Answers Solutions
Answers Solutions
Limits
1 b 2 c 3 d 4 d 5 c
6 b 7 b 8 a 9 a 10 b
11 a 12 c 13 a 14 c 15 d
Functions 16 a 17 d 18 b 19 d 20 a
21 b 22 c 23 a 24 c 25 c
1 d 2 c 3 b 4 b 5 a 26 b 27 b 28 c 29 a 30 a
6 c 7 d 8 b 9 c 10 a 31 a 32 a 33 c 34 d 35 a
11 a 12 c 13 b 14 d 15 b 36 b 37 c 38 a 39 c 40 b
16 c 17 d 18 c 19 a 20 c 41 b 42 c 43 a 44 a 45 c
46 d 47 b 48 b 49 b 50 b
21 b 22 d 23 d 24 d 25 b
51 b 52 a 53 d 54 a 55 c
26 b 27 a 28 d 29 a 30 b
56 b 57 d 58 a 59 c 60 d
31 c 32 d 33 a 34 b 35 d
61 c 62 a 63 b 64 c 65 c
36 b 37 a 38 c 39 c 40 b
66 c 67 c 68 b 69 b 70 b
41 c 42 a 43 c 44 a 45 c 71 a 72 c 73 b 74 a 75 b
46 b 47 a 48 d 49 d 50 a 76 c 77 b 78 a 79 a 80 c
51 c 52 d 53 c 54 b 55 d 81 b 82 a 83 c 84 b 85 c
56 b 57 b 58 a 59 c 60 c 86 c 87 b 88 c 89 d 90 b
91 c 92 b 93 a 94 c 95 d
61 a 62 d 63 b 64 b 65 b
96 a 97 b 98 a 99 a 100 d
66 c 67 b 68 c 69 c 70 b
101 a 102 d 103 a 104 a 105 d
71 d 72 b 73 b 74 b 75 c
106 b 107 d 108 d 109 b 110 c
76 d 77 d 78 a 79 c 80 d
111 a 112 c 113 a 114 c 115 a
81 c 82 d 83 a 84 a 85 d 116 c 117 b 118 a 119 b 120 c
86 d 87 b 88 a 89 c 90 d 121 c 122 a 123 a 124 c 125 b
131 c 132 c 133 b 134 c 135 a 171 d 172 b 173 d 174 c 175 a
136 a 137 d 138 a 139 b 140 c 176 b 177 c 178 d 179 d 180 c
181 c 182 a 183 a 184 b 185 a
141 b 142 b 143 d 144 d 145 b
186 a 187 d 188 c 189 a 190 b
146 c 147 b 148 c 149 c 150 b
191 d 192 c 193 d 194 d 195 c
151 e 152 c 153 b 154 c 155 a
196 b 197 d 198 b 199 b 200 c
156 e 157 a,b,c 158 c 159 d 160 c
201 b 202 c 203 d 204 d 205 b
161 a 162 c 163 b 164 b 165 d 206 d 207 d 208 c 209 b 210 b
Functions, Limits, Continuity and Differentiability 937
211 d 212 c 213 a 214 c 215 b
216 b 217 c 218 a 219 a 220 b
221 c 222 a 223 a 224 b 225 d
226 b 227 b
Continuity Functions
1 a 2 d 3 c 4 d 5 d 1 x2 x2
cos (log x 2 ) cos (log y 2 ) − cos log + cos log 2
6 b 7 a 8 b 9 d 10 d 2 2 y
11 d 12 d 13 d 14 a 15 d
=
1
2
[
cos (log x 2 + log y 2 ) + cos (log x 2 − log y 2 ) ]
16 a 17 a 18 c 19 c 20 b
21 b 22 b 23 c 24 c 25 a 1 x2
− cos log + cos (log x 2 − log y 2 )
26 b 27 c 28 c 29 c 30 c 2 2
31 c 32 c 33 a 34 d 35 d
1 2 2 x2
36 b 37 c 38 a,b 39 a,c 40 a
= cos log x y − cos log .
2 2
938 Functions, Limits, Continuity and Differentiability
8. (b) As log x is defined for only positive values of x. But 16. (c) Given f (x + ay, x − ay) = axy …..(i)
2
log x defined for all real values of x, also log | x | is Let x + ay = u and x − ay = v
also defined ∀ real x. Hence log x 2 and 2 log | x | are u+v u−v
Then x = and y =
identical functions. 2 2a
1+ x Substituting the value of x and y in (i), we obtain
9. (c) f (x) = log
1− x u2 − v2 x 2 − y2
f (u, v) = ⇒ f (x, y) = .
4 4
2x
2x 1 + x 2 + 1 + 2x 17. (d) f (x) = cos [π 2 ] x + cos [ −π 2 ] x
∴ f = log 1 + x2 = log 2
2
1+ x 1 − 2x x + 1 − 2 x f (x) = cos(9 x) + cos( −10 x) = cos(9 x) + cos(10 x)
1+ x2
19 x x
2
= 2 cos cos
1 + x 1 + x 2 2
= log = 2 log 1 − x = 2 f (x) .
1 − x π 19π π π −1 1
f = 2 cos cos ; f = 2 × × = −1 .
10. (a) φ (x) = ax ⇒ φ ( p) = ap 2 4 4 2 2 2
1 1
∴ [φ ( p)]3 = [ ap ]3 = a3 p = φ (3 p) 18. (c) f ( x) = +
f ( x) − 3 x + 2 2x − 4 x − 2 2x − 4
11. (a) f [ f (x)] =
f ( x) + 1 1 1
f (11) = +
x−3 11 + 2 18 11 − 2 18
−3
x +1 x − 3 − 3x − 3 3 + x
= = = 1 1 3− 2 3+ 2 6
x−3 x − 3 + x +1 1− x = + = + = .
+1 3+ 2 3− 2 7 7 7
x +1
10 + x 10 + x
3+ x 19. (a) e f ( x ) = , x ∈ (−10,10) ⇒ f (x) = log
Now f [ f ( f (x))] = f 10 − x 10 − x
1− x
200 x
3+ x 200 x 10 + 100 + x 2 10(10 + x)
2
−3 ⇒ f = log = log
1− x 3 + x − 3 + 3x
10 − 200 x
2
= = =x. 100 + x 10(10 − x)
3+ x 3+ x +1− x 100 + x 2
+ 1
1− x 10 + x
= 2 log = 2 f ( x)
12. (c) f (x) = cos (log x) 10 − x
1 x 1 200 x 1
Now let y = f (x) . f (4) − f + f (4 x) ∴ f ( x) = f 2
⇒ k = = 0.5.
2 4 2 100 + x 2
π2 3 1 1
⇒ y = cos (log x). cos (log 4) − 1 cos log x + cos (log 4 x) 20. (c) ( f + g) = + = 3+ .
2 4 3 2 4 4
⇒ y = cos (log x) cos (log 4) 21. (b) f (x) = f (− x) ⇒ f (0 + x) = f (0 − x) is symmetrical about
x =0.
1
− [cos (log x − log 4) + cos (log x + log 4)] ∴ f (2 + x) = f (2 − x) is symmetrical about x = 2 .
2
x 1 −1 y −1
1 22. (d) f (x) = = ⇒ = {Applying dividendo}
⇒ y = cos (log x) cos (log 4) − [2 cos (log x) cos (log 4)] x −1 y x −1 y
2
x −1 y
⇒ y =0. ⇒ = ⇒ − x + 1 = f (y).
−1 y −1
−1− | −1 | −1 − 1
13. (b) f (−1) = = = −2. ax + b ay + b
| −1 | 1 23. (d) y = ⇒ x(cy − a) = b + ay ⇒ x = = f (y) .
cx − a cy − a
1 4 3 3
14. (d) x 3 f = x 3 3 + 2 + + 4 x2 −1 x2 +1− 2 2
x x x x 24. (d) Let f ( x) = = = 1− 2
x2 +1 x2 +1 x +1
= 4 + 3 x + 3 x 2 + 4 x 3 = f ( x) . 2
x2 +1 > 1 ; ∴ 2 ≤2
15. (b) f (2 x) = 2(2 x)+ | 2 x | = 4 x + 2| x | , x +1
f (− x) = −2 x + | − x | = −2 x + | x | , 2
So 1 − 2 ≥ 1 − 2 ; ∴ −1 ≤ f (x) < 1
x +1
f (x) = 2 x + | x | ⇒ f (2 x) + f (− x) − f (x)
Thus f (x) has the minimum value equal to –1.
= 4 x + 2 | x | + | x | −2 x − 2 x − | x | = 2 | x | .
25. (b) It is a fundamental concept.
Functions, Limits, Continuity and Differentiability 939
26. (b) Obviously, it is an irrational number for maximum 41. (c) Function f : R → R is defined by f (x) = e x . Let
x = 2, y = 3 then 2 3 is an irrational number. x1 , x 2 ∈ R and f (x1 ) = f (x 2 ) or e x1 = e x 2 or x1 = x 2 .
3
3x + 1 3(−27) + 1 − 80 Therefore f is one-one. Let f (x) = e x = y . Taking log on
27. (a) = = =4.
2x 2 + 2 x = −3
2(9) + 2 20 both sides, we get x = log y . We know that negative
28. (d) Since the mapping is many-one into. real numbers have no pre-image or the function is not
29. (a) It is obvious. onto and zero is not the image of any real number.
