0% found this document useful (0 votes)
9 views4 pages

Silicon Nitride

Uploaded by

aref zand
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
9 views4 pages

Silicon Nitride

Uploaded by

aref zand
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Silicon Nitride

Silicon Nitride cylindrical void c h a n n e l s parallel to the c axis. Solu-


tion, o r e v a p o r a t i o n , of t h e α p h a s e p e r m i t s t h e re-
Silicon nitride ( S i 3 N 4 ) h a s been k n o w n as a chemical constructive oL-β p h a s e t r a n s f o r m a t i o n t o occur.
c o m p o u n d since the n i n e t e e n t h century. T h e develop- T r a n s f o r m a t i o n of t h e β p h a s e t o the α p h a s e seems
m e n t of a r a n g e of c e r a m i c m a t e r i a l s b a s e d o n silicon n o t t o be possible. Single-crystal densities are
nitride c o m m e n c e d in t h e 1960s, as a result of a search 3185 k g m
- 3
a n d 3196 k g m
- 3
for α a n d β phases,
for new m a t e r i a l s consisting of elements of low a t o m i c respectively. T h e s t r o n g , p r e p o n d e r a n t l y ( ~ 7 0 % )
n u m b e r with useful properties. In the case of silicon c o v a l e n t i n t e r a t o m i c b o n d i n g gives a high m o d u l u s of
nitride, t h e p r o p e r t i e s of m o s t interest are t h e reten- 320 G P a at 25 °C a n d a low t h e r m a l e x p a n s i o n coeffi-
tion of m e c h a n i c a l s t r e n g t h a n d creep resistance at cient of a p p r o x i m a t e l y 3 M K
1
over 0 - 1 0 0 0 °C. N o
high t e m p e r a t u r e a n d , for a brittle m a t e r i a l , excep- reliable values exist for silicon or n i t r o g e n self-diffu-
tionally g o o d resistance t o t h e r m a l shock. Interest in sion coefficients, b u t it is certain t h a t b o t h a r e small.
silicon nitride ceramics h a s intensified in recent years, Silicon nitride d o e s n o t melt u n d e r n o r m a l pressures,
since the realization t h a t they are suitable substitutes b u t d e c o m p o s e s at 2155 Κ u n d e r 1 a t m n i t r o g e n into
for h i g h - t e m p e r a t u r e m e t a l alloys in a r a n g e of gas n i t r o g e n a n d liquid silicon. Dissociation rates b e c o m e
t u r b i n e engines. Such engines w o u l d h a v e the capacity a p p r e c i a b l e at a p p r o x i m a t e l y 1 5 0 0 ° C , a n d a b o v e this
t o o p e r a t e with higher gas inlet t e m p e r a t u r e s t h a n are t e m p e r a t u r e silicon nitride is effectively u n s t a b l e
p e r m i t t e d in c o n v e n t i o n a l m e t a l engines, giving as- u n d e r v a c u u m , o r in t h e presence of silicon v a p o r o r
sociated increases in efficiency a n d higher p o w e r - t o - n i t r o g e n sinks. P u r e silicon nitride s h o w s n o signifi-
weight ratios. C o n s i d e r a b l e research effort h a s been c a n t electrical c o n d u c t i o n .
e x p e n d e d in this a r e a with very e n c o u r a g i n g achieve-
m e n t s . In parallel, effort h a s been directed t o w a r d s t h e 2. Ceramic Forms
i n c o r p o r a t i o n of silicon nitride c o m p o n e n t s in diesel
engines to give i m p r o v e d t h e r m a l efficiency. At the Silicon nitride c o m p o n e n t s m a y be p r o d u c e d in dense
s a m e time, these m a t e r i a l s h a v e established for t h e m - form from a p o w d e r t h r o u g h the c o n v e n t i o n a l
selves a wide r a n g e of c o m m e r c i a l a p p l i c a t i o n s of a sintering or h o t - p r e s s i n g r o u t e s . An interesting a n d
less d e m a n d i n g n a t u r e so t h a t their use as ceramics i m p o r t a n t feature of the material, however, is t h a t
3
