0% found this document useful (0 votes)
25 views9 pages

Devoir 2 C

Uploaded by

elhocine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
25 views9 pages

Devoir 2 C

Uploaded by

elhocine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Devoir 2

Sébastien Roy
February 20, 2012

GEL7060 (Communications numériques avancées)


Hiver 2012
à remettre avant jeudi le 1er mars, 23h00

1. (2 points) Random variables


(a) (1 point) The covariance of 2 random variables X and Y is given
by
cov(X, Y ) = h[X − hX i] [Y − hY i]i
Show that cov (aX + b, cY + d) = ac cov (X, Y ).

cov(aX + b, cY + d) = h(aX + b − a hXi − b)(cY + d − c hY i − d)i


= ha(X − hXi)c(Y − hY i)i
= ac h(X − hXi)(Y − hY i)i
= accov(X, Y ).

(b) (1 point) If X and Y are independent and Y follows a uniform law


between 0 and 1, show that the PDF of Z = X + Y is

fZ (z) = FX (z) − FX (z − 1)

where FX (x) is the CDF of X.

1
GEL7060 – (Communications numériques avancées) 2

The PDF of z is given by


Z ∞
fZ (z) = fY (α)fX (z − α)dα,
−∞

but
fY (y) = u(y) − u(y − 1),
leading to Z 1
fZ (z) = fX (z − α)dα.
0
Letting u = z − α and therefore du = −dα, we have
Z z−1
fZ (z) = − fX (u)du
Z zz
= fX (u)du
z−1
Z z Z z−1
= fX (u)du − fX (u)du
−∞ −∞
= FX (z) − FX (z − 1).

2. (3 points) Discrete stochastic processes


Given a discrete stochastic process X[k] having the following power
spectral density :
SXX (f )

− 14 1 f
4

(a) (1 point) Derive the corresponding autocorrelation function.


Since this is a discrete process, the autocorrelation function is expressed
Z
1
RXX [k] = SXX (f )ej2πf k df
− 21 2
Z 1
4
= ej2πf k df
− 14
GEL7060 – (Communications numériques avancées) 3

#1
ej2πf k
"
4
=
j2πk − 14
jπk jπk
e− e− 2
2
=
j2πk
!
sin(πk/2) 1 k
= = sinc .
πk 2 2

(b) (1 point) If this process is presented at the input of a filter whose


impulse response is h[k] = δ[k] + δ[k − 4], what is the power spectral
density of the output process Y [k] ?
The frequency response of the filter in discrete time is given by

h[k]e−j2πf k
X
H(f ) =
k=−∞

(δ[k] + δ[k + 4]) e−j2πf k
X
=
k=−∞
−j8πf
= 1−e  
= e−j4πf ej4πf + e−j4πf
= 2e−j4πf cos(4πf ),

which naturally leads to

|H(f )|2 = 4 cos2 (4πf ),

and we have

SY Y (f ) = |H(f )|2 SXX (f )


= 4 cos2 (4πf )SXX (f )
1 1
    
= 4 cos2 (4πf ) u f + +u f − .
4 4
GEL7060 – (Communications numériques avancées) 4

(c) (1 point) Derive the output discrete autocorrelation function RY Y [k].


X ∞
X
RY Y [k] = h[m]h[l]RXX [k + m − l]
m=−∞ l=−∞
∞ ∞
1 k+m−l
X X  
= (δ[m] + δ[m − 4]) (δ[l] + δ[l − 4]) sinc
m=−∞ l=−∞
2 2

1 k−l k+4−l
X     
= (δ[l] + δ[l − 4]) sinc + sinc
2 l=−∞ 2 2
1 k k+4 k−4 k
        
= sinc + sinc + sinc + sinc
2 2 2 2 2
k 1 k−4 k+4
      
= sinc + sinc + sinc .
2 2 2 2

3. (2 points) Cyclostationary processes


Given a process of the form

X
S(t) = A[k]g(t − kT ),
k=−∞

where g(t) is a square wave of unit amplitude and duration T2 , i.e.


g(t) = u(t) − u(t − T /2), and the discrete stochastic process A[k] has
the following autocorrelation function :
 1
 2,
 k = 0,
RAA [k] =  − 14 , k = ±1,

0, ailleurs.

(a) (0.5 point) What is the mean of this process ?


GEL7060 – (Communications numériques avancées) 5

* ∞ +
X
µS = A[k]g(t − kT )
k=−∞

X
= hA[k]i g(t − kT )
k=−∞
X∞
= µA g(t − kT ).
k=−∞

In the strict sense, we cannot reduce more than this given the information
that we have.
Observing RAA [k], we see that it is possible that A[k] is bipolar of ampli-
tude √12 with equally-likely pulses. However, we cannot confirm this. If it
were true, then we would have µS = µA = 0.

(b) (0.5 point) What is its autocorrelation function ?

1 ∗
RSS (t, t + τ ) = hS (t)S(t + τ )i
2*
∞ ∞
+
1 X ∗
X
= A [k]g(t − kT ) A[l]g(t + τ − lT )
2 k=−∞ l=−∞
∞ ∞
1 X
hA∗ [k]A[l]i g(t − kT )g(t + τ − lT )
X
=
2 k=−∞ l=−∞

X ∞
X
= RAA [l − k]g(t − kT )g(t + τ − lT )
k=−∞ l=−∞
∞ 
1 1
X 
= g(t) − (g(t − T ) + g(t + T )) g(t + τ − lT )
l=−∞ 2 4
GEL7060 – (Communications numériques avancées) 6

(c) (0.5 point) Compute its period-averaged autocorrelation function.