30. (b) Width of both interval is same, which can mapped by Therefore function f is into.
these function y = 1 − x and y = 1 + x. 42. (a) | x | is not one-one; x 2 is not one-one;
31. (c) Y
x 2 + 1 is not one-one. But 2 x − 5 is one-one because
f (x) = f (y) ⇒ 2 x − 5 = 2y − 5 ⇒ x = y
}x=1/2 X
O Now f (x) = 2 x − 5 is onto. ∴ f (x) = 2 x − 5 is bijective.
x2 − 4 y2 − 4
Which is step function. 43. (c) Let f (x) = f (y) ⇒ 2
=
x +4 y2 + 4
32. (d) f (0) = f (−1) = 0 hence f (x) is many one. But there is
no pre-image of −1 . Hence f (x) is into function. So x2 − 4 y2 − 4
⇒ −1 = − 1 ⇒ x2 + 4 = y2 + 4
function is many-one into. x2 + 4 y2 + 4
33. (a) Let x1 , x 2 ∈ R, then f (x1 ) = cos x1 , f (x 2 ) = cos x 2 , so ⇒ x = ± y , ∴ f (x) is many-one.
f ( x1 ) = f ( x 2 ) Now for each y ∈ (−1,1), there does not exist x ∈ X
⇒ cos x1 = cos x 2 ⇒ x1 = 2nπ ± x 2 such that f (x) = y . Hence f is into.
⇒ x1 ≠ x 2 , so it is not one-one. 44. (a) f ′(x) = 2 + cos x > 0 . So, f (x) is strictly monotonic
Again the value of f-image of x lies in between –1 to 1 increasing so, f (x) is one-to-one and onto.
⇒ f [ R] = {f (x) : −1 ≤ f (x) ≤ 1)} 45. (c) f:N→I
So other numbers of co-domain (besides –1 and 1) is f (1) = 0, f (2) = −1, f (3) = 1, f (4) = −2, f (5) = 2
not f-image. f [ R] ∈ R, so it is also not onto. So this
and f (6) = −3 so on. 0
mapping is neither one-one nor onto. 1
34. (b) We have f (x) = (x − 1)(x − 2)(x − 3) 2 –1
3 1
and f (1) = f (2) = f (3) = 0 ⇒ f (x) is not one-one. –2
4
For each y ∈ R , there exists x ∈ R such that f (x) = y . 5 2
Therefore f is onto. Hence f : R → R is onto but not 6 –3
one-one. In this type of function every element of set A has
35. (d) f (−1) = f (1) = 1 ; ∴ function is many-one function. unique image in set B and there is no element left in set
Obviously, f is not onto so f is neither one-one nor onto. B. Hence f is one-one and onto function.
36. (b) It is obvious. 1
46. (b) f ′(x) = > 0, ∀x ∈ [ 0, ∞) and range ∈ [ 0, 1)
37. (a) Let x, y ∈ N such that f (x) = f (y) (1 + x)2
Then f (x) = f (y) ⇒ x 2 + x + 1 = y 2 + y + 1 ⇒ function is one-one but not onto.
⇒ (x − y)(x + y + 1) = 0 ⇒ x = y or x = (−y − 1) ∉ N 47. (a) − 1 + (− 3 ) 2 ≤ (sin x − 3 cos x) ≤ 1 + (− 3 ) 2
∴ f is one-one.
− 2 ≤ (sin x − 3 cos x) ≤ 2
Again, since for each y ∈ N , there exist x ∈ N
∴ f is onto. − 2 + 1 ≤ (sin x − 3 cos x + 1) ≤ 2 + 1
38. (c) f (x1 ) = f (x 2 ) ⇒ x12 = x 22 ⇒ x1 = x 2 , [if X = R + ] − 1 ≤ (sin x − 3 cos x + 1) ≤ 3 i.e., range = [−1, 3]
⇒ f is one-one. Since Rf = R+ ⊆ R = Y ; ∴ f is not onto. ∴ For f to be onto S = [−1, 3] .
39. (c) The total number of injective functions from a set A 48. (d) Let f (x1 ) = f (x 2 ) ⇒ [ x1 ] = [ x 2 ] ⇒
/ x1 = x 2
containing 3 elements to a set B containing 4 elements
{For example, if x1=1.4, x2=1.5, then [1.4]=[1.5] =1}
is equal to the total number of arrangements of 4 by
∴ f is not one-one.
taking 3 at a time i.e., 4 P3 = 24 .
Also, f is not onto as its range I (set of integers) is a
40. (b) For any x, y ∈ R, we have proper subset of its co-domain R.
x −m y−m
f (x) = f (y) ⇒ = ⇒x=y 49. (d) We have f (x) = x + x 2 = x + | x |
x −n y−n
Clearly f is not one-one as f (−1) = f (−2) = 0 but −1 ≠ 2 .
∴ f is one-one.
x −m m − nα Also f is not onto as f (x) ≥ 0, ∀x ∈ R,
Let α∈R such that f (x) = α ⇒ =α ⇒ x =
x −n 1−α Also, range of f = (0, ∞) ⊂ R .
Clearly x ∉ R for α = 1 . So, f is not onto. 50. (a) It is obvious.
940 Functions, Limits, Continuity and Differentiability
51. (c) Let f (x) be periodic with period T. 63. (b) The function sec −1 x is defined for all x ∈ R − (−1, 1)
Then, f (x + T ) = f (x) for all x ∈ R 1
and the function is defined for all x ∈ R − Z.
⇒ x + T − [ x + T ] = x − [ x] , for all x ∈ R x − [ x]
⇒ x + T − x = [ x + T ] − [ x] So the given function is defined for all
x ∈ R − { (−1, 1) ∪ (n | n ∈ Z)} .
⇒ [ x + T ] − [ x] = T for all x ∈ R ⇒ T = 1, 2, 3, 4,........
The smallest value of T satisfying 64. (b) x 2 − 6 x + 7 = (x − 3) 2 − 2
f (x + T ) = f (x) for all x ∈ R is 1. Obviously, minimum value is – 2 and maximum ∞ .
Hence range of function is [–2, ∞].
Hence f (x) = x − [ x] has period 1.
1
52. (d) It is a fundamental concept. 65. (b) f (x) = log ⇒ sin x ≠ 0 ⇒ x ≠ nπ + (−1)n 0
| sin x |
53. (c) We have f (x) = ax + b, g(x) = cx + d
⇒ x ≠ nπ . Domain of f (x) = R − { nπ , n ∈ I } .
and f (g(x)) = g( f (x))
66. (c) f (x) = log( x − 4 + 6 − x )
⇒ f (cx + d) = g(ax + b) ⇒ a[ cx + d] + b = c[ ax + b] + d
⇒ x − 4 ≥ 0 and 6 − x ≥ 0 ⇒ x ≥ 4 and x ≤ 6
⇒ ad + b = cb + d ⇒ f (d) = g(b) .
∴ Domain of f (x) = [ 4, 6] .
54. (b) Domain of f (x) = R − {3}, and range {1, –1}. 1/ 2
5x − x 2
55. (d) [ x] = I (Integers only). 67. (b) We have f (x) = log10 …..(i)
4
−1 1
56. (b) − 1 ≤ 5 x ≤ 1 ⇒ ≤ x ≤ . Hence domain is −1 , 1 .
5 5 5 5 From (i), clearly f (x) is defined for those values of x for
sin −1 (3 − x) 5x − x 2
57. (b) f (x) = which log10 ≥0
log[| x | −2] 4
5x − x 2 2
Let g(x) = sin −1 (3 − x) ⇒ −1 ≤ 3 − x ≤ 1 ⇒ ≥ 10 0 ⇒ 5 x − x ≥1
4 4
Domain of g(x) is [2, 4]
and let h(x) = log[| x | −2] ⇒ | x | −2 > 0 ⇒ x 2 − 5 x + 4 ≤ 0 ⇒ (x − 1)(x − 4) ≤ 0
⇒ | x | > 2 ⇒ x < −2 or x > 2 ⇒ (−∞, − 2) ∪ (2, ∞) Hence domain of the function is [1, 4].
1 1
we know that
2 (− x − 1), x < −1 − 2 , x < −1
f ( x)
( f / g)(x) = ∀x ∈ D1 ∩ D2 − {x ∈ R : g(x) = 0} 68. (c) f (x) = tan −1 x, − 1 ≤ x ≤ 1 ; f ′(x) = 1 , − 1 < x < 1
g(x) 2
1 1 + x
∴ Domain of f (x) = (2, 4] − { 3} = (2, 3) ∪ (3, 4] . (x + 1), x > 1 1
2 , x >1
2
x x
58. (a) y = sin −1 log 3 ⇒ − 1 ≤ log 3 ≤ 1 1 1 1
3
3 f ′(−1 − 0) = − ; f ′(−1 + 0) = =
2 1 + (−1 + 0)2 2
1 x
⇒ ≤ ≤ 3 ⇒ 1 ≤ x ≤ 9 ⇒ x ∈ [1, 9] . 1 1 1
3 3 f ′(1 − 0) = = ; f ′(1 + 0) =
1 + (1 − 0)2 2 2
59. (c) For x = −3, 3, | x 2 − 9 | = 0
∴ f ′(−1) does not exist; ∴ domain of f ′(x) = R − { −1} .
Therefore log| x 2 − 9 | does not exist at x = − 3, 3. 69. (c) f (x) is to be defined when x 2 − 1 > 0
Hence domain of function is R − {− 3, 3}. ⇒ x 2 > 1, ⇒ x < −1 or x > 1 and 3 + x > 0
60. (c) f (x) = log | log x | , f (x) is defined if | log x | > 0 and ∴ x > −3 and x ≠ −2
x > 0 i.e., if x > 0 and x ≠ 1 (| log x | > 0 if x ≠ 1) ∴ D f = (−3, − 2) ∪ (−2, − 1) ∪ (1, ∞) .
⇒ x ∈ (0,1) ∪ (1, ∞). 70. (b) According to question, as sin 2 x can’t be negative.
61. −1
(a) f (x) = sin [log 2 (x/2)] , Domain of sin −1
x is x ∈ [−1,1] So the option (b) is correct
Domain of function sin 2 x is [nπ , nπ + π /2] .