in a n engineering c o n t e x t is b e c o m i n g generally lower density ( 2 3 0 0 - 2 7 0 0 k g m ~ ) c o m p o n e n t s m a y
accepted. be p r o d u c e d directly by the n i t r i d a t i o n of c o m p a c t e d
silicon p o w d e r — t h e r e a c t i o n - b o n d i n g (or reaction-
1. Formation of Properties sintering) r o u t e . T h i s h a s t h e a d d i t i o n a l merit t h a t
only slight overall v o l u m e c h a n g e occurs d u r i n g the
F o r m a t i o n of silicon nitride is n o r m a l l y by t h e direct fabrication process, so t h a t complex, accurately di-
reaction of silicon p o w d e r with n i t r o g e n a t t e m p e r - m e n s i o n e d s h a p e s c a n be p r o d u c e d in a single stage
a t u r e s a b o v e a p p r o x i m a t e l y 1200 °C: from a s h a p e d billet of silicon p o w d e r . H o t - p r e s s i n g is
n o w a well-established technique, yielding theoretical
3Si(s) + 2 N 2 ( g ) - > S i 3 N 4 ( s ) (1)
density m a t e r i a l of high s t r e n g t h (greater t h a n
A convenient, b u t infrequently used, alternative r o u t e 1000 M P a in four-point b e n d at 25 °C). Pressureless
is the c a r b o t h e r m a l r e d u c t i o n of silica: sintering h a s been t h e last t e c h n i q u e t o be developed
because of the t e n d e n c y of silicon nitride to d e c o m -
3 S i 0 2 ( s ) + 6C(s) + 2 N 2 ( g )
pose o n h e a t i n g t o very high t e m p e r a t u r e s a n d sin-
- + S i 3N 4( s ) + 6 C O ( g ) (2) tered m a t e r i a l h a s only recently r e a c h e d t h e stage of
c o m m e r c i a l p r o d u c t i o n . P y r o l y t i c silicon nitride m a y
T h e silicon n i t r i d a t i o n r e a c t i o n is strongly e x o t h e r m i c
- 1 be p r e p a r e d by t h e d e c o m p o s i t i o n of a m i x t u r e of
(— 724 kJ m o l ) a n d this c a n lead t o difficulties with
SiCl4 and N H 3 on a hot substrate:
t h e precise c o n t r o l of t e m p e r a t u r e .
T h e r e are t w o silicon nitride crystal structures, α 3 S i C l 4( g ) + 4 N H 3 ( g ) - S i 3 N 4 ( s ) + 12HCl(g) (3)
a n d β. B o t h structures c a n be r e g a r d e d as consisting of
Theoretically dense crystalline material is o b t a i n a b l e ,
interleaved c o r r u g a t e d sheets of 8- a n d 12-membered
b u t it t e n d s t o c o n t a i n w e a k e n i n g residual stresses a n d
rings of silicon a n d nitrogen a t o m s . In the α structure,
c o m m e r c i a l d e v e l o p m e n t seems t o be unlikely in t h e
each a l t e r n a t e sheet is inverted a n d offset slightly with
n e a r future.
respect to the u n d e r l y i n g sheet t o g e n e r a t e a cellular
structure. E a c h n i t r o g e n a t o m is b o n d e d to three
3. Reaction-Bonded Silicon Nitride
silicon a t o m s in a p p r o x i m a t e l y t r i g o n a l p l a n a r config-
u r a t i o n a n d each silicon a t o m is b o n d e d t e t r a h e d r a l l y Silicon u n d e r g o e s a 2 1 . 7 % m o l a r v o l u m e e x p a n s i o n
t o four n i t r o g e n a t o m s . T h e α s t r u c t u r e c o n t a i n s a o n c o n v e r s i o n t o the nitride. This e x p a n s i o n is
degree of strain a n d it is believed t h a t a stabilizing a c c o m m o d a t e d entirely within t h e original void s p a c e
factor, such as the i n c o r p o r a t i o n of traces of oxygen in the silicon p o w d e r c o m p a c t , so t h a t the b u l k vol-
or Si(II), is required. In t h e β s t r u c t u r e , the sheets u m e is m a i n t a i n e d with a c o r r e s p o n d i n g r e d u c t i o n in
are stacked in a regular m a n n e r to give c o n t i n u o u s void fraction. A silicon pQwder c o m p a c t of density

