CU CHT Fo MO TUR MICAS RD. STE OTS
IONAL OREM. HO.40237,2NDFIOOR, HOMO 202RA'SHANCHAN'S LUE SAPP SHOR NAGAR DZD S235, 6S2GE1S2. wowsINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS. K. Venkanna
to Se gud xo oon se 42% 20-9(t)
guav ON NOV ON
Cr Wo aud Yds U byw)
WOrts Ha reaBeed CommBeal foc of 10
olution of- (E) motitelytons, ol tthy ot Bry v tse get
gu
WB) Porro wm Good
cola 022, od 0's Bay + Ww redute G) Soto
Brear earokton uth Conttenk (oe fetdeukt ; we tee
ne Yodarty x ad 0} gollsos
lee We e® ad Weed Sodtah te logu pYo logy
b®
Ju ne 9A, aA = Yay Ban @) vedn 0y4o
trol xo} ase (9 pl (oar) r=0
S43 general Soluson 4
da LY BLL oul gw, Copy’ + g, ese’)
(or Aedlip, woryylud =r ¥, CDAD,
tol oud. WA ont ax rary unetlent .
eS
TO FS orc ec anes cna our BENENOFFEE 16105 1> FOR, MONERTE TOWER MNTERTE NAGAR OLS TINT STATES
LAA recionat once n013023, 2N0FL0OR ROOK NO 202 KANCHAW'SBLLE SAPPHIRE ASHOKMAGAR, WDD 95255152 ES1US}S2. wvwimsemats comINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS jy K. Venkanna
ANT ate points of trisection Of O Shiv are puted arise
thro dettance h on Oppotite Sides of the foktton of
aqyilieiam, Quad he 4 Ye volosed fom teat. Derive
On axprenion for wha Sty UE Ary Aub hipaa Bme
aud hows hor “ha middle poinr of Ha Shing
Mpeasnei of a,c otD
(4), cot, -h) ) wt, rept
Quitesd deflection oS a y °
Equation of oP is
& o=b (a-ovie us he
Equation OF Ac and CD repectively
ae get u
Brus Gate)
4 0(010)
@ud U-(ch)=_O- Cb) (xn)
3h- Qh
wu = WOa-3d)
=> —T
“the Sunpined deflection ig Giver by
Hed = 2 Entel St aa o—
fei
whe Ene SP Fey ROT dy,
Sf _ ADO, OD AOR A WANT, Dre HOUT TP TL0O8 EN TONER MRNEHT NAR DNA, WED TOS
CIT Fed scot crct'n wonosay, on noosa et sane
LUE SaPnO ASHORAGA, DU SSRILIS2, EIESISE, weroINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »K. Venkanna
Tha decplacemerk 4 (Ak) Sf aig Pole of Hee shi
is Giveu oq
Councdory Conditions Y(Ot)= Y (38,t) 0 .s°
Wt, whey osasd
hGk2) whan 1<2228
t
Tnitial Gondi ties Y (4,0) =
AA-3) eta 28ene at
q
ond . Na? —o
we hove |
Suntr
3K
—®
Diffeeratig @) fatialyy towk t, we a
1) 5.03
2b: = j- En ME tin Rh ARE rn COOGEE f Boat |
“ee fe
‘putting te tn Oxr®
sting, Bat © wd @ vv Fr
Oz aa) = = 3 Fy te fin B29 cey®)
ico
nei
2 Thee 4. Nic
You.t) = = { Ey Ch AESE + En bin “ay
t Fn ae j ro) Hoot dx=0
Oz yoore4ey = 2 eat
if
where Ene 2 fer Hin TO de —®
°
3
em = [ For) %o2™, AT ty
°
DY Fa toc Do wasn a, De vencn 1 Wt, f MNTE OWER ARTEAGA DRA. ON TS
BAD Fed sions orcs: n.was0.207, 20 008, noo WO. 202 RS * = [ee yar 6p ste 4)
= (844 +86] [0,6 ave swall)
G7 bea the totat Kinetic energy and w He coor
Beneton Of He Ayptem, then
Toke of WAG + ke bf Wd BC .