1 x
⇒ −1 ≤ log 2 (x / 2) ≤ 1 ⇒ ≤ ≤2 ⇒ 1≤ x ≤ 4 3
2 2 71. (d) f (x) = 2
+ log10 (x 3 − x) . So, 4 − x ≠ 0 ⇒ x ≠ ± 4
4 − x2
∴ x ∈ [1, 4] .
and x 3 − x > 0 ⇒ x(x 2 − 1) > 0 ⇒ x > 0, x > 1
62. (d) Here x + 3 > 0 and x 2 + 3 x + 2 ≠ 0
∴ x > −3 and (x + 1)(x + 2) ≠ 0, i.e. x ≠ −1, − 2 – + – +
5 (− x)2 + 1
144. (d) Here f (2) = g(− x) = (− x)3 + tan( − x) +
4 P
5 x2 + 1
2× +1 g(− x) = − x 3 − tan x +
5 4 P
Hence ( fof )(2) = f ( f (2)) = f = = 2.
4 5 g(x) + g(− x) = 0 because g(x) is a odd function
3× − 2
4
x2 + 1 3 x2 + 1
145. (b) (gof )(x) =| sin x | and f (x) = sin 2 x ∴ x 3 + tan x + + − x − tan x + =0
P P
⇒ g(sin 2 x) =| sin x | ; ∴ g(x) = x.
2(x 2 + 1) x2 + 1
146. (c) f [ f (x)] = [ a − {f (x)} ]
n 1/ n
= [ a − (a − x n )] 1 / n = x . ⇒ =0 ⇒ 0≤ < 1 because x ∈ [−2, 2]
P P
2x 5
147. (b) For – 1< x< 1, tan −1 = 2 tan −1 x ⇒ 0≤ <1⇒ P > 5.
1 − x2 P
π π 155. (a) The domain of function loge {x − [ x]} is R, because [x]
Range of f (x) = − , .
2 2 is a greatest integer whose value is equal to or less than
π π zero.
∴Co-domain of function = B = − , .
2 2 1
156. (e) −1 ≤ log3 x ≤ 1 ; 3−1 ≤ x ≤ 3 ⇒ ≤x≤3
148. (c) f (a − (x − a)) = f (a) f (x − a) − f (0) f (x) .....(i) 3
2 2 1
Put x = 0, y = 0 ; f (0) = ( f (0)) − [ f (a)] ⇒ f (a) = 0 ∴ Domain of function = , 3 .
3
[ f (0) = 1]. From (i), f (2a − x) = − f (x) .
Functions, Limits, Continuity and Differentiability 945
157. (a,b,c) When x1 = −1 and x 2 = 1 , then
Limits
−1 − 1
f (−1) − f (1) = f = f (−1) ⇒ f (1) = 0 1. (b) Here f (0) = 0
1 + 1(1)
1 1
Since − 1 ≤ sin ≤ 1 ⇒ − | x | ≤ x sin ≤ | x |
1− x x x
Which is satisfied when f (x) = tan −1
1+ x We know that lim | x | = 0 and lim −| x | = 0
x →0 x →0
When x1 = x 2 = 0 , then In this way lim f (x) = 0.
x →0
0 − 0 3
x cot x x 3 cot x 1 + cos x
f (0) − f (0) = f = f (0) ⇒ f (0) = 0 2. (c) lim = lim ×
1− 0 x →0 1 − cos x x →0 1 − cos x 1 + cos x
When x1 = −1 and x 2 = 0 then 3
x
= lim × lim cos x × lim (1 + cos x) = 2
−1 − 0 x →0 sin x x →0 x →0
f (−1) − f (0) = f = f (−1) ⇒ f (0) = 0
1− 0 x (e x − 1) 2 x (e x − 1)
3. (d) lim = lim
1− x x →0 1 − cos x x →0 4. sin2 x
Which is satisfied when f (x) = log and 2
1+ x
1+ x (x / 2) 2 e x − 1
f (x) = log .
1− x = 2 lim = 2.
x →0
sin 2 x x
158. (c) It is a fundamental concept. 2
159. (d) It is a fundamental concept. 1 1
4. (d) lim = lim =∞
160. (c) It is direct consequence of the definition. x →1− | 1− x| h→ 0 1 − (1 − h)
x, x ∈ Q 1 1
161. (a) ( f − g)(x) = and lim = lim =∞
x →1 + | 1 − x | h→ 0 1 + h − 1
− x, x ∉ Q
1
x2 Hence lim = ∞.
x →1 | 1− x|
162. (c) Let y = 2
x +1
n (2n + 1) 2 4n 3 + 4n 2 + n
⇒ (y − 1)x + 0 x + y = 1, y ≠ 1 for real values of x,
2 5. (c) lim = lim
n→ ∞ (n + 2) (n 2 + 3n − 1) n→ ∞ n 3 + 5n 2 + 5n − 2
we have D ≥ 0 ⇒ −4 y(y − 1) ≥ 0 ⇒ y(y − 1) ≤ 0 ⇒ y ∈ [ 0, 1) 4 1
n3 4 + + 2
x 2 n n
0≤ < 1. = lim =4
x2 + 1 n→ ∞ 3 5 5 2
n 1 + + 2 − 3
n n n
x + 59
163. (b) 3 f (x) + 2 f = 10 x + 30 1 1
x −1 6. (b) lim = .
n→ ∞ 1 2
For x = 7 , 3 f (7) + 2 f (11) = 70 + 30 = 100 1+ 1+
n
For x = 11 , 3 f (11) + 2 f (7) = 140
3x − a − x + a
7. (b) lim
f (7) f (11) −1 x →a x−a
= = ⇒ f (7) = 4 .
− 20 − 220 9 − 4 3x − a − x + a 3x − a + x + a
= lim ×
x
164. (b) e = y + 1 + y 2 (x − a)
x →a 3x − a + x + a
2 1
= =
∴ ex − y = 1 + y 2 2 2a 2a
Aliter : Apply L-Hospital’s rule
Squaring both the sides, (e x − y)2 = (1 + y 2 )
3x − a − x + a 3 1
e2 x + y 2 − 2ye x = 1 + y 2 ⇒ e2 x − 1 = 2ye x lim = lim −
x →a x−a x →a 2 3 x − a 2 x+a
e2 x − 1 3 1 1
⇒ 2y = ⇒ 2y = e x − e− x = − = .
ex 2 2a 2 2a 2a
8. (a) Hence lim f (x) = 1 Y
e x − e− x
Hence, y = . x →1
2 Aliter : lim f (x) = lim (1 − h) = 1 y=f(x)
x →1− h→0
165. (d) Given f : (2, 3) → (0, 1) and f (x) = x − [ x]
and lim f (x) = lim 2 − (1 + h) = 1
x →1+ h→0
∴ f (x) = y = x − 2 ⇒ x = y + 2 = f −1(y) ⇒ f −1(x) = x + 2 . X
Hence limit of function is 1. O 1 2
946 Functions, Limits, Continuity and Differentiability
log [(x − 1) + 1] 2x − 1 2 x log 2
9. (a) lim = 1. 21. (b) lim = lim
x →1 x −1 x →0 (1 + x)1 / 2 − 1 x →0 1 (1 + x) −1 / 2
2
1
log x f ( x) f ′(x)
Aliter : Apply L-Hospital’s rule, lim = lim x = 1 xlim
→a g( x)
= lim
x →a g ′( x)
x →1 x − 1 x →1 1
x n − 2n = 2 log 2 = log 4.
10. (b) lim = n . 2 n−1 ⇒ n. 2 n−1 = 80 ⇒ n = 5 .
x →2 x−2 1 − cos mx 2 sin2 mx
2
2 2 22. (c) lim = lim
x . 2 sin x sin x x → 0 1 − cos nx x → 0 2 sin 2 nx
11. (a) lim = 2. lim ⋅ lim x = 0 . 2
x →0 x2 x → 0 x x →0
2
1
x/2
2
12. (c) lim 1 + = e2 . sin mx m2 x 2 1 4
x →∞ x / 2 = lim mx 2 . . 2 2
x →0 4 2
n x
2 sin nx2
nx
(2 x − 3) ( x − 1) × ( x + 1) −1 −1
13. (a) lim = = . 2
x →1 (x − 1) (2 x + 3) × ( x + 1) 5 . 2 10
m2 m2
14. (c) lim kx cosec x = lim x cosec kx = ×1 =
.
x →0 x →0
n2 n2
x 1 kx 1 Aliter : Apply L-Hospital’s rule,
⇒ k . lim = lim ⇒ k = ⇒ k = ±1 .
x →0 sin x k x →0 sin kx k 1 − cos mx m sin mx m 2 cos mx m 2
lim = lim = lim 2 = 2 .
e1 / x − 1 x →0 1 − cos nx x →0 n sin nx x →0 n cos nx n
15. (d) f (x) = 1 / x , then
e +1 e sin x − 1 e sin x − 1 sin x
23. (a) lim = lim ×
x →0 x x →0 sin x x
1
e1 / h 1 − 1 / h e sin x − 1 sin x
e1 / h − 1 e =1 = lim × lim = 1×1 = 1.
lim f (x) = lim 1 / h = lim
sin x
x → 0+ h→ 0 e
+ 1 h→ 0 1 / h 1 x →0 x →0 x
e 1 + 1 / h Aliter : Apply L-Hospital’s rule,
e
Similarly lim f (x) = −1 . Hence limit does not exist. e sin x − 1 cos x e sin x
x → 0−
lim = lim = 1. e 0 = 1.
x →0 x x →0 1
x
log 1 − 2 sin 2 ( x + 5 + x)
log cos x 2 24. (c) lim x ( x + 5 − x ) ×
16. (a) lim = lim x →∞ ( x + 5 + x)
x →0 x x →0 x
2 x (5) 5
x = lim = .