434
Silicon Nitride

3 3
1500 k g r r T ( 3 5 % void) t h u s nitrides t o 2500 k g m " p a r t i c u l a r l y a l u m i n u m . Early a p p l i c a t i o n s were as
( 2 1 % void) silicon nitride. Because of the difficulty of t h e r m o c o u p l e s h e a t h s for m o l t e n steel testing a n d in
ensuring the c o m p l e t e reaction of high-density silicon c o m p o n e n t s used in p i p i n g a n d ladling m o l t e n a l u m i -
p o w d e r c o m p a c t s it is difficult t o a t t a i n very high n u m , the ease with which accurately d i m e n s i o n e d
nitride densities. T h e present m a x i m u m is a p p r o x i - c o m p o n e n t s could be formed w i t h o u t recourse to
- 3
mately 2850 k g m o n thin ( 1 - 2 m m ) section c o m - extensive d i a m o n d m a c h i n i n g being an i m p o r t a n t
p o n e n t s ; usually densities a r e in t h e range factor in its favor. O t h e r a p p l i c a t i o n s h a v e been in t h e
3
2 3 0 0 - 2 7 0 0 k g m ~ . T h e highest strength m a t e r i a l is m e t a l a n d ceramic processing industries w h e r e s u p -
o b t a i n e d by using a n i t r o g e n d e m a n d t e c h n i q u e , in p o r t s are subjected t o c o n t i n u o u s cycling over t e m p e r -
which the nitrogen supply r a t e a n d the t e m p e r a t u r e a t u r e s p a n s of 1000 °C o r m o r e . E x a m p l e s are in m e t a l
p r o g r a m s are interlinked t o minimize i n h o m o g e n e o u s brazing, surface h a r d e n i n g , s p a r k - p l u g b o d y a n d den-
heating of the silicon p o w d e r . Reaction c o m m e n c e s at tal porcelain firing, inert-gas arc-welding t o r c h noz-
a p p r o x i m a t e l y 1 2 0 0 ° C a n d t h e t e m p e r a t u r e is care- zles a n d electric h e a t e r element s u p p o r t s in a e r o s p a c e
fully p r o g r a m m e d to a p p r o x i m a t e l y 1450 °C t o applications. These are unobtrusive but important
achieve c o m p l e t e reaction. T o t a l reaction times of a p p l i c a t i o n s for t h e material.
150-200 h are n o r m a l l y required. N i t r o g e n - h y d r o g e n C o n s i d e r a b l e interest h a s been sustained in reac-
or N - H - H e gas m i x t u r e s are used with a d v a n t a g e t o t i o n - b o n d e d S i 3 N 4 since t h e late 1960s by t h e possibil-
give faster a n d m o r e easily controlled n i t r i d a t i o n ity t h a t it can be used for h o t - z o n e c o m p o n e n t s in a
rates, a n d higher s t r e n g t h material. r a n g e of h i g h - t e m p e r a t u r e gas t u r b i n e a n d diesel en-
A great m a n y studies h a v e been m a d e of t h e nitrid- gines. Engines of varying p o w e r levels, including those
a t i o n reaction m e c h a n i s m . M u c h of the p r o d u c t ( p r e - suitable for t r u c k s a n d a u t o m o b i l e s , are being de-
d o m i n a n t l y α-phase material) is believed t o be formed veloped with p l a n n e d gas inlet t e m p e r a t u r e s between
by the c o m b i n a t i o n (at suitable g r o w t h sites) of ni- 925 °C a n d 1 3 7 0 ° C . T h e versatility of the reaction-
t r o g e n a n d silicon v a p o r o r silicon-containing v a p o r b o n d e d form of silicon nitride lends itself well to the
species such as silicon m o n o x i d e . T h e f o r m a t i o n of t h e c o n s t r u c t i o n of such c o m p o n e n t s as thin-walled c o m -
β p h a s e is favored kinetically by the presence of b u s t i o n c h a m b e r s , s h r o u d rings, s t a t o r a n d r o t o r
liquids such as eutectic c o m p o s i t i o n s in s i l i c o n - m e t a l vanes, a n d , in t h e diesel engine, piston c r o w n s , sealing
(impurity) systems or, a b o v e 1407 °C, liquid silicon rings, liners a n d p r e c o m b u s t i o n c h a m b e r s . W o r k h a s
itself. (Iron, a l u m i n u m , m a g n e s i u m a n d calcium a r e also been carried o u t o n diesel t u r b o c h a r g e r rotors.