o
=Pemgtty om mere, [+f SO eva, ]
a
gel Eee th rer Jrgm [Ae drre Ge ha289))
2 Ie
=r (MERE)
Sy vesn ovr, Ou mNENOER AGAR WARE De BEANE ORR: 10 10, TOP ROOR MAREE TOWER MUDKEREE NAGAR, DEDNA.OL-SSIDO, S557
Bed secon orc ho..-227, 200 L00R, ROOM WO. 22 RAS HANCHANTS BU SAPPHIRE ASHOKNAGAR MYDUD. RDI, SILI. wor itadmath comINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS jy K. Venkanna
ond we MgYa,+ MGYa, +e
= mg [yteno + hate +4 lead Jeo
\ J
= ymgh (scot + cot (2
8
se ogeegt oven
ied [s
at
SF apash -te8 (tere +94) —O
Eqpatiout Oand@® Cou be aa
4 s+or CUT =O
hare ton eqpoitiont roe get
w (8d+ dy] -0 -EMPEES MMOD = -Hrgte (si
(go tacje +30 =o
Eliminating > between
(errs taprracy—ap" J =0
ey (40% ued + 2aC™)O =O ton
DE we pertods of nova} ebciltanous 2 in
am
ta sdustion of © , must be
o = Aos(nt +e)
Dee we aud DNS onto.
Supedhasing w@, co
(Cant aden? ate Or?
wpa “uae” Hote =0
[Greed
wre wee Teor
Qt
ye (+4) 4 (c= 4n)
84D:
6
34+ 2
~ fF
"RAO OFT 17, CAD RACE AGAR HAART, DAN-4D BLANC OFC 106 TOP GOR MERE TOWER MOVEIE NAGAR, DOMIA. 180207, SIVTES
ew OFF: A NOS-202%7, 28D DOR ROOM WO. 272 RES-XANCHANS BLU SAPPHIRE ASHOK NAGAR DID SEZISLIS, SULT. wom.INSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS 5K. Venkanna
A Sphere Bf vadius a aud mow M roll down arm
floxe tnetinad ar Ou a ty “he horitorlal.
oF x be the distowe Of the point of Contact of the sphere
from a frud point on he plone ,-Pind “Whe accetombion by
tkug Hamilton’ eQualon-
gains Lek a Sphere Of mactiut o aud ma M Wil down a
i 1 plane inclined at On ong ra stovting initially -for
aRiued Piet 0 Of He Pant. Sh time t, Gr cthe Sphere
wt! down odie oud Vere Lat it tam
inca hore ie HO i * LX wh A
“= OW= arc AB =a8-
So that Lead
BT oud Vo ove he Wiuatic ound Poratiat enargict of |
in Sphere, “Hey T= Mee” +g Mae = ME SMa
arte tui
&i ea Af rove
7 Br (Gn te A)
aud V= —Ngol ce
> f
o LeT-¥ = {Me + NQe Bye
Hore % is tho Only qeneratiteal Couctivale .
wb eat -&MA @
TO
Bure L deer nok Contain Lanphicity ,
= Tavs mee Maa Buc
5 .,
=> He YM Chk) mgt
= 5 - trom OINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »yK. Venkanna
Hence Be hoo Hamiltoult equawout are,
bs ~ 24 2 Mg tna OH) pom 4b aah —t)
Pifermatiakivg Un) and weg (Hi) wwe et
Eating
chick giver Hee Required acceleration.IMS
INSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »yK. Venkanna
Qusa:8coy Show that =f ca) id 2 Postible foun
for te velocity potential for an uncompacssible
fluid motion. Sf othe fleece velocity F-7 0 warn,
find che derpaces 4 covitant sped,
Aolution - given, b =xfa) @
ga-76 = -T [xfer]
¥= “TIO Vx4x Vf] ——@
Now, = rary? 2?