2 sin 2 x →∞ 5 2
x 2 + ...... x 1 + + 1
− 2 sin 2 +
2 2 x
x −1 1
= lim =0 25. (c) lim =− .
x →0 x x →1 (x − 1) (2 x − 5) 3
Aliter : Apply L-Hospital’s rule, Aliter : Apply L-Hospital’s rule.
log cos x − tan x sin x 1 1
lim = lim = 0. 26. (b) lim , let x = or y = , so that x → ∞ ⇒ y → 0
x →0 x x → 0 1 x →∞ x y x
2 sin 2 x sin x 1 1
17. (d) lim = 2. ∴ lim = lim y. sin = lim y × lim sin = 0 × ... = 0
x →0 2x x →∞ x y →0 y y →0 y →0 y
18. (b) Applying L-Hospital’s rule,
1 f ′(9) 1 + sin x − 1 − sin x
⋅ f ′(x) 4 27. (b) Apply L-Hospital‘s rule, lim
x
x →0
2 f ( x) f (9)
lim = = 3 =4 cos x cos x 1 1
x →9 1 1 1 = lim + = + = 1.
x →0 2 1 + sin x 2 1 − sin x 2 2
2 x 9 3
| x| | x| 2 × 9 sin 2 3 x
19. (d) Since lim = −1 and lim = 1, hence limit 28. (c) lim = 18
x →0 − x x →0 + x x →0 (3 x) 2
does not exist. sin α − cosα
29. (a) lim
x+h− x ( x + h)2 − ( x )2 1 α →π / 4 α −π /4
20. (a) lim = lim = .
h→0 h h→0 h( x + h + x ) 2 x 1 1
2 sin α . − cos α .
Aliter : Apply L-Hospital rule, 2 2
= lim
x+h− x 1 1 α →π / 4
π
lim = lim = . α −
h→0 h h→0 2 x + h 2 x 4
Functions, Limits, Continuity and Differentiability 947
π cosec 2θ − 4
sin α − 41. (b) lim = lim cosecθ + 2 = 4.
4 x →π / 6 cosec θ − 2 x →π / 6
= 2 lim = 2 ×1 = 2.
α →π / 4 π
α − x [ 5 C1 + 5 C2 x + 5 C3 x 2 + 5 C4 x 3 + 5 C5 x 4 ] 5
4 42. (c) lim = .
x →0 x [ 3 C1 + 3 C2 x + 3 C3 x 2 ] 3
Aliter : Apply L-Hospital’s rule,
Aliter : Apply L-Hospital’s rule.
sin α − cos α cos α + sin α 1 1
lim = lim = + = 2. x 9 + a9 2a 9
α →π / 4 α − (π / 4) 1
α →π / 4 2 2 43. (a) lim =9⇒ = 9 ⇒ a8 = 9 ⇒ a = 91 / 8
x →a x + a 2a
log sin x
30. (a) lim tan x log sin x = lim x
x→
π
x→
π cot x 44. (a) lim = 0 as e −1 / x → 0 when x → 0 +
2 2 x →0 + 1 + e −1 / x
1 45. (c) lim [ x] = lim [1 − h] = lim 0 = 0
cos x x →1− h→0 h→0
= lim sin x 2 = 0 (Applying L-Hospital’s rule)
x → − cosec x
π and lim [ x] = lim [1 + h] = lim 1 = 1
2 x →1+ h→0 h→0
31. (a) lim (x − [n]) = lim x − lim[n] = n − n = 0 . Hence limit does not exist.
x →n + 0 x →n + 0 x →n + 0
2 sin 4 x cos 2 x sin 4 x x cos 2 x
2 46. (d) lim = lim 4 =4.
θ θ x →0 2 sin x cos 4 x x → 0 4 x sin x cos 4 x
cos − sin
32. (a) lim 1 − sinθ = lim 2 2
= 0. 2 sin 2 x 6 sin 6 x
θ →π / 2 cosθ θ →π / 2 θ θ θ θ +
cos − sin cos + sin 2x 6x 2+6
2 2 2 2 Aliter : lim = = 4.
x →0 5 sin 5 x 3 sin 3 x 5−3
2 tan 2 x −
− 1 5x 3x
tan 2 x − x 2 x 1
33. (c) lim = lim = . θ θ
x →0 3 x − sin x sin x sin sin
x →0
3− 2 4 = lim 1 . 4 = 1.
x 47. (b) lim
θ →0 θ θ →0 4 (θ / 4) 4
Aliter : Apply L-Hospital‘s rule
b 4
tan 2 x − x 2 sec 2 2 x − 1 2 − 1 1 1 + +
x x2
lim = lim = = . 48. (b) lim = 1.
x →0 3 x − sin x x →0 3 − cos x 3 −1 2 x →∞ a 5
0−h −1 1+ + 2
34. (d) lim f (x) = lim = lim = −1 x x
x →0 − h→0 h + h 2 h→0 1 + h
d
h 1 49. (b) f (r ) = 2πr .
and lim f (x) = lim = lim =1 dr
x →0 + h→0 h + h 2 h→0 1 + h
50. (b) lim x log sin x = lim log (sin x) x = log [ lim (sin x) x ]
Hence limit does not exist. x →0 x →0 x →0
sin ax a sin ax bx a x (sin x −1)
35. (a) lim = lim = .
x →0 sin bx x →0 b ax sin bx b = log lim (1 + sin x − 1) sin x −1
x →0
πx
sin
sin x o 180 π πx lim x (sin x −1)
36. (b) lim = lim = x ° = radian . = log e [ e x →0 ] = log e 1.
x →0 x x → 0 x 180 180
x x a −1
x x
x 2 − a2 51. (b) lim
a −b
= lim − lim b − 1
37. (c) lim = lim (x + a) = 2a. x
x →a x−a x →a
x →0 x →0
x x → 0
x
f ( x) f ′(x) = log a − log b = log (a / b) .
38. (a) Apply the L-Hospital‘s rule, lim = lim .
x →a g(x) x →a g′(x) 52. (a) Expand sin x and then solve.
2 Aliter : Apply L-Hospital’s rule
39. (c) lim f (x) = 5 − 3 = 2, lim f (x) = = 1.
x →3+ x →3− 5−3 x3 3x 2
sin x − x + cos x − 1 +
cos ax − cos bx lim 6 = lim 6
40. (b) lim
x →0 x2
x →0 x5 x →0 5x4
6x
a+b b − a − sin x +
2 sin x . sin x 6 = lim − cos x + 1 = lim sin x
2 2 b 2 − a2 = lim
= lim = x →0 20 x 3 x →0 60 x 2 x → 0 120 x
x →0 a + b 2 2 b − a 2
x . . . x cos x 1
2 a+b b−a 2 = lim = .
x →0 120 120
Aliter : Apply L-Hospital’s rule,
cos ax − cos bx − a sin ax + b sin bx a1 / x − 1
lim = lim 53. (d) lim x (a1 / x − 1) = lim
2 x →∞ x →∞ 1 / x
x →0 x x → 0 2x
1/ x
− a 2 cos ax + b 2 cos bx b 2 − a 2 [ e loge a − 1] 1
= lim = . = lim = log e a = − log e .
x →0 2 2 x →∞ 1/ x a
948 Functions, Limits, Continuity and Differentiability
54. (a) Expand log (1 + x) and then solve. x cos x − sin x − sin x
63. (b) lim = lim
x − log (1 + x)
x →0 x 2 sin x 2 sin x + x cos x
x →0
Aliter : Apply L-Hospital’s rule, lim (By L-Hospital’s rule)
x →0 x2 − cos x 1
= lim = − , (Again by L-Hospital’s rule)
1 x →0 3 cos x − x sin x 3
1− 2
= lim 1 + x = lim 1 1 = 1 . (x − 1) (2 x + 3) 2x 2 + x − 3
x →0 2x x →0 2 1 + x 2 64. (c) lim 2
= lim = 2.
x →∞ x x →∞ x2
2
1 1 1
1 + 2 + 1 +
n (n + 1) (2n + 1) n n 1 n 1
55. (c) lim 3 = nlim = . 65. (c) lim = .
n→ ∞ 6n → ∞ 6 3 n→ ∞ 4 4
Note : Students should remember that ax + bx 2 + cx 3 a + bx + cx 2
66. (c) lim = lim = a.
x →0 x x →0 1
∑n 1 ∑ n2 1 ∑ n3 1
lim = , lim 3 = and lim 4 = . (1 + x)1 / 2 + (1 − x)1 / 2
n→ ∞ n2 2 n → ∞ n 3 n → ∞ n 4 67. (c) Multiply function by and solve.
f (a)[ g(x) − g(a)] − g(a)[ f (x) − f (a)] (1 + x)1 / 2 + (1 − x)1 / 2
56. (b) lim Aliter : Apply L-Hospital’s rule,
x →a [ x − a]
(1 + x)1 / 2 − (1 − x)1 / 2 1 1
= f (a)g′(a) − g(a) f ′(a) = 2 × 2 − (−1) (1) = 5. lim = lim + = 1.
x →0 x x →0 2 1 + x 2 1− x
sin x − sin α (x − 1) (x 2 + x + 1) 3
57. (d) lim 68. (b) lim = .
x →α x −α x →1 (x − 1) (x + 6) 7
cos x
lim = cosα , (Apply L-Hospital's rule) a + 2x − 3 x
x →α 1 69. (b) lim
x →a 3a + x − 2 x
c2 d2
1+ + 1+ a + 2x − 3 x a + 2x + 3 x 3a + x + 2 x
= lim × ×
(a 2 − b 2 ) x2 x 2 a2 − b 2 x →a 3a + x − 2 x a + 2x + 3 x 3a + x + 2 x
58. (a) lim 2 = 2 .
x →∞ (c − d 2 ) 2 c − d2
a2 b 3a + x + 2 x 2
1+ + 1+ = lim = .
x2 x2 x →a 3 ( a + 2 x + 3 x) 3 3
Aliter : Apply L-Hospital’s rule.