c o m m o n impurities at t h e 1 - 0 . 0 1 % level in c o m m e r - T h e s e engineering p r o g r a m s a r e well a d v a n c e d a n d
cial silicon powders.) T h e function of h y d r o g e n as a m a n y test-bed a n d test-vehicle r u n n i n g h o u r s have
reaction accelerator is linked to its ability to speed the been logged. T h e p r o d u c t i o n of gas t u r b i n e a u t o -
elimination (as silicon m o n o x i d e ) of protective films of m o b i l e engines using r e a c t i o n - b o n d e d S i 3 N 4 h o t - z o n e
silica ( S i 0 2 ) o n t h e silicon particle surfaces. T h e resul- c o m p o n e n t s is at a n a d v a n c e d stage of p l a n n i n g , b u t
ting m i c r o s t r u c t u r e of r e a c t i o n - b o n d e d S i 3 N 4 is s o m e - the c o m m e r c i a l viability of this engine m u s t d e p e n d ,
w h a t complex, consisting of a m i x t u r e of fibrous a n d however, o n the d e v e l o p m e n t of techniques for the
equiaxed m a t e r i a l of i n h o m o g e n e o u s density. T h e m a s s p r o d u c t i o n of reliable low-cost c o m p o n e n t s a n d
v o l u m e , n a t u r e a n d d i s t r i b u t i o n of the void space is of this forms an i m p o r t a n t research area.
great i m p o r t a n c e for strength, with t h e highest A conservative e s t i m a t e of t h e a n n u a l c o m m e r c i a l
strengths being o b t a i n e d with high-density m a t e r i a l p r o d u c t i o n of r e a c t i o n - b o n d e d S i 3 N 4 w o u l d be of the
h a v i n g an even d i s t r i b u t i o n of fine porosity. T h e r e is o r d e r of 25 t, a significant p r o p o r t i o n of this being
s o m e evidence t h a t f o r m a t i o n c o n d i t i o n s favoring t h e p r o d u c e d in the U K . Silicon nitride is also p r o d u c e d
p r o d u c t i o n of the α p h a s e also lead t o a higher in p o w d e r form for a p p l i c a t i o n s as diverse as a re-
strength material. S t r e n g t h s at r o o m t e m p e r a t u r e , as fractory insulation m a t e r i a l a n d a n aircraft b r a k e - p a d
measured in four-point bend, are typically filler.
2 5 0 - 3 0 0 M P a for m a t e r i a l of density of a p p r o x i -
- 3
mately 2700 k g m . T h i s s t r e n g t h is n o r m a l l y m a i n - 4. Hot-Pressed Silicon Nitride
tained t o 1400 °C in air, with s o m e i m p r o v e m e n t in Fully dense silicon nitride was first p r o d u c e d in 1961
the s h o r t t e r m d u e t o oxide infilling of surface flaws. by hot-pressing silicon nitride p o w d e r s c o n t a i n i n g a
Silicon nitride is p r o t e c t e d against s p o n t a n e o u s o x i d a - densification aid. O x i d e s such as M g O or Y 2 0 3 at the
tion by films of crystalline o r a m o r p h o u s silica. In t h e 5-15 m o l . % level are c o m m o n l y used for this p u r p o s e ,
p u r e material, these p r o v i d e a n a d e q u a t e b a r r i e r u p t o b u t m u c h e x p e r i m e n t a l w o r k h a s been carried o u t
a p p r o x i m a t e l y 1400 °C. Metallic-ion c o n t a m i n a t i o n with a wide r a n g e of oxides a n d nitrides. T h e additive
of the silica reduces its effectiveness in this respect. reacts at the pressing t e m p e r a t u r e (1650-1800 °C) with
R e a c t i o n - b o n d e d S i 3 N 4 d e p e n d s for its successful t h e surface silica film o n the silicon nitride particles
c o m m e r c i a l application primarily o n its resistance t o (naturally present at t h e 1.2-12 m o l . % level d e p e n d -
thermal shock (a function of t h e low t h e r m a l ex- ing o n particle size a n d p r e t r e a t m e n t ) to form liquid
pansion coefficient of silicon nitride) a n d its n o n - p h a s e s in which silicon nitride h a s appreciable solu-
wetting c h a r a c t e r in c o n t a c t with m o l t e n metals, bility. Pressure-assisted ( 7 - 3 5 M P a ) solution a n d

