Silicon Nitride
Silicon Nitride
434
                                                                                                                                                      Silicon       Nitride
                   3                                                                   3
 1500 k g r r T ( 3 5 % void) t h u s nitrides t o 2500 k g m "                            p a r t i c u l a r l y a l u m i n u m . Early a p p l i c a t i o n s were as
( 2 1 % void) silicon nitride. Because of the difficulty of                                t h e r m o c o u p l e s h e a t h s for m o l t e n steel testing a n d in
ensuring the c o m p l e t e reaction of high-density silicon                              c o m p o n e n t s used in p i p i n g a n d ladling m o l t e n a l u m i -
p o w d e r c o m p a c t s it is difficult t o a t t a i n very high                      n u m , the ease with which accurately d i m e n s i o n e d
nitride densities. T h e present m a x i m u m is a p p r o x i -                          c o m p o n e n t s could be formed w i t h o u t recourse to
                                   - 3
mately 2850 k g m                      o n thin ( 1 - 2 m m ) section c o m -              extensive d i a m o n d m a c h i n i n g being an i m p o r t a n t
p o n e n t s ; usually densities a r e in t h e                                range      factor in its favor. O t h e r a p p l i c a t i o n s h a v e been in t h e
                                3
2 3 0 0 - 2 7 0 0 k g m ~ . T h e highest strength m a t e r i a l is                      m e t a l a n d ceramic processing industries w h e r e s u p -
o b t a i n e d by using a n i t r o g e n d e m a n d t e c h n i q u e , in              p o r t s are subjected t o c o n t i n u o u s cycling over t e m p e r -
which the nitrogen supply r a t e a n d the t e m p e r a t u r e                          a t u r e s p a n s of 1000 °C o r m o r e . E x a m p l e s are in m e t a l
p r o g r a m s are interlinked t o minimize i n h o m o g e n e o u s                     brazing, surface h a r d e n i n g , s p a r k - p l u g b o d y a n d den-
heating of the silicon p o w d e r . Reaction c o m m e n c e s at                         tal porcelain firing, inert-gas arc-welding t o r c h noz-
a p p r o x i m a t e l y 1 2 0 0 ° C a n d t h e t e m p e r a t u r e is care-           zles a n d electric h e a t e r element s u p p o r t s in a e r o s p a c e
fully p r o g r a m m e d to a p p r o x i m a t e l y 1450 °C t o                         applications. These are unobtrusive but important
achieve c o m p l e t e reaction. T o t a l reaction times of                              a p p l i c a t i o n s for t h e material.
 150-200 h are n o r m a l l y required. N i t r o g e n - h y d r o g e n                      C o n s i d e r a b l e interest h a s been sustained in reac-
or N - H - H e gas m i x t u r e s are used with a d v a n t a g e t o                     t i o n - b o n d e d S i 3 N 4 since t h e late 1960s by t h e possibil-
give faster a n d m o r e easily controlled n i t r i d a t i o n                          ity t h a t it can be used for h o t - z o n e c o m p o n e n t s in a
rates, a n d higher s t r e n g t h material.                                              r a n g e of h i g h - t e m p e r a t u r e gas t u r b i n e a n d diesel en-
     A great m a n y studies h a v e been m a d e of t h e nitrid-                         gines. Engines of varying p o w e r levels, including those
a t i o n reaction m e c h a n i s m . M u c h of the p r o d u c t ( p r e -              suitable for t r u c k s a n d a u t o m o b i l e s , are being de-
d o m i n a n t l y α-phase material) is believed t o be formed                            veloped with p l a n n e d gas inlet t e m p e r a t u r e s between
by the c o m b i n a t i o n (at suitable g r o w t h sites) of ni-                        925 °C a n d 1 3 7 0 ° C . T h e versatility of the reaction-
t r o g e n a n d silicon v a p o r o r silicon-containing v a p o r                       b o n d e d form of silicon nitride lends itself well to the
species such as silicon m o n o x i d e . T h e f o r m a t i o n of t h e                 c o n s t r u c t i o n of such c o m p o n e n t s as thin-walled c o m -
β p h a s e is favored kinetically by the presence of                                      b u s t i o n c h a m b e r s , s h r o u d rings, s t a t o r a n d r o t o r
liquids such as eutectic c o m p o s i t i o n s in s i l i c o n - m e t a l              vanes, a n d , in t h e diesel engine, piston c r o w n s , sealing
(impurity) systems or, a b o v e 1407 °C, liquid silicon                                   rings, liners a n d p r e c o m b u s t i o n c h a m b e r s . W o r k h a s
itself. (Iron, a l u m i n u m , m a g n e s i u m a n d calcium a r e                     also been carried o u t o n diesel t u r b o c h a r g e r rotors.
c o m m o n impurities at t h e 1 - 0 . 0 1 % level in c o m m e r -                       T h e s e engineering p r o g r a m s a r e well a d v a n c e d a n d
cial silicon powders.) T h e function of h y d r o g e n as a                              m a n y test-bed a n d test-vehicle r u n n i n g h o u r s have
reaction accelerator is linked to its ability to speed the                                 been logged. T h e p r o d u c t i o n of gas t u r b i n e a u t o -
elimination (as silicon m o n o x i d e ) of protective films of                           m o b i l e engines using r e a c t i o n - b o n d e d S i 3 N 4 h o t - z o n e
silica ( S i 0 2 ) o n t h e silicon particle surfaces. T h e resul-                       c o m p o n e n t s is at a n a d v a n c e d stage of p l a n n i n g , b u t
ting m i c r o s t r u c t u r e of r e a c t i o n - b o n d e d S i 3 N 4 is s o m e -   the c o m m e r c i a l viability of this engine m u s t d e p e n d ,
w h a t complex, consisting of a m i x t u r e of fibrous a n d                            however, o n the d e v e l o p m e n t of techniques for the
equiaxed m a t e r i a l of i n h o m o g e n e o u s density. T h e                       m a s s p r o d u c t i o n of reliable low-cost c o m p o n e n t s a n d
v o l u m e , n a t u r e a n d d i s t r i b u t i o n of the void space is of            this forms an i m p o r t a n t research area.
great i m p o r t a n c e for strength, with t h e highest                                      A conservative e s t i m a t e of t h e a n n u a l c o m m e r c i a l
strengths being o b t a i n e d with high-density m a t e r i a l                          p r o d u c t i o n of r e a c t i o n - b o n d e d S i 3 N 4 w o u l d be of the
h a v i n g an even d i s t r i b u t i o n of fine porosity. T h e r e is                 o r d e r of 25 t, a significant p r o p o r t i o n of this being
s o m e evidence t h a t f o r m a t i o n c o n d i t i o n s favoring t h e              p r o d u c e d in the U K . Silicon nitride is also p r o d u c e d
p r o d u c t i o n of the α p h a s e also lead t o a higher                              in p o w d e r form for a p p l i c a t i o n s as diverse as a re-
strength material. S t r e n g t h s at r o o m t e m p e r a t u r e , as                 fractory insulation m a t e r i a l a n d a n aircraft b r a k e - p a d
measured               in       four-point            bend,       are       typically      filler.
2 5 0 - 3 0 0 M P a for m a t e r i a l of density of a p p r o x i -
                                  - 3
mately 2700 k g m . T h i s s t r e n g t h is n o r m a l l y m a i n -                   4. Hot-Pressed           Silicon        Nitride
tained t o 1400 °C in air, with s o m e i m p r o v e m e n t in                           Fully dense silicon nitride was first p r o d u c e d in 1961
the s h o r t t e r m d u e t o oxide infilling of surface flaws.                          by hot-pressing silicon nitride p o w d e r s c o n t a i n i n g a
Silicon nitride is p r o t e c t e d against s p o n t a n e o u s o x i d a -             densification aid. O x i d e s such as M g O or Y 2 0 3 at the
tion by films of crystalline o r a m o r p h o u s silica. In t h e                        5-15 m o l . % level are c o m m o n l y used for this p u r p o s e ,
p u r e material, these p r o v i d e a n a d e q u a t e b a r r i e r u p t o            b u t m u c h e x p e r i m e n t a l w o r k h a s been carried o u t
a p p r o x i m a t e l y 1400 °C. Metallic-ion c o n t a m i n a t i o n                  with a wide r a n g e of oxides a n d nitrides. T h e additive
of the silica reduces its effectiveness in this respect.                                   reacts at the pressing t e m p e r a t u r e (1650-1800 °C) with
     R e a c t i o n - b o n d e d S i 3 N 4 d e p e n d s for its successful              t h e surface silica film o n the silicon nitride particles
c o m m e r c i a l application primarily o n its resistance t o                           (naturally present at t h e 1.2-12 m o l . % level d e p e n d -
thermal shock (a function of t h e low t h e r m a l ex-                                   ing o n particle size a n d p r e t r e a t m e n t ) to form liquid
pansion coefficient of silicon nitride) a n d its n o n -                                  p h a s e s in which silicon nitride h a s appreciable solu-
wetting c h a r a c t e r in c o n t a c t with m o l t e n metals,                        bility. Pressure-assisted ( 7 - 3 5 M P a ) solution a n d
                                                                                                                                                                       435
Silicon        Nitride
reprecipitation occurs, and full density can be obtained                                5. Sintered         Silicon        Nitride
within m i n u t e s . H o t pressing is n o r m a l l y c o n t i n u e d
                                                                                        T h e sintering of p u r e S i 3 N 4 t o full density has, so
for 1 h or m o r e to e n s u r e c o m p l e t e t r a n s f o r m a t i o n of
                                                                                        far, been found t o be impossible d u e t o the high-
the a - S i 3 N 4 t o ß - S i 3 N 4 . O n cooling, the liquid solidi-
                                                                                        t e m p e r a t u r e instability of t h e m a t e r i a l . C o n s i d e r a b l e
fies t o form s e c o n d a r y glassy or crystalline p h a s e s
                                                                                        p r o g r e s s h a s been m a d e since t h e early 1980s, h o w -
which m a y c o n t a i n s t r u c t u r a l nitrogen. T h e s e c o n d a r y
                                                                                        ever, using l i q u i d - p h a s e sintering with additives de-
p h a s e is l o c a t e d as a thin ( ~ 5 n m ) film at grain
                                                                                        veloped for h o t - p r e s s e d S i 3 N 4 p r o d u c t i o n . H i g h e r
b o u n d a r i e s a n d as p o c k e t s at triple p o i n t s . C r y s t a l -
                                                                                        t e m p e r a t u r e s (1825-2080 °C) a n d longer times (up t o
lization of this p h a s e is desirable, b u t is difficult t o
                                                                                        5 h) a r e required. T h e best studied additives h a v e been
achieve fully at t h e grain b o u n d a r i e s . T h e a- to ß-
                                                                                        M g O a n d Y 2 0 3 , singly, in c o m b i n a t i o n a n d t o g e t h e r
p h a s e t r a n s f o r m a t i o n results in a fibrous grain m o r -
                                                                                        with A 1 2 0 3 . P r e c a u t i o n s m u s t be t a k e n against losses
p h o l o g y which increases fracture t o u g h n e s s t o
                   1 /2                                                                 of silicon nitride by d e c o m p o s i t i o n o r by t h e e v a p o -
6MPam                    for greater t h a n 7 0 % a - S i 3 N 4 in t h e
                                                                                        r a t i o n of S i O , a n d losses of t h e sintering aid itself.
s t a r t i n g silicon nitride p o w d e r . T o a very large extent,
                                                                                        W e i g h t loss c a n b e s u p p r e s s e d by sintering in a high
the m e c h a n i c a l p r o p e r t i e s of hot-pressed S i 3 N 4 o t h e r -
                                                                                        p r e s s u r e of n i t r o g e n ( 1 - 8 M P a ) a n d / o r using a silicon
wise d e p e n d o n the c o m p o s i t i o n , crystallinity a n d
                                                                                        nitride p o w d e r bed, which m a y also c o n t a i n the
d i s t r i b u t i o n of the s e c o n d - p h a s e material. S t r e n g t h s in
                                                                                        sintering aid t o g e t h e r with b o r o n nitride p o w d e r t o
four-point b e n d of 8 0 0 - 1 0 0 0 M P a are regularly o b -
                                                                                        r e t a r d sintering of t h e bed. T h e s t r e n g t h s of sintered
tained at 25 °C. (Strengths of 1400 M P a h a v e been
                                                                                         S i 3 N 4 so far a t t a i n e d (to 1000 M P a in bend) a p p r o a c h
r e p o r t e d for A 1 2 0 3 / Y 2 0 3 h o t - p r e s s e d m a t e r i a l with a
                                                                                         t h o s e for t h e best h o t - p r e s s e d S i 3 N 4 a n d there is n o
high degree of s e c o n d - p h a s e crystallinity.) H i g h -
                                                                                        d o u b t t h a t i m p r o v e m e n t s will c o n t i n u e t o be m a d e .
t e m p e r a t u r e s t r e n g t h a n d creep resistance strongly
d e p e n d o n the n a t u r e of t h e second p h a s e . S t r e n g t h s of              T h e sintering process is i m p o r t a n t in its o w n right
400 M P a in b e n d at 1400 °C c a n be achieved, b u t                                 as a m e a n s of o b t a i n i n g s h a p e d silicon nitride c o m -
 softening of the g r a i n - b o u n d a r y p h a s e leads t o r a p i d              p o n e n t s with t h e p r o p e r t i e s of h o t - p r e s s e d S i 3 N 4 , b u t
fall off in s t r e n g t h a b o v e this t e m p e r a t u r e .                       at a fraction of t h e cost. A further i m p o r t a n t r e a s o n for
                                                                                         the interest in t h e process lies in t h e p o s t s i n t e r i n g of
     P u r e silicon nitride is well p r o t e c t e d against o x i d a -
                                                                                         reaction-bonded S i 3N 4. The attraction here depends
tion by a silica film. In t h e case of the best-studied
                                                                                         o n t h e fact t h a t r e a c t i o n - b o n d e d S i 3 N 4 c a n be p r o -
magnesia-pressed material, g r a i n - b o u n d a r y c a t i o n s
                                                                                         d u c e d readily t o m u c h higher densities t h a n c a n be
play an i m p o r t a n t p a r t in the o x i d a t i o n process a n d
                                                                                         achieved by c o m p a c t i n g sinterable silicon nitride
the o u t w a r d diffusion of these c a t i o n s i n t o the surface
                                                                                         p o w d e r . L i n e a r s h r i n k a g e s at t h e sintering stage are
silica layer a p p e a r s t o be r a t e controlling. P a r a b o l i c
                                                                                         p r o p o r t i o n a t e l y reduced, from a p p r o x i m a t e l y 1 5 % t o
rate c o n s t a n t s d e p e n d linearly o n the M g O c o n t e n t
                                                                                         a b o u t 5 % , a n d t h e final d i m e n s i o n a l a c c u r a c y is
a n d are several o r d e r s of m a g n i t u d e higher t h a n t h o s e
                                                                                         higher. T h e c o m p o n e n t therefore requires less-
for p u r e silicon nitride. N o n e t h e l e s s , t h e use of h o t -
                                                                                         expensive d i a m o n d m a c h i n i n g for precise d i m e n s i o n s
pressed S i 3 N 4 at t e m p e r a t u r e s a b o v e 1000 °C for sev-
                                                                                         a n d c o m m e r c i a l l y will be m o r e attractive. Sintering
eral t h o u s a n d h o u r s c a n be c o n t e m p l a t e d . I m p r o v e d
                                                                                         aids c a n b e infiltrated o r diffused i n t o t h e r e a c t i o n -
o x i d a t i o n resistance is found for yttria-pressed m a -
                                                                                         b o n d e d S i 3 N 4 c o m p o n e n t , o r b l e n d e d with t h e start-
terial, p r o v i d e d t h a t the overall system c o m p o s i t i o n
                                                                                          ing silicon p o w d e r before n i t r i d a t i o n . T h e a d v a n c e s in
lies within the S i 3 N 4 - S i 2 N 2 0 - Y 2 S i 2 0 7 c o m p a t i b i l i t y
                                                                                          sintering t e c h n o l o g y t h u s m a k e possible t h e m a s s
triangle, t h u s excluding t h e presence at t h e grain
                                                                                          p r o d u c t i o n of c o m p l e x engineering c o m p o n e n t s with
b o u n d a r i e s of the readily oxidized S i - Y - N - O p h a s e s .
                                                                                          p r o p e r t i e s similar t o t h o s e of h o t - p r e s s e d S i 3 N 4 ; it is
     T h e small n u m b e r of a p p l i c a t i o n s for h o t - p r e s s e d         t o be expected t h a t sintered S i 3 N 4 a n d p o s t s i n t e r i n g
S i 3 N 4 d e p e n d s largely o n its h a r d n e s s a n d strength,                   of r e a c t i o n - b o n d e d S i 3 N 4 will be d e v e l o p e d t o t h e
giving g o o d resistance t o w e a r a n d a b r a s i o n . T u b e -                   exclusion of h o t - p r e s s e d S i 3 N 4 , except possibly for t h e
d r a w i n g plugs a n d dies, a n d m e t a l - c u t t i n g inserts h a v e           m o s t d e m a n d i n g of a p p l i c a t i o n s .
been successfully developed o n a m o d e s t scale. O t h e r
possible a p p l i c a t i o n s are as ball a n d roller b e a r i n g s                See also: Nitrides
for use u n d e r abrasive c o n d i t i o n s , o r w h e r e lubric-
a t i o n m a y n o t be a d e q u a t e , as in seabed drilling
e q u i p m e n t . As in the case of r e a c t i o n - b o n d e d S i 3 N 4 ,          Bibliography
c o n s i d e r a b l e interest in h o t - p r e s s e d S i 3 N 4 h a s been
b r o u g h t a b o u t by c e r a m i c gas t u r b i n e d e v e l o p m e n t         Bunk W, Böhmer M (eds.) 1981 Keramische Komponenten
p r o g r a m s . It is a p r i m a r y c a n d i d a t e m a t e r i a l for axial-      für Fahrzeug-Gasturbinen—//. Springer, Berlin
                                                                                         Burke J J, Lenoe E M, Katz R Ν (eds.) 1978 Ceramics for
flow r o t o r h u b s , w h e r e high tensile centrifugal stresses                       High Performance Applications—II. Brook Hill Publi-
(400 M P a ) are developled at t e m p e r a t u r e s in t h e r a n g e                  shing, Chestnut Hill, MA
5 0 0 - 8 0 0 °C. O n e design for a r o t o r system consists of                        Lange F F 1980 Silicon nitride polyphase systems: Fabric-
r e a c t i o n - b o n d e d S i 3 N 4 blades b o n d e d t o a h o t -                   ation microstructure and properties. Int. Metall. Rev. 25:
pressed S i 3 N 4 h u b — t h e d u o d e n s i t y concept.                               1-20
 436
                                                                                                                                               Silicon      Nitride        Fibers
437