π 1 − x −1 / 3 1
x− 70. (b) lim = .
59. (c) lim 2 2 = −2 x →1 (1 − x −1 / 3 ) (1 + x −1 / 3 ) 2
x →π / 2 π
sin − x Aliter : Apply L-Hospital’s rule.
2 (1 + nx + nC2 x 2 + ...higher pow ers of x to x n ) − 1
71. (a) lim =n.
Aliter : Apply L-Hospital’s rule. x →0 x
sin x − x Aliter : Apply L-Hospital’s rule.
60. (d) lim tan 3 x
x →0 x3 72. (c) lim 3 + lim cos x = 3 + 1 = 4 .
x →0 3x x →0
Expand sin x, then
73. (b) Let sin −1 x = y ⇒ x = sin y
x3 x5
− + − ... 1 + sin y − 1 − sin y
3! 5! 1 x2 −1 −1
= lim = lim − + − ... = = . So lim ( x → 0 ⇒ y → 0)
x →0 x 3 x → 0 3 ! 5 ! 3 ! 6 y →0 y
Aliter : Apply L-Hospital’s rule. Now multiply it by 1 + sin y + 1 − sin y and solve
1 + sin y + 1 − sin y
d 2
61. (c) [ a sin a] = 2a sin a + a 2 cos a.
da =1
Aliter : Apply L-Hospital’s rule, Aliter : Apply L-Hospital’s rule.
x {sec (x + y) − sec x}
(a + h) 2 sin(a + h) − a 2 sin a 74. (a) lim + sec (x + y)
lim y →0
y
h→0 h
x cos x − cos (x + y)
2 (a + h) sin (a + h) + (a + h) 2 cos (a + h) = lim + ylim sec (x + y)
= lim
cos (x + y) cos x
y →0 y →0
h→0 1
= 2a sin a + a 2 cos a. y y
x sin x + sin
2 2
62. (a) lim
x−3
= lim
{
(x − 3) x − 2 + 4 − x
= 1.
} = lim
y →0 cos ( x + y) . cos x
.
y
+ sec x
x →3 2 (x − 3)
x − 2 − 4 − x x →3 2
Aliter : Apply L-Hospital’s rule. = xtanxsecx + secx = secx(xtanx+1).
Functions, Limits, Continuity and Differentiability 949
Aliter : Apply L-Hospital’s rule, 2 − (3 / x) + (1 / x 2 )
(x + y) sec (x + y) − x sec x 84. (b) lim = 2.
lim x →∞ 1 − (1 / x 2 )
y →0 y
3 + (2 / x) − (1 / x 2 ) 3
(x + y) sec (x + y) tan (x + y) + sec (x + y) − 0 85. (c) lim = .
= lim x →∞ 2 − (3 / x) − (3 / x 2 ) 2
y →0 1
{Differentiating w.r.t.y assuming x as constant} | x − 2| | 2 − h − 2|
86. (c) lim = lim = −1
= x sec x tan x + sec x. = sec x(x tan x + 1) x → 2− x−2 h→0 2 − h − 2
| x − 2| | 2 + h − 2|
x.(2 x − 1) 2x − 1 x2 and lim = lim =1
75. (b) lim = lim . x → 2+ x−2 h→0 2 + h − 2
x →0 1 − cos x x →0 x 1 − cos x
Hence limit does not exist.
x2
= log 2 . lim = (log 2) . 2 = 2 log 2 = log 4 . ( 2 − sec x) cos x (1 + cot x)
x →0 x 87. (b) lim
2 sin 2 x →π / 4 cot x [ 2 − sec 2 x]
2
2 sin 2 (θ / 2)
1 1
76. (c) lim . = (2)
2
2 sin x (1 + cot x) 2 1
θ →0 θ = lim = = .
Aliter : Apply L-Hospital’s rule.
x →π / 4 ( 2 + sec x) 2+ 2 2
77. 2
(b) lim [ 3 − 4 sin θ ] − 1 = 2. Aliter : Apply L-Hospital’s rule.
θ →0
cos x − cos a − sin x
sin 3θ − sinθ sin 3θ sinθ 88. (c) lim = lim = lim sin 3 x = sin 3 a .
Aliter : lim = lim − lim x → a cot x − cot a x → a − cosec 2 x
x →a
θ →0 sinθ θ →0 sin θ θ →0 sin θ
3 π π
= − 1 = 2. 2 3 sin + h − cos + h
1 6 6
89. (d) lim
You may also apply L-Hospital rule. h→0 3 h ( 3 cos h − sin h)
tan x − sin x sin x − sin x cos x
78. (a) lim 3
= lim 4 3 π 1 π
x →0 x x → 0 x 3 cos x sin + h − cos + h
3 2 6 2 6
x = lim
sin x 2 sin 2 x
sin 2 h→0 h ( 3 cos h − sin h)
2 sin x 2 2 . 1 = 1 .
= lim = lim . .
x →0 x 3 cos x x →0 x cos x x 2 4 2 4sin h 1 4
= lim . . = .
2 h→0 3 h ( 3 cos h − sin h) 3
x +1 1
1 118. (a) Putting x = , the given limit
xlim 1 + =e t
→∞ x + 1
sin t
−1
and lim
(x + 3)
= lim
{1 + (3 / x)} = 1 . = lim t =
1−1
= 0, which is given in (a).
x →∞ ( x + 1) x →∞ {1 + (1 / x)}
t →0 t −1 0 −1
Functions, Limits, Continuity and Differentiability 951
1 sin x
x 2 sin −x 1−
Aliter : lim x x − sin x x
x →∞ 1−| x| 124. (c) lim f (x) = lim = lim
x →∞ x →∞ x + cos 2 x x →∞ cos 2 x
1+
1 1 1 x
x 2 − + .... − x
x 3! x
3
1 1−0 sin x cos 2 x
= lim , → 0 = = 1, → 0, → 0 as x → ∞ .
1− | x | 1+ 0 x x
x →∞ x
1 125. (b) Put cos −1 x = y. So if x → −1, y → π
x − + .... − x
6x π − cos −1 x π − y
= lim ∴ lim = lim
x →∞ 1− | x | x → −1 x +1 y →π 1 + cos y
1 1 π y
− terms containing powers of −
= lim 6 x x = 0. π − y π − y 2 2
x →∞ | x | −1 = lim = lim
y →π 2 cos (y / 2) y →π π y π y
2 sin − −
sin x 2 2 2 2
1+ 1 1 1
x + sin x x
119. (b) lim = lim = lim 1 = 1 = lim . = .
x →∞ x − cos x x →∞ 1 − cos x x →∞ y →π 2 π y 2π
( π + y ) sin −
x 2 2 2
π y
sin x cos x −
[ lim and lim both are equal to 0] 2 2
x →∞ x x → ∞ x
1/ x x+ x+ x −x
1 + tan x 126. (b) lim x + x + x − x = lim
120. (c) Given limit = lim x →∞
x →∞
x →0 1 − tan x x+ x+ x + x
2/ x
1 x
n ax + b x + c x
. 128. (d) Let y = lim
y
n
n y x →0 3
n x
.
x
= y lim 1 + 2 ax + b x + c x
n→∞
y ⇒ log y = lim log
x →0 x 3
log (a x + b x + c x ) − log 3
x n = 2 lim
x x →0 x
= ye 0 = y , < 1 ⇒ → 0 as n → ∞ .
y y Now applying L-Hospital’s rule, we have
log y = log (abc) 2 / 3 ⇒ y = (abc) 2 / 3
122. (a) lim a2 x 2 + ax + 1 − a2 x 2 + 1
x →∞ 1+ 2+ x − 3
129. (a) We have lim
ax x →2 x−2
= lim
x →∞
a x + ax + 1 + a 2 x 2 + 1
2 2 1+ 2+ x − 3
= lim
x →2
a a 1 ( 1 + 2 + x + 3 ) (x − 2)
= lim = = .
x →∞ a 1 1 2a 2 2+ x −2
a2 + + + a2 + 2 = lim
x x2 x x →2
( 1 + 2 + x + 3 ) (x − 2)
tan x x x tan x − x
e −e e [e − 1] (x − 2)
123. (a) lim = lim = lim
x →0 tan x − x x →0 tan x − x x →2
( 1 + 2 + x + 3 ) ( 2 + x + 2) (x − 2)
e tan x − x − 1 1 1
= lim e x . lim = e0 × 1 = 1 . = = .
x →0 x →0 tan x − x
(2 3 ) 4 8 3
952 Functions, Limits, Continuity and Differentiability
x/2 1 + 5x 2 x →0 e5
137. (a) lim
= = = e2 .
x →0 1 + 3 x 2 3
e3
m (log x)n
n ∞ lim (1 + 3 x 2 )1 / 3 x
2
131. (a) lim x (log x) = lim Form x →0
x →0 + x →0 + x −m ∞
1 [ lim (1 + x)1 / x = e]
n (log x)(n−1) x →0
4 x 2 + 5x + 8
2
4 (−1 / h) + 5 (−1 / h) + 8 4+4+2 4
(x + 4 + 2 x ) 12
145. (a) lim = lim ⇒ y = lim = = =3.
x → −∞ 4x + 5 h→0 4 (−1 / h) + 5 ( x + 2)
x →4 4 +2 4
Trick : Applying L-Hospital’s rule, we get
(1 / h) 4 − 5h + 8h 2 4 1 3 1/ 2
= lim = =− . x
(1 / h) (− 4 + 5h) −4 2 3
lim 2
h→0
= (4)1 / 2 = 3.
x mx ⋅
1 x→ 4 1 2
1 1 m
146. (a) Let y = lim 1 + = lim 1 + e1 / x e1 / x 1
x→ ∞ mx x→ ∞ mx 154. (d) lim = lim 1
= lim = e −1 .