435
Silicon Nitride

reprecipitation occurs, and full density can be obtained 5. Sintered Silicon Nitride
within m i n u t e s . H o t pressing is n o r m a l l y c o n t i n u e d
T h e sintering of p u r e S i 3 N 4 t o full density has, so
for 1 h or m o r e to e n s u r e c o m p l e t e t r a n s f o r m a t i o n of
far, been found t o be impossible d u e t o the high-
the a - S i 3 N 4 t o ß - S i 3 N 4 . O n cooling, the liquid solidi-
t e m p e r a t u r e instability of t h e m a t e r i a l . C o n s i d e r a b l e
fies t o form s e c o n d a r y glassy or crystalline p h a s e s
p r o g r e s s h a s been m a d e since t h e early 1980s, h o w -
which m a y c o n t a i n s t r u c t u r a l nitrogen. T h e s e c o n d a r y
ever, using l i q u i d - p h a s e sintering with additives de-
p h a s e is l o c a t e d as a thin ( ~ 5 n m ) film at grain
veloped for h o t - p r e s s e d S i 3 N 4 p r o d u c t i o n . H i g h e r
b o u n d a r i e s a n d as p o c k e t s at triple p o i n t s . C r y s t a l -
t e m p e r a t u r e s (1825-2080 °C) a n d longer times (up t o
lization of this p h a s e is desirable, b u t is difficult t o
5 h) a r e required. T h e best studied additives h a v e been
achieve fully at t h e grain b o u n d a r i e s . T h e a- to ß-
M g O a n d Y 2 0 3 , singly, in c o m b i n a t i o n a n d t o g e t h e r
p h a s e t r a n s f o r m a t i o n results in a fibrous grain m o r -
with A 1 2 0 3 . P r e c a u t i o n s m u s t be t a k e n against losses
p h o l o g y which increases fracture t o u g h n e s s t o
1 /2 of silicon nitride by d e c o m p o s i t i o n o r by t h e e v a p o -
6MPam for greater t h a n 7 0 % a - S i 3 N 4 in t h e
r a t i o n of S i O , a n d losses of t h e sintering aid itself.
s t a r t i n g silicon nitride p o w d e r . T o a very large extent,
W e i g h t loss c a n b e s u p p r e s s e d by sintering in a high
the m e c h a n i c a l p r o p e r t i e s of hot-pressed S i 3 N 4 o t h e r -
p r e s s u r e of n i t r o g e n ( 1 - 8 M P a ) a n d / o r using a silicon
wise d e p e n d o n the c o m p o s i t i o n , crystallinity a n d
nitride p o w d e r bed, which m a y also c o n t a i n the
d i s t r i b u t i o n of the s e c o n d - p h a s e material. S t r e n g t h s in
sintering aid t o g e t h e r with b o r o n nitride p o w d e r t o
four-point b e n d of 8 0 0 - 1 0 0 0 M P a are regularly o b -
r e t a r d sintering of t h e bed. T h e s t r e n g t h s of sintered
tained at 25 °C. (Strengths of 1400 M P a h a v e been
S i 3 N 4 so far a t t a i n e d (to 1000 M P a in bend) a p p r o a c h
r e p o r t e d for A 1 2 0 3 / Y 2 0 3 h o t - p r e s s e d m a t e r i a l with a
t h o s e for t h e best h o t - p r e s s e d S i 3 N 4 a n d there is n o
high degree of s e c o n d - p h a s e crystallinity.) H i g h -
d o u b t t h a t i m p r o v e m e n t s will c o n t i n u e t o be m a d e .
t e m p e r a t u r e s t r e n g t h a n d creep resistance strongly
d e p e n d o n the n a t u r e of t h e second p h a s e . S t r e n g t h s of T h e sintering process is i m p o r t a n t in its o w n right
400 M P a in b e n d at 1400 °C c a n be achieved, b u t as a m e a n s of o b t a i n i n g s h a p e d silicon nitride c o m -
softening of the g r a i n - b o u n d a r y p h a s e leads t o r a p i d p o n e n t s with t h e p r o p e r t i e s of h o t - p r e s s e d S i 3 N 4 , b u t
fall off in s t r e n g t h a b o v e this t e m p e r a t u r e . at a fraction of t h e cost. A further i m p o r t a n t r e a s o n for
the interest in t h e process lies in t h e p o s t s i n t e r i n g of
P u r e silicon nitride is well p r o t e c t e d against o x i d a -
reaction-bonded S i 3N 4. The attraction here depends
tion by a silica film. In t h e case of the best-studied
o n t h e fact t h a t r e a c t i o n - b o n d e d S i 3 N 4 c a n be p r o -