2 PR( BM) aoe => OR
x
ox
z
A
Ainsley « aye enol we
wos yu = ['Gi)*I&)+«()]*
vt «Fel Fe
vf) = of) (2%, +i) (*%ay)* @ f'y(24,)
vfey =i fe tO (th, )r fas)
vf) = 1 pay Chetiye Rey = Lone
“@s5 qa Furi (Ato? —©
For & fossible avetion Of Qn uncomprcssible fluid,
we have —
‘EAD OFFICE: 17 OLD RAIENDER NAGAR MARAE, EDW-G BRIE OFC 15-05 TOP FLOOR, MUKHERIE TOWER MUDIERIEENAGAR DEIN) OL SGTOM7, SUATORS
REGIONAL OFPCE:.NO-3027, 200 POON, ROOM WO. 22 RX'SHAMCHANTS BLUE SAPPHIRE ASHOK NAGAR VDDD, 9a2IS52 SESUGLISE. wars matheINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS ,;,K. Venkanna
wy ro or W(-9b)=0
> vo=0
2 [& +i da [xfei] =o ,(vsingO) 6)
2
Now, alr tal]= 213 txfen4]
= 2. [ fo +% BEt]
on ou
2 Pu fej] = OF 4 2b yx PHA) = 298. y Su
pplttel] = BF + BE +n Pte BE x Mew
Alxos 2
spl) x ye
BD [pn] = x BF
az og2
-. © becomes
22 4n(M MH, FE) 9 —@
Dar Oy?
4 ; — vsi
& = F'O%) vsing®
EAD GFRCE 257, OLD RARNOER NAGA MARKET, DEL, MANGH OFC 105 106, OP GOR, MUHEREE TOWER MUDHEREE NAGAR DAL. OLTASSIONT,SOUTATOS
REGIONAL OFC: H.WO-6297, 240 FLOOR, ROOM NO, 20 A'SKANCHAN’S BUI SAPPHIRE ASHOK NAGAR FWD 20, 95235152 SES2GLIS2. nrc iarithoconINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS», K. Venkanna
ond DM. £', ater xg —_@
az A a3
Adding. @ © ond @ ,wx get:
OE OMe ig = febagieat] pt page
Dae dy?” az®
Of MH VE 8
Spike
ont oye oer + af
aX»
oe
3
a
St OF OF Be owl a 2 ol ps
pat Toye" oer tf af egtten
vsing and @ , @ acduces
20 (Je
> Fla df! Lo
aA
>it ee
fk
Anteqrating, log f1 + 4 Log = bog ey
fo that olf = art]
Tteyrating ©), fe (Gp) P46
®
FA Kt OF 278, OD RNR nan tana Oa a, ANC OFC 0-5, To? FIDO, MUNTGUEE TONER MODVEREE WAAR BELA G1-SFIDTSRDITEIS
iedmathcm
RESIONAL OFFICE: NOB, 20D FLOOR, ROOM NO. 202 RXCSKANCIAMTS BLE SAPPHIRE ASHOK AGAR, HY0-20.9EERSLI52,SESDEGIS2. welINSTITUTE FOR IAS/IFoS/CSIR/GATE EXAMINATIONS
MATHEMATICS »,K. Venkanna
Cz, being an aabitrany, conskant
Suu bibubing, tbe values Of fland f from
@ &@ sn ©, we get
ye-|t (¢H/g,3)- 297" = (%5)% —©
Given, that G20 % A>%,
perce (8) shows that C, =
from (iS) 5 a = et L(7 22)
Now; = 4G © S(7- BE),
ar
— 3x8
RE
(?-
Pu ee Bie pel
ee aa
it *
e
ane (4 -&
a
dao
=
=, (ame 3x2)
Hence, the dequiced duscfaces & condtant speed asce
Ye Constant con oe J gad) = Constent
9a
q7= (224327) 478 © constant required Souction
FS ore 275, ow aseNoER AGAR Maa, LNs MANCH OFC: 1516, T0P FLOOR MOREE TOWER MUNEREE AGAR DELS OLTGESS6, OISTEDS
Bod recion cence: 90.10237, 260 FLOOR, ROOM WO, 22 KS FANCHAMTS BLUE SAPPHIRE ASHOK MAGAR, HYDE 9652353352, SS2G6L152, wemwimstraths cm