x →0 1
+1 x →0 x →0 e
x e x ex .e
1
⇒ y = e1 / m , lim 1 + = e . x cos x − log(1 + x) 0
x→ ∞ x 155. (a) lim , form
2
x →0 x 0
147. (d) L.H.L. = lim f (x) = lim (1 − h) = lim 3(1 − h)
x →1− 0 h→0 h→0 Applying L-Hospital’s rule, we have
= lim (3 − 3h) = 3 − 3 . 0 = 3 1
cos x − x sin x −
h→0
x +1 , 0
R.H.L. = lim f (x) = lim f (1 + h) = lim [ 5 − 3(1 + h)] lim form
x →1+ 0 h→0 h→0
x →0 2x 0
= lim (2 − 3h) = 2 − 3 . 0 = 2 1
− sin x − sin x − x cos x +
h→0
(x + 1) 2 1
Hence lim f (x) does not exist. = lim = .
x→1
x →0 2 2
sin a − tan a cos a − 1 −(1 − cos a)
3
x −8 0 156. (a) lim = lim = lim
148. (a) lim 2
form
, a→ 0 sin3 a a→ 0 sin2 a cos a a→ 0 (1 − cos2 a)(cos a)
x →2x −4 0
1 1 −1
Applying L-Hospital's rule, we get = lim − =− =
a→ 0 (1 + cos a) cos a (1 + 1)1 2
3x 2 3× 2× 2
lim = lim =3. n
x→2 2x x→2 2× 2
n
n 1
x 3 − x 2 − 18 0 157. (d) lim = lim
149. (d) Let y = lim , form n→∞ n + y n→∞ y
1 +
x →3 x−3 0
n
Applying L-Hospital's rule, we get −1
y −n
y
n
y = lim 3 x 2 − 2 x = (27 − 6) = 21 . = lim 1 + = lim 1 + = e − y .
x →3 n→∞ n n→∞ n
tan −1 x 0 158. (d) L.H.L. = 0 and R.H.L. cannot be found as the function is
150. (d) lim , form
x →0 x 0 not defined for x > 0.
1 159. (a) lim g( f (x)) = lim [ f (x)] 2 + 1 = lim (sin 2 x + 1) = 1 .
x →0 x →0 x →0
2 1 1
= lim 1 + x = lim = =1. 160. (d) Applying L-Hospital’s rule,
x →0 1 x →0 1 + x 2 1+ 0
1
3 4 −1
2+ + 2 1 + log x − x x 1− x
2x 2 + 3 x + 4 x x 2 lim = lim = lim
151. (a) lim = lim = . x →1 1 − 2 x + x 2 x →1 − 2 + 2 x x →1 2 x( x − 1)
x→ ∞ 3x 2 + 3x + 4 x →∞ 3 4 3
3+ + 2 −1 1
x x Again applying L-Hospital’s rule, lim =− .
x →1 4 x − 2 2
152. (d) lim f (x) = lim f (0 − h)
−
x →0 h→0 asin x − 1 asin x − 1 sin x
161. (c) lim sin x
= lim × sin x
−1 1 x →0 b − 1 x →0 sin x b −1
= lim sin = lim − sin
h→0 h h→ 0 h 1 log a
= loge a × = .
= – 1 (finite number lies between – 1 to 1) loge b log b
954 Functions, Limits, Continuity and Differentiability
3x / 2 − 3 x/2 a+ x − a− x
162. (c) lim x = lim 3 −3 169. (d) lim
x/2 2 2
x →2
3 −9 x → 2
(3 ) − 3 x →0
x
1 1 ( a + x − a − x )( a + x + a − x )
= lim = .
x →2 3x / 2 + 3 6 = lim
x →0
x( a + x + a − x )
sin −1 x − tan −1 x 0
163. (d) lim , form 2x 2 1
x →0 x3 0 = lim = = .
x → 0 x( a + x + a − x ) a+ a a
Applying L-Hospital’s rule,
1 1 sin2 α − sin2 β
− 170. (d) lim
1 − x2 1 + x2 0
α →β α2 − β2
lim , form
x →0 3x 2 0 Applying L-Hospital’s rule,
2 sin α cosα sin 2α sin 2β
−1 −2 x 2x lim = lim = .
× + α →β 2α α →β 2α 2β
2 (1 − x 2 )3 / 2 (1 + x 2 )2
= lim 1 1
x →0 6x [log(1+ x )]
171. (d) (1 + x) x = e x
1 1 2 1 1 x2 x3 x4 2 3
= lim + = . x− + − +.... 1 − x + x − x + ....
x →0 6 (1 − x 2 )3 / 2 (1 + x 2 )2 2 x 2 3 4
2 3 4
=e =e
x tan 2 x − 2 x tan x x x2 x3
− +
+....
164. (c) lim 2 3
−
4
x →0 (1 − cos 2 x) 2 = e.e
1 − 2 + 3 − 4 + 5 − 6 + ..... − 2n 1
224. (b) lim 7. (d) Since lim f (x) ≠ f .
n→ ∞ n2 + 1 + 4 n2 − 1 x →1 / 2 2
1 2 3 8. (b) f (a) = 0
n − + − ..... − 2
n n n = −2 = −2 .
= lim lim f (x) = lim
x2 (a − h) 2
− a = lim
− a = 0
n→∞ 1 1 1+ 2 3 x → a− a
n 1 + + 4−
x → a−
h→0 a
n 2 n
2
(a + h) 2
and lim f (x) = lim a − =0
(x + 1)10 + (x + 2)10 + ...... + (x + 100 )10 x → a+ h→0 a
225. (d) lim
x →∞ x 10 + 10 10
Hence it is continuous at x = a .
1
10
2
10
100
10
9. (c) f (0) = 0
x10 1 + + 1 + + ... + 1 +
x x x
= lim = 100 . lim f (x) = lim e −1 / h = 0 and lim f (x) = lim e1 / h = ∞
x →0 − h→0 x →0 + h→0
x →∞
10
10 10
x 1 + 10 Hence function is discontinuous at x = 0 .
x
x 2 − 4 x + 3
1 + 2 + 3 + ..... + n 10. (c) f ( x) = , for x ≠ 1
226. (b) We have, lim x 2 − 1
n→ ∞ n 2 + 100
1 = 2 , for x = 1
n 2 1 +
n(n + 1) n 1 x 2 − 4x + 3 (x − 3)
= lim = lim = . f (1) = 2, f (1+) = lim = lim = −1
n→∞ 2(n 2 + 100 ) n→ ∞ 2 100 2 2
(x + 1)
2n 1 + 2
x →1+ x −1 x →1+
n 2
x − 4x + 3
x f (1−) = lim = −1 ⇒ f (1) ≠ f (1−)
x2 −1
∫
2 x →1−
cos t dt
0
227. (b) lim Hence the function is discontinuous at x = 1.
x →0 x
x +1
Applying L- Hospital rule, we get 11. (b) f (x) = . Hence the points are 3, – 4.
(x − 3) (x + 4)
x
lim
∫ 0
cos t 2dt
= lim
cos x 2
= 1.
12. (c) f (0+) = f (0−) = 2 and f (0) = 2
x →0 x x →0 1 Hence f (x) is continuous at x = 0.
Functions, Limits, Continuity and Differentiability 959
1 1 25. (c) lim f (x) = sin −1 (0) = 0 and f (0) = 0
13. (c) lim f (x) = x 2 sin , but − 1 ≤ sin ≤ 1 and x → 0 x →0
x →0 +
x x
Hence f (x) is continuous at x = 0.
Therefore, lim f (x) = 0 = lim f (x) = f (0)
x →0 + x →0 −
2 sin 2 x 2
Hence f (x) is continuous at x = 0. 26. (b) lim f (x) = lim = = k.
x →0 x →0 2x . 5 5
14. (d) f (0−) = lim k(2 x − x 2 ) = 0 ; f (0+) = lim cos x = 1 27. (c) lim f (x) = 0 and lim f (x) = 1 + 1 = 2.
x →0 − x →0 + x →1+ x →1−
f (x) doesn't exist as [x] = 0 here. 37. (d) lim f (x) = a − b, lim f (x) = 2 ⇒ a − b = 2
x →1− x →1+
(ii) Also lim f (x) and lim f (x) does not exist.
x →1+ x →1− All the given sets of a, b make f (x) continuous at x=1.
Hence f (x) is discontinuous at all integers and also in 38. (b) lim f (x) = 1 + 1 = 2, lim f (x) = 0, f (0) = 2 .
x →0 − x →0 +
(0, 1).
39. (b) lim f (x) = lim (x + 2) (x 2 + 4) = 32, f (2) = 16 .
sin 2 ax x →2 x →2
23. (b) lim f (x) = a 2 = a 2 and f (0) = 1.
x →0 (ax) 2 40. (b) lim f (x) = 1, lim f (x) = 6.
x →1− x →1+
Hence f (x) is discontinuous at x = 0 , when a ≠ 0 .