magnesia-pressed material, g r a i n - b o u n d a r y c a t i o n s
d u c e d readily t o m u c h higher densities t h a n c a n be
play an i m p o r t a n t p a r t in the o x i d a t i o n process a n d
achieved by c o m p a c t i n g sinterable silicon nitride
the o u t w a r d diffusion of these c a t i o n s i n t o the surface
p o w d e r . L i n e a r s h r i n k a g e s at t h e sintering stage are
silica layer a p p e a r s t o be r a t e controlling. P a r a b o l i c
p r o p o r t i o n a t e l y reduced, from a p p r o x i m a t e l y 1 5 % t o
rate c o n s t a n t s d e p e n d linearly o n the M g O c o n t e n t
a b o u t 5 % , a n d t h e final d i m e n s i o n a l a c c u r a c y is
a n d are several o r d e r s of m a g n i t u d e higher t h a n t h o s e
higher. T h e c o m p o n e n t therefore requires less-
for p u r e silicon nitride. N o n e t h e l e s s , t h e use of h o t -
expensive d i a m o n d m a c h i n i n g for precise d i m e n s i o n s
pressed S i 3 N 4 at t e m p e r a t u r e s a b o v e 1000 °C for sev-
a n d c o m m e r c i a l l y will be m o r e attractive. Sintering
eral t h o u s a n d h o u r s c a n be c o n t e m p l a t e d . I m p r o v e d
aids c a n b e infiltrated o r diffused i n t o t h e r e a c t i o n -
o x i d a t i o n resistance is found for yttria-pressed m a -
b o n d e d S i 3 N 4 c o m p o n e n t , o r b l e n d e d with t h e start-
terial, p r o v i d e d t h a t the overall system c o m p o s i t i o n
ing silicon p o w d e r before n i t r i d a t i o n . T h e a d v a n c e s in
lies within the S i 3 N 4 - S i 2 N 2 0 - Y 2 S i 2 0 7 c o m p a t i b i l i t y
sintering t e c h n o l o g y t h u s m a k e possible t h e m a s s
triangle, t h u s excluding t h e presence at t h e grain
p r o d u c t i o n of c o m p l e x engineering c o m p o n e n t s with
b o u n d a r i e s of the readily oxidized S i - Y - N - O p h a s e s .
p r o p e r t i e s similar t o t h o s e of h o t - p r e s s e d S i 3 N 4 ; it is
T h e small n u m b e r of a p p l i c a t i o n s for h o t - p r e s s e d t o be expected t h a t sintered S i 3 N 4 a n d p o s t s i n t e r i n g
S i 3 N 4 d e p e n d s largely o n its h a r d n e s s a n d strength, of r e a c t i o n - b o n d e d S i 3 N 4 will be d e v e l o p e d t o t h e
giving g o o d resistance t o w e a r a n d a b r a s i o n . T u b e - exclusion of h o t - p r e s s e d S i 3 N 4 , except possibly for t h e
d r a w i n g plugs a n d dies, a n d m e t a l - c u t t i n g inserts h a v e m o s t d e m a n d i n g of a p p l i c a t i o n s .
been successfully developed o n a m o d e s t scale. O t h e r
possible a p p l i c a t i o n s are as ball a n d roller b e a r i n g s See also: Nitrides
for use u n d e r abrasive c o n d i t i o n s , o r w h e r e lubric-
a t i o n m a y n o t be a d e q u a t e , as in seabed drilling
e q u i p m e n t . As in the case of r e a c t i o n - b o n d e d S i 3 N 4 , Bibliography
c o n s i d e r a b l e interest in h o t - p r e s s e d S i 3 N 4 h a s been
b r o u g h t a b o u t by c e r a m i c gas t u r b i n e d e v e l o p m e n t Bunk W, Böhmer M (eds.) 1981 Keramische Komponenten
p r o g r a m s . It is a p r i m a r y c a n d i d a t e m a t e r i a l for axial- für Fahrzeug-Gasturbinen—//. Springer, Berlin
Burke J J, Lenoe E M, Katz R Ν (eds.) 1978 Ceramics for
flow r o t o r h u b s , w h e r e high tensile centrifugal stresses High Performance Applications—II. Brook Hill Publi-
(400 M P a ) are developled at t e m p e r a t u r e s in t h e r a n g e shing, Chestnut Hill, MA
5 0 0 - 8 0 0 °C. O n e design for a r o t o r system consists of Lange F F 1980 Silicon nitride polyphase systems: Fabric-
r e a c t i o n - b o n d e d S i 3 N 4 blades b o n d e d t o a h o t - ation microstructure and properties. Int. Metall. Rev. 25:
pressed S i 3 N 4 h u b — t h e d u o d e n s i t y concept. 1-20

