Engineering Mechanism Acceleration
Engineering Mechanism Acceleration
Case 2
Same Case 1
DIFFERENCE
Link TRIVIAL CASE
MOTION
Case 4
Different Case 3
DIFFERENCE & RELATIVE
Links RELATIVE MOTION
MOTION
• Where:
|A
RB
3 4
O2 2 O4
A
ω 2 α2
0A
C
3 4
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
3 4
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
3 4
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
4 n
3 aA
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
aA
4 n
3 aA
t
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
A AA
aA
4 n
3 aA
t
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
A AA
|A n
aA
4 n
3 aA
t
aB
1 mm = 50 mm/s2
O2 2 O4
A
ω2 α 2
0A
C
A AA
di
r (a
|A n
3 4 B| t
aB
A
)
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di
r (a
|A n
3 4 B
aB
|A t
)
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di t
r (a )
|A n
3 4 B dir(a B
aB
|A t
)
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di t
r (a )
|A n
3 4 B| t dir(a B
aB
A
)
AB
1 mm = 50 mm/s2
B
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di t
r (a )
|A n
3 4 B| t dir(a B
aB
A
)
AB
t
aB|A 1 mm = 50 mm/s2
B
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di t
r (a )
|A n
3 4 B| t dir(a B
aB
A
)
AB
t
aB|A 1 mm = 50 mm/s2
B
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di t
r (a )
|A n
3 4 B| t dir(a B
aB
A
) t
AB aB
aB|At 1 mm = 50 mm/s2
B
O2 2 O4
A
ω 2 α2
0A
C
A AA a Bn
di t
r (a )
|A n
3 4 B| t dir(a B
aB
A
) t
AB aB
aB|At 1 mm = 50 mm/s2
B
O2 2 O4
A
ω 2 α2
0A
C
A AA
3 4
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
AaC|At AA
3 4
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
AaC|At AA
3 4 aC|An
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
0A
C
AaC|At AA
AC
3 4 aC|An
C
1 mm = 50 mm/s2
O2 2 O4
A
ω 2 α2
3
C2,C3,C4
2 θ4 = θslide
3
C2,C3,C4
2 θ4 = θslide
1 1
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Relative Acceleration Analysis
• Differentiating once more to find
acceleration:
3
C2,C3,C4
2 θ4 = θslide
1 1
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Relative Acceleration Analysis
• Simplifying:
3
C2,C3,C4
2 θ4 = θslide
1 1
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Relative Acceleration Analysis
• Let’s take a closer look at the terms here:
ωs
acC2|C4
acC2|C4
ωs 1 1
ωs
vs vs
acC2|C4
1
MECH 335 Lecture Notes 1
© R.Podhorodeski, 2009
Relative Acceleration Analysis
• Summarizing:
=0 =0
C
ρC
3
B
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
3
B
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
3
B
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
3
=0
B
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
a
n
B4
3
B
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
a
n
B4
3
B
t )
B4
(a
dir
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
a
n
B4
3
B
t )
B4
(a B
dir
B2
an
4
2
α2
ω2
O2 C O4
0A
1 mm = 75 mm/s2
a
n
B4
3
B
t
B4
)
(a B
dir
B2
an
4
2
α2
ω2
O2 C O4
at
B2
0A
1 mm = 75 mm/s2
a
n
B4
3
B
t )
B4
(a
dir
B2
an
4
2
α2
ω2
AB2
O2 C O4
at
B2
0A
1 mm = 75 mm/s2
a
n
B4
3
B
t )
B4
(a
dir
4
2
α2
ω2
AB2
O2 C O4
0A
1 mm = 75 mm/s2
a
n
B4
3
B
t )
B4
(a B
dir
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
(a
s
B4
0A
|B2
1 mm = 75 mm/s2
)
a
n
B4
3
B
t )
B4
(a
dir
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
(a B
t
4|B
0A
2)
1 mm = 75 mm/s2 AB4
B4
a
n
B4
3
B
t )
B4
(a
dir
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
(a B
t
4|B
0A
2)
1 mm = 75 mm/s2 AB4
B4
a
n
t
B4
3 a B4
B
t )
B4
(a
dir
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
(a B
t
4|B
0A
2)
1 mm = 75 mm/s2 AB4
B4
a
n
t
B4
3 a B4
B
t )
B4
(a
dir
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
(a B
t
4|B
0A
a nC
2)
1 mm = 75 mm/s2 AB4
B4
a
n
t
B4
3 a B4
B
t )
B4
(a
dir
a B4
t
|B2
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
(a B
t
a tC
4|B
0A
a nC
2)
1 mm = 75 mm/s2 AB4
B4
a
n
t
B4
3 a B4
B
t )
B4
(a
dir
a B4
t
|B2
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
dir
C
(a B
AC
t
a tC
4|B
0A
a nC
2)
1 mm = 75 mm/s2 AB4
B4
a
n
t
B4
3 a B4
B
t )
B4
(a
dir
a B4
t
|B2
4
2
α2
ω2
AB2
O2 C O4 c
B4
|B2
a
α2
α3 = ?
R2
ω2 R3
ω3
θ2
θ3
aB = ?
R0 R1 vB
B
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Analytical Acceleration Solutions
• Solution 1: Analytical treatment of relative acceleration
– Form the relative acceleration equation: (1)
– Express each term in polar-complex form: (2)
(3)
(4)
– Substitute (2)-(4) back into (1), and substitute :
A
α2
α3 = ?
R2
ω2 R3
ω3
θ2
• Split into real and imaginary equations:
θ3
aB = ?
R0 R1 vB
B
Re:
Im:
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Analytical Acceleration Solutions
• Solution 1: Analytical treatment of relative acceleration
Re:
Im:
α2
α3 = ?
R2
ω2 R3
θ2
ω3
• NOTE: Several simplifying steps have been left out
aB = ?
θ3 of this, and the following solutions. You should
R0 R1 vB attempt these solutions in full yourselves, as it is
B
easy to make errors on exams if you’re not REALLY
familiar with the steps involved
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Analytical Acceleration Solutions
• Solution 2: Vector cross-products:
– Start again from the relative velocity eqn: (1)
– Express each term using vector cross-products:
• Where:
α2
R2
α3 = ? • Substitute into (1), expand, and split the
ω2 R3
resulting equation into i and j equations. The
ω3
θ2 solution can be found from this system of 2
aB = ?
θ3 equations in 2 unknowns
R0 R1 vB
B • Again, practice this in full! These solutions
are lengthy, and easy to make errors on.
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
Analytical Acceleration Solutions
• Solution 3: Time derivatives of loop closure equation:
– Write the loop closure equation:
– Substitute the p-c forms:
– Take the time derivative to get the velocity closure equation:
Note: only the non-zero terms
have been expanded here. Make
sure you can do this in full!
A
ω2
R2
R3
acceleration closure equation:
ω3
θ2
θ3
aB = ?
R0 R1 vB
B
• Substitute , form a system
of 2 equations, and solve
MECH 335 Lecture Notes
© R.Podhorodeski, 2009
End of Lecture Pack 5