(x − 2) (x + 5) −7 7
24. (b) lim f (x) = 0 41. (b) lim f (x) = = = .
x →0 − x→ − 5 (x + 5) (x − 3) − 8 8
f (0) = 0, lim f (x) = −4 42. (d) By definition of continuity, we know that
x →0 +
lim f (x) = f (3) = lim f (x)
f (x) discontinuous at x = 0. x →3+ x →3−
and lim f (x) = 1 and lim f (x) = 1, f (1) = 1 ⇒ lim f (x) = 4 or lim 3 − h + λ = 4
x →1− x →1+ x →3− h→0
4 +h−4 π
= lim f (x) = lim f (4 + h) = lim +b = b +1 cos [ 0 − h]
x →4 + h→0 h→0 | 4 + h − 4 | k = lim f (0 − h) = lim 2
h→0 h→0 [ 0 − h]
and f (4) = a + b
π π
Since f (x) is continuous at x = 4 cos [ −h] cos [ −h − 1]
k = lim 2 = lim 2
Therefore lim f (x) = f (4) = lim f (x) h→0 [ −h] h→0 [ −h − 1]
x →4 − x →4 +
⇒ a − 1 = a + b = b + 1 ⇒ b = −1 and a = 1. π
cos −
2 ;
46. (d) For any x ≠ 1, 2 we find that f (x) is the quotient of k = lim k=0.
h→0 −1
two polynomials and a polynomial is everywhere
53. (c) Clearly the function is defined only in the interval [1, ∞)
continuous. Therefore f (x) is continuous for all
hence option (b) cannot even apply. For
x ≠ 1, 2. Check continuity at x = 1, 2.
x > 2, y = 3 x − 2 which is a straight line, hence
47. (c) Since f (x) is continuous at x = 0, therefore continuous. Further y = 4 at x = 2 . Hence, the
(27 − 2 x) 1/ 3
−3 0 function is continuous at x = 2 also (but not at x = 2
f (0) = lim f (x) = lim , Form only).
x →0 x →0 9 − 3 (243 + 5 x)1 / 5 0
54. (a) f (x) is continuous at every point of its domain,
1
(27 − 2 x) − 2 / 3 (−2) ⇒ lim− f (x) = lim+ f (x) = f (1)
= lim 3 = 2. x →1 x →1
x →0 3
− (243 + 5 x) − 4 / 5 (5) ⇒ 5 ×1 − 4 = 4 ×1 + 3× b ×1
5
⇒ 1 = 4 + 3b ⇒ 3b = −3 ⇒ b = −1 .
1
48. (a) lim (cos x)1 / x = k ⇒ lim log (cos x) = log k 55. (c) For continuity at all x ∈ R, we must have
x →0 x →0 x
π
1 f − = lim − (−2 sin x) = lim ( A sin x + B)
⇒ lim lim log cos x = log k 2 x →(−π / 2) x →(−π / 2)+
x →0 x x →0
⇒ 2 = −A + B .....(i)
1
⇒ lim × 0 = log e k ⇒ k = 1 . π
x →0 x and f = lim ( A sin x + B) = lim (cos x)
2 x →(π / 2)− x →(π / 2)+
49. (a) Since lim f (x) = lim f (x) = f (2) = 1
x → 2− x → 2+
⇒ 0 = A+ B .....(ii)
Also it is continuous for all values of x, less than 2 and From (i) and (ii), A = −1 and B = 1 .
greater than 2.
x 2 − 10 x + 25
50. (c) Given function is continuous at all point in (− ∞, 6) and 56. (a) f (5) = lim f (x) = lim
x→5 x →5 x 2 − 7 x + 10
at x = 1, x = 3 function is continuous.
If function f (x) is continuous at x = 1, then (x − 5) 2 5−5
= lim = = 0.
x →5 ( x − 2)( x − 5) 5−2
π
lim f (x) = lim+ f (x) ⇒ 1 + sin = a+b
x →1− x →1 2 57. (c) For continuity at x =0, we must have
x cot x
∴ a+b = 2 .....(i) 1
f (0) = lim f (x) = lim(x + 1)cot x = lim(1 + x) x
If at x = 3, function is continuous, then x→0 x →0 x →0
3π
lim− f (3) = lim+ f (x) ⇒ 3a + b = 6 tan
lim
x
x →3 x →3 12 1 x →0 tan x
∴ 3a + b = 6 .....(ii) = lim(1 + x) x = e1 = e .
x →0
From (i) and (ii), a = 2, b = 0 .
58. (a) It is obvious.
Functions, Limits, Continuity and Differentiability 961
59. (a) It is obvious that | x | is continuous for all x. x x x x x
2 cos2 − 2 sin cos cos − sin
| 0 + h | −0 68. (c) f ( x) = 2 2 2 = 2 2
Now, Rf ′(x) = lim =1 x x x x x
h→0 h 2 cos2 + 2 sin cos cos + sin
2 2 2 2 2
| 0 − h | −0
L f ′(x) = lim = −1 π x π
h→0 −h = tan − at x = π , f (π ) = − tan = −1 .
4 2 4
Hence f (x) =| x | is not differentiable at x = 0 .
1 − cos x
π ,x ≠ 0
60. (c) f (x) is continuous at x = , then 69. (a) f (x) = x continuous at x = 0
2 k
, x = 0
1 − sin x 0
lim f (x) = f (0) or λ = lim , form
x →π / 2 x →π / 2 π − 2x 0 2. sin 2 x / 2
lim+ f (x) = f (0) ⇒ lim =k
Applying L-Hospital’s rule, x →0 x →0 x
− cos x cos x 2 sin 2 x / 2 x
λ = lim ⇒ λ = lim = 0. ⇒ lim . = k ⇒ k = 0.
x →π / 2 − 2 x →π / 2 2 2
x →0
x 4
61. (a) Since f (x) is continuous at x = 0, therefore
2
sin π x
lim f (x) = f (0) ⇒ lim =k 70. (a) It is obvious.
x →0 x →0 5x
sinπ x π π π 1
⇒ lim . = k ⇒ (1). = k ⇒ k = . e x − 1
x →0 πx 5 5 5 ,x≠0
71. (d) Given f (x) = 1
62. (d) If f (x) is continuous at x = 0, then e + 1
x
0 ,x = 0
2− x + 4 0
f (0) = lim f (x) = lim , form
x →0 x →0 sin 2 x 0 1
ex −1 e∞ − 1
1 ⇒ lim = = −1
− +
x →0
1
e∞ + 1
2 x+4
Using L–Hospital’s rule, f (0) = lim =−1 . ex +1
x →0 2 cos 2 x 8 1
−
1
1 sin −1 x
⇒ k = [ 4 + 0 + 0 + e −∞ ] −1 ⇒ k =. 2−
4 x 2−1 1
Trick : f (0) = lim = = .
66. (d) By L-Hospital’s rule lim f (x) is 2. Therefore, for f (x) to x →0 tan −1 x 2+1 3
x→0 2+
x
be continuous, the value of function should be 2.
| x|
1 + kx − 1 − kx 74. (c) | x | is continuous at x=0 and is also
67. (c) L.H.L. = lim− =k x
x →0 x
discontinuous at x = 0
R.H.L. = lim+ (2 x 2 + 3 x − 2) = −2 | x|
x →0 ∴ f (x) =| x | + is discontinuous at x = 0 .
Since it is continuous, L.H.L = R.H.L ⇒ k = −2 . x
962 Functions, Limits, Continuity and Differentiability
2 x − 2− x (2 x + 2 − x ) log e 2 1 − cos 4 x
75. (e) f (0) = lim f (x) = lim = lim ,x ≠ 0
x →0 x →0 x x →0
1 79. (b) f (x) = 8 x 2
k ,x = 0
= (20 + 20 ) loge 2
If f (x) is continous function at point x = 0 then
= (1 + 1) loge 2 lim [ f (x) = lim [ f (x)] lim[ f (x)] = lim [ f (0 + h)]
x →0 + x →0 − x →0 h→ 0 −
= 2 loge 2 = loge 4 .
1 − cos 4 h 2 sin 2 2h sin 2 2h
= lim[ f (h)] = lim = lim = lim
h→0 h→0 8h 2 h→0 8h 2 h→0 4 h 2
2x 2 + 7 9x 2 + 7
76. (c) f ( x) = 2 2 2
x (x + 3) − 1(x + 3) (x − 1)(x + 3) sin 2h
= lim = (1)2 = 1
h→ 0 2h
2x 2 + 7
= 1 − cos 4(−h)
(x − 1)(x + 1)(x + 3) lim f (x) = lim[ f (0 − h) = lim[ f (−h)] = lim
x →0 − h→ 0 h→ 0 h→ 0 8(−h)2
Hence points of discontinuity are
1 − cos 4 h
x = 1 , x = −1 and x = −3 only. = lim =1
h→ 0 8h2
1 f (0) = 1 ⇒ k = 1 .
77. (a) f (x) = x p sin , x ≠ 0 and f (x) = 0, x = 0
x
ex ; x ≤ 0
Since at x = 0 , f (x) is a continuous function
80. (b, d) f (x) = 1 − x; 0 < x ≤ 1
1 x − 1 ; x > 1
∴ lim f (x) = f (0) = 0 ⇒ lim x p sin = 0 ⇒ p > 0 .
x →0 x →0 x
f (0 + h) − f (0) 1− h−1
Rf ' (0) = lim = lim = −1
f (x) − f (0) h→ 0 h h→ 0 h
f (x) is differentiable at x = 0 , if lim exists
x →0 x−0 f (0 − h) − f (0) e− h − 1
Lf ' (0) = lim = lim =1
1 h→ 0 −h h→ 0 −h
x p sin −0
⇒ lim x exists So, it is not differentiable at x = 0 .
x →0 x−0 Similarly, it is not differentiable at x = 1 .
1 But it is continous at x = 0 , 1.
⇒ lim x p −1 sin exists
x →0 x
Differentiability
⇒ p − 1 > 0 or p > 1
1. (d) Statement (d) is true, because differentiable function is
1
p −1 always continuous.
If p ≤ 1 , then lim x sin does not exist and at
x →0 x 2. (d) As L f ′ (2) ≠ Rf ′ (2) .
x = 0 f (x) is not differentiable. 3. (b) f (0 + 0) = lim f (x) = lim f (0 + h)
h→0 h→0
∴ for 0 < p ≤ 1 f(x) is a continuous function at x = 0 1 / 0+h
e − e −1 / 0 + h e1 / h − e −1 / h
but not differentiable. = lim (0 + h) = lim h =0
h→0 e1 / 0 + h + e −1 / 0 + h h→ 0 e1 / h + e −1 / h
1− | x | 1 ,x < 0
, x ≠ −1 e −1 / h − e1 / h
78. (d) f (x) = 1 + x and f (x) = 1 − x and f (0 − 0) = lim f (0 − h) = lim − h =0
1 1 + x , x ≥ 0 h→0 e −1 / h + e1 / h
h→0
, x = −1
and f (0) = 0 ; ∴ f (0 + 0) = f (0 − 0) = f (0)
1 , x<0 Hence f is continuous at x = 0.