436
Silicon Nitride Fibers

Lenoe E M, Katz R Ν, Burke J J (eds. ) Reliability, Ceramics with a n increasing p r o b a b i l i t y of p r o d u c i n g stable


for High Performance Applications, Vol. III. Plenum S i - C b o n d s leading t o a mixed n i t r i d e - c a r b i d e fiber,
Press, New York o r t o t h e presence of residual chlorine. T h e poly-
Moulson A J 1979 Reaction-bonded silicon nitride: Its silazanes a n d p o l y m e r s c o n t a i n i n g S i - Η b o n d s suffer
formation and properties. J. Mater. Sei. 14: 1017-51 from t h e d i s a d v a n t a g e of m a r k e d reactivity t o w a r d s
Popper Ρ 1982 Sintering of silicon nitride: A review. In: Riley
water, a n d t h e i n c o r p o r a t i o n of oxygen a n d the pre-
F L (ed.) 1982 Progress in Nitrogen Ceramics. Nijhoff, The
Hague, The Netherlands, pp. 187-210 sence of S i - O b o n d s in t h e c e r a m i c fiber; for this
Riley F L (ed.) 1977 Nitrogen Ceramics. Noordhoff, Leiden, r e a s o n , d r y - b o x h a n d l i n g is s t a n d a r d practice.
The Netherlands T h e use of t h e organofibers as a s t a r t i n g p o i n t to
c e r a m i c fiber p r o d u c t i o n places further restrictions o n
F L Riley t h e p r e c u r s o r p o l y m e r p r o p e r t i e s ; this n o r m a l l y re-
[ U n i v e r s i t y of Leeds, Leeds, U K ] sults in a n u m b e r of c o m p r o m i s e s . T h e ideal fiber is
b a s e d o n a linear, s y m m e t r i c a l p o l y m e r chain, with
strong intermolecular bonding resulting from
the presence of p o l a r g r o u p s , a n d of m o d e r a t e l y
Silicon Nitride Fibers high ( 5 0 0 0 - 2 0 000) m o l a r m a s s t o give g o o d spinning
T h e f o r m a t i o n of silicon nitride ( S i 3 N 4 ) by t h e p y r o - characteristics.
lysis of o r g a n o m e t a l l i c p o l y m e r s c o n t a i n i n g silicon
h a s been of interest for s o m e years as a potentially
2. Production
c o n v e n i e n t r o u t e t o t h e p r o d u c t i o n of c o m p o n e n t s of
c o m p l e x s h a p e . Because m a n y p r e c u r s o r o r g a n o - A linear c h a i n p o l y m e r softens a n d deforms o n heat-
metallic p o l y m e r s c a n be readily s p u n i n t o c o n t i n u o u s ing so t h a t , after s p i n n i n g , it is necessary t o carry o u t a
filament fibers using c o n v e n t i o n a l textile processes, a p r e l i m i n a r y crosslinking ("curing") step in o r d e r t o
r o u t e also exists t o t h e p r o d u c t i o n of silicon nitride b r i d g e p o l y m e r c h a i n s a n d t o p r e v e n t melting a n d
fibers. If these fibers c a n be m a d e with a n a d e q u a t e excessive d e p o l y m e r i z a t i o n a n d e v a p o r a t i o n of the
degree of c o n t r o l of s t r u c t u r e a n d surface finish, it is fiber d u r i n g t h e later h i g h - t e m p e r a t u r e pyrolysis
expected t h a t , like c a r b o n fiber, they will h a v e high stage. C r o s s l i n k i n g requires active sites within the
m o d u l u s a n d high s t r e n g t h . Such fibers a r e of c o n - p o l y m e r chain. Identification of t h e best crosslinking
siderable interest as possible reinforcing m a t e r i a l s in m e t h o d will d e p e n d o n t h e p o l y m e r chemistry b u t
p o l y m e r matrices a n d for h i g h - t e m p e r a t u r e appli- t e c h n i q u e s e x p l o r e d include c o n t r o l l e d i n t e r m e d i a t e
c a t i o n s in c e r a m i c m a t r i x systems w h e r e better resis- t e m p e r a t u r e ( ~ 5 0 - 2 0 0 °C) o x i d a t i o n , e x p o s u r e t o