T
1
Z
2
R̄SS (τ ) = RSS (t, t + τ )dt
T − T2
∞ ∞ Z T
1 X X 2
= RAA [l − k]g(t − kT )g(t + τ − lT )dt
T k=−∞ l=−∞ − T2
∞ ∞ Z T
1 X X 2
= g(t − kT )g(t + τ − lT )dt
T k=−∞ l=−∞ − T2
∞ ∞ Z T 
1 X T
 
X 2
= RAA [l − k] u(t − kT ) − u t − kT − ×
T k=−∞ l=−∞ − T2 2
T
  
u(t + τ − lT ) − u t + τ − lT − dt
2
∞ Z T 
1 X T
 
2
= RAA [l] u(t + τ − lT ) − u t + τ − lT − dt
T l=−∞ 0 2
 T h i
∞  R2 T T
1 X lT −τ dt = 2 − lT + τ, if lT − τ ∈ 0, 2 ,
= T
 lT −τ − 2 dt = lT − τ − T , if lT − τ ∈ − T , 0 .
h i
T l=−∞  R
0 2 2
 h i
1 X ∞  T − lT + τ, if τ ∈ lT − T , lT ,
2 2
= RAA [l] h i
T l=−∞  lT − τ − T , if τ ∈ lT, lT + T .
2 2
1 T T T
    
= − τ+ sign(τ )W − , +
2T 2 2 2
1 T T 3T
   
τ+ sign(τ − T )W , +
2 2 2 2
1 3T 3T T
   
τ+ sign(τ + T )W − , ,
2 2 2 2
where
W (a, b) = u(t − a) − u(t − b). (1)
GEL7060 – (Communications numériques avancées) 7

(d) (0.5 point) Compute its period-averaged mean.



Z T X
1
µ̄S = µA g(t − kT )dt
T 0 k=−∞
∞ Z T
1 X
= µA g(t − kT )dt
T k=−∞ 0

1
= µA .
2

4. (3 points) Random variables Consider two χ2 random variables Z1 et Z2


respectively having PDFs
1
fZ1 (x) = xn1 −1 e−x ,
Γ(n1 )
1
fZ2 (x) = xn2 −1 e−x/2.5 ,
Γ(n2 )2.5n2
Z1
(a) (2 points) What is the PDF of the ratio X = Z2
?
We proceed using the Mellin convolution. Thus, we need to express the problem
as a product of random variables.
First, we apply the transformation Y = Z12 , yielding the PDF

1 1
−1−n2 − 2.5y
fY (y) = y e .
Γ(n2 )2.5n2
Z1
Then, using the Mellin convolution, we compute the PDF of X = Z2 = Z1 Y :
Z ∞
x 1
 
fX (x) = fY fZ1 (a) da
0 a a
x −1−n2
an1 −1 e−a
Z ∞ 
a
= a
e− 2.5x da
0 Γ(n2 )2.5n2 Γ(n1 )a
1 ∞ Z
1
= an1 +n2 −1 e−a(1+ 2.5x ) da
Γ(n1 )Γ(n2 )2.5n2 x1+n2 0
n1 +n2
1 5x

= Γ(n1 + n2 )
Γ(n1 )Γ(n2 )2.5n2 x1+n2 5x + 2
xn1 −1
=  n1 +n2 u(x).
B(n1 , n2 )2.5n2 x + 25
GEL7060 – (Communications numériques avancées) 8

(b) (1 point) If n1 = 2 and n2 = 2, derive the PDF of Y = Z1 + Z2 .


Hint : use characteristic functions and partial fractions expansion.
If n1 = n2 = 2, this corresponds to 2 complex degrees of freedom, or 4 real
degrees of freedom. Hence, we have

fZ1 (x) = xe−x u(x),


x
xe− 2.5
fZ2 (x) = u(x),
2.52
and the corresponding characteristic functions are
1
φZ1 (jt) = ,
(1 − jt)2
1
φZ2 (jt) = .
1 − 2.5jt)2

The characteristic function of Y = Z1 + Z2 is given by


1
φY (jt) =
(1 − jt)2 (1
− 2.5jt)2
A1 A2 A3 A4
= + + + .
(1 − jt)2 1 − jt (1 − 2.5jt)2 1 − 2.5jt

To resolve the partial fractions expansion, we can apply Heaviside’s formula or


just re-express the sum with a common denominator. The numerator must be
equal to 1 and we have

A1 (1 − 2.5jt)2 + A2 (1 − jt)(1 − 2.5jt)2 +


A3 (1 − jt)2 + A4 (1 − jt)2 (1 − 2.5jt) = 1,

from which we can deduce

A1 + A2 + A3 + A4 = 1,
−5A1 − 6A2 − 2A3 − 4.5A4 = 0,
−6.25A1 − (6.25 + 5)A2 − A3 − (1 + 5)A4 = 0,
6.25A2 + 2.5A4 = 0,
GEL7060 – (Communications numériques avancées) 9

which leads to the system of equations


    
1 1 1 1 A1
 −5 −6 −2 −4.5 
  A2
   0 
= .
   
−6.25 −11.25 −1 −6   A3   0 
 

0 6.25 0 2.5 A4 0

Resolving the system, we find that

A1 = 0.4444,
A2 = 1.4815,
A3 = 2.7778,
A4 = −3.7037.

Hence, we have
A3 − x A4 − x
fY (y) = A1 xe−x + A2 e−x + 2
xe 2.5 + e 2.5
2.5 2.5
A3 A4
 
x
= (A1 x + A2 ) e−x + 2
x + e− 2.5 .
2.5 2.5

You might also like