1 1 At remaining points f (x) is obviously continuous.
, 0≤x<
1 , x<0 2 Thus it is everywhere continuous.
f (2 x) = 1 − [ 2 x] ⇒ f (2 x) = 1 f (0 − h) − f (0)
1 + [ 2 x] , x > 0 0 , ≤ x ≤1
2
Again, L f ′(0) = lim
h→0 −h
1 3
− 3 , 1≤ x < e −1 / h − e1 / h
2 h. −0
= lim e −1 / h + e1 / h = −1
1 h→0 −h
⇒ f (x) , for all values of x where x < a continous
2 e1 / h − e −1 / h
1 h
function and for x = and x =1 f (x) be a f (0 + h) − f (0) e1 / h + e −1 / h = 1
2 R f ′(0) = lim = lim
h→0 h h→0 h
discontinous function.
L f ′(0) ≠ R f ′(0)
∴ f is not differentiable at x = 0 .
Function, Limits , Continuity and Differentiability 963
6. (d) It is obvious. i.e., f (x) is constant function (equal to zero) in [−1, 1].
⇒ f (x) is differentiable in (−1, 1) .
x , 0 ≤ x ≤ 1
7. (a) f (x) =
1 , 1 < x ≤ 2 12. (d) Since | x − 3 | = x − 3, if x ≥ 3 = − x + 3, if x < 3
1 π π
∴ m(b) = , so range of m(b) = (0,1] . − sin x cos x + − cos x sin x +
1 + b2 3 3
y−7 y−7
1/ 2 and lim (1 − x + [ x − 1] + [1 − x])
⇒ x2 = ⇒x= x →1+
3 3
= lim (1 − (1 + h) + [1 + h − 1] + [1 − (1 + h)])
h→0
We know that f (x) = y , then x = f −1 (y)
1/ 2 = lim (−h + [ h] + [ −h]) = lim (−h + 0 − 1) = −1
x −7 h→0 h→0
so ( fog)−1 = .
3 ∴ lim f (x) = −1 .
(c) g[ f (x)] = 8 or g(2 x + 3) = 8
x →1
18.
x (1 + a cos x) − b sin x
⇒ (2 x + 3)2 + 7 = 8 ⇒ 2 x + 3 = ±1 ⇒ x = −1, − 2 . 24. (c) lim =1
x →0 x3
πx x2 x4 x6 x3 x5
19. (c) lim (1 − x) tan . Put 1 − x = y as x → 1, y → 0 x 1 + a 1 − + − + ... − b x − + − ...
x →1 2 ⇒ lim
2! 4! 6! 3! 5!
=1
x →0 x3
πy
b a a b
π (1 − y) 2 2 2 2 (1 + a − b) + x 2 − + x 4 − + ...
Thus lim y tan = lim . = × 1 = . ⇒ lim 3 ! 2 ! 4 ! 5 !
= 1 .....(i)
y →0 2 y →0 π π
y π π 2
tan x →0 x
2 If 1 + a − b ≠ 0, then L.H.S. → ∞ as x → 0 while
(1 + x) − (1 − x) 2 + 3 x + 2 − 3 x R.H.S. =1, therefore 1 + a − b = 0.
20. (b) lim
x →0 (2 + 3 x) − (2 − 3 x) 1 + x + 1 − x b a a b
x 2 − + x 4 − + ...
3 ! 2 ! 4 ! 5 !
Now from (i), lim =1
1 2 2 2 2 1 x →0 x2
= = ,0< < .
3 2 3 3 2 b a
⇒ − = 1 ⇒ b − 3a = 6 . Solving 1+ a−b = 0
Aliter : Apply L-Hospital’s rule, 3! 2 !
and b − 3a = 6, we get a = −5 / 2, b = −3 / 2 .
1 1
+
1+ x − 1− x 2 1+ x 2 1− x 25. (a) Using L-Hospital's rule, we get
lim = lim
x →0 2 + 3x − 2 − 3x x →0 3 3 ax − x a a x log e a − ax a−1
+ − 1 = lim = lim
2 2 + 3x 2 2 − 3x x →a x x − aa x →a x x + a a log e a
1 1 a a log e a − a . a a−1 log e a − 1
+ ⇒ −1 = = .....(i)
2 2 2 2 2
= = = . a a
a + a log e a log e a + 1
3 3 6 3
+
2 2 2 2 Now (i) is satisfied only when a = 1.
26. (b) We have x 1 = 3, x n+1 = 2 + xn
xn x n−1 n! n!
21. (b) lim = lim n = ...... = lim = = 0,
x →∞ ex x →∞ ex x →∞ ex ∞
x 2 = 2 + x1 = 2 + 3 = 5 , x 3 = 2 + x 2 = 2 + 5
where n is any whole number
∴ x1 > x 2 > x 3
( n ! is defined for all positive integers including
zero). It can be easily shown by mathematical induction that
the sequence x 1 , x 2 ,........ x n ,.... is a monotonically
1
1/ 2
decreasing sequence bounded below by 2. So it is
22. (b) Given limit = lim sinnπ 1 + 2
n→ ∞ n convergent. Let lim x n = x. Then
π π ( x n > 0 ∀ n; ∴ x > 0)
= lim sin nπ + − + ....
n→ ∞ 2n 8n 3 x
t2
1 1 x
= lim (−1)n sin π − + .... = 0. ∫π / 2 t . dt 2 π / 2
n→ ∞ 2n 8 n 3
27. (c) y = lim ⇒ y = lim
x →π / 2 sin (2 x − π ) x →π / 2 sin (2 x − π )
23. (c) We have lim (1 − x + [ x − 1] + [1 − x])
x →1− x π 2 2
2 − 8
= lim (1 − (1 − h) + [1 − h − 1] + [1 − (1 − h)]) 1 (4 x 2 − π 2 )
h→0 y = lim ⇒ y = lim
x →π / 2 sin (2 x − π ) x →π / 2 8 sin (2 x − π )
= lim (h + [ −h] + [ h]) = lim (h − 1 + 0) = −1
h→0 h→0
Function, Limits , Continuity and Differentiability 969
1 (2 x − π ) (2 x + π ) x 2 − (sum of roots) x+ (Product of roots) = 0
y = lim
x →π / 2 8 sin (2 x − π )
i.e., x 2 − 17 x + 66 = 0 .
lim (2 x + π )
1 x →π / 2 θ
y= , lim = 1 2x − 1
8 sin (2 x − π ) θ → 0 sinθ 32. (c) f (x) = [ x] cos π
lim 2
x →π / 2 (2 x − π )
Since g(x) = [ x] is always discontinuous at all integral
1 π
y= × 2π = . values of points. Hence f (x) is discontinuous for all
8 4
integral points.
28. (c) y = lim(cos x)cot x
x →0 33. (a) Let f (x) = ln (x), x > 0
Taking log on both sides, f (x) = ln (x) is a continuous function of x for every
⇒ log y = lim cot x log cos x positive value of x.
x →0
x x
f = ln = ln (x)– ln (y)=f(x)– f(y).
log cos x 0 y y
⇒ log y = lim , form
x →0 tan x 0
34. (d) For f (x) to be continuous at x = 0, we should have
Applying L-Hospital’s rule, lim f (x) = f (0) = 12 (log 4) 3
x →0
− tan x
⇒ log y = lim =0 x
x →0 sec 2 x 3
4x −1 p px 2
⇒ y = e0 ⇒ y = 1 . lim f (x) = lim × .
1
x →0 x →0
x x
sin log 1 + x 2
29. (c) n cannot be negative integer for then the p 3
limit = 0
x x2
2 sin 2
e x − cos x 1 e x − cos x = (log 4) . 1 . p . lim
3
2 x →0 1 2 1 4
Limit = lim 2 2 2
= lim x − x + .........
x →0 2 ( x / 2) x n −
2 x →0 x n− 2 3 18
(n ≠ 1 for then the limit = 0) = 3 p (log 4) 3 . Hence p = 4.
1 1 1 1
− + − +
h h h h
(0 + h)e − he
Rf ′ ( x) = lim =0
h→0 h
1 1 1 1
− − − +
h h h h
(0 − h)e − he
L f ′(x) = lim =1
h→0 −h
⇒ L f ′(x) ≠ Rf ′(x) . f (x) is not differentiable at x = 0.
L g′(0) = R g′(0) then g(x) is differentiable at x = 0
1 − tan x 0
37. (c) lim f (x) = lim , form
π π 4x − π 0 1
x→
4
x→
4 Now g(x) = x 2 sin
x
− sec 2 x − 2 − 1 1 1 1
lim = = . g′(x) = 2 x sin + x 2 cos × − 2
x→
π 4 4 2 x x x
4
1 1 1
π π −1 g′(x) = 2 x sin − cos ⇒ g′(x) = 2 f (x) − cos
∴ For f(x) to be continuous at x = , f = x x x
4 4 2
So, g′(x) is not differentiable at x = 0 .
1 2 1
38.
x sin , x ≠ 0
(a,b) f (x) = , g(x) =
x sin , x ≠ 0 39. (a, c) f (x) = max {(1 − x), (1 + x), 2}, ∀ x ∈ (− ∞, ∞).
x x
0 , x=0 0 , x=0
1 + x; x >1
f (0 − h) − f (0) f ( x) = 2; − 1 ≤ x ≤