t a n c e to o x i d a t i o n t h a n t h a t s h o w n by c a r b o n fibers ultraviolet ( < 300 n m ) light, t o high-energy (2 MeV)
m a y be expected. electrons a n d t o γ rays. C r o s s l i n k i n g using reactive
molecules (e.g., H S i C l 3 ) h a s been useful in special
cases. A p r o p e r l y crosslinked fiber is b o t h insoluble
1. Precursor Systems
a n d infusible.
T h e p r i m a r y r e q u i r e m e n t for t h e p o l y m e r i c p r e c u r s o r After crosslinking, a h i g h - t e m p e r a t u r e heat treat-
is t h a t t h e m a i n c h a i n c o n t a i n s silicon. A n u m b e r of m e n t of the fiber c a n be carried o u t t o b r i n g a b o u t the
systems h a v e been e x a m i n e d : s t r u c t u r a l r e a r r a n g e m e n t r e q u i r e d t o g e n e r a t e a three-
d i m e n s i o n a l n e t w o r k of S i - N b o n d s a n d t o eliminate
(a) polysilazanes - f - S i - N ^ , with a n S i - N chain;
u n r e q u i r e d a t o m i c species. T e m p e r a t u r e s in the r a n g e
(b) p o l y c a r b o s i l a n e s - f - S i - C H 2 ^ , in which CH2 1000-1300 °C a r e n o r m a l l y sufficient t o p r o d u c e a
g r o u p s s e p a r a t e the silicon a t o m s ; a n d silicon nitride fiber of r e a s o n a b l e purity. Polysilazanes
c a n be pyrolyzed u n d e r d r y a r g o n ; n i t r o g e n or a m -
(c) polysilanes -f-Si-Si-f^,.
m o n i a a t m o s p h e r e s a r e n o r m a l l y used for fibers based
Of these, t h e first t w o types h a v e received t h e m o s t o n t h e p o l y c a r b o s i l a n e s . A n i m p o r t a n t factor in the
a t t e n t i o n . T h e polysilazanes c o n t a i n t h e necessary pyrolysis process is t h e r a t e of t e m p e r a t u r e rise. This
n i t r o g e n in t h e c h a i n c o n v e n i e n t l y a l r e a d y b o n d e d t o m u s t be slow a n d , typically, a r a t e of a r o u n d 3 ° C
1
the silicon. T h e p o l y c a r b o s i l a n e s c a n be nitrided a t m i n ~ is used t o allow t i m e for ejection of pyrolysis
t e m p e r a t u r e s b e t w e e n 500 °C a n d 800 °C in a p r o d u c t s w i t h o u t excessive d a m a g e t o the fiber. M a s s
n i t r o g e n - c o n t a i n i n g a t m o s p h e r e (e.g., a m m o n i a ) t o loss starts at a r o u n d 300 °C a n d is c o m p l e t e d by a b o u t
effect n i t r o g e n insertion with d e v e l o p m e n t of S i - N 800 °C.
b o n d s . A n i m p o r t a n t factor for t h e p r o d u c t i o n a n d As with o t h e r forms of ceramic, g o o d m e c h a n i c a l
s u b s e q u e n t h e a t - t r e a t m e n t steps of t h e o r g a n o p o l y - p r o p e r t i e s c a n only be o b t a i n e d with m a t e r i a l s of
m e r is t h e n a t u r e of the r e m a i n i n g side g r o u p s re- g o o d m i c r o s t r u c t u r a l quality. Defects of a n y k i n d lead
q u i r e d t o c o m p l e t e t h e silicon a n d n i t r o g e n valencies t o s t r e n g t h d e g r a d a t i o n . P o r e s , m i c r o c r a c k s a n d sur-
of four a n d three, respectively. H y d r o g e n w o u l d , face d a m a g e a r e p a r t i c u l a r l y undesirable; this applies
theoretically, be ideal; in practice, alkyl ( C H 3 ) , aryl equally t o the p r e c u r s o r fiber because of the virtual
( C 6 H 5 ) , a n d h a l o g e n (CI) g r o u p s m a y also be linked impossibility of a n n e a l i n g o u t such defects d u r i n g

437

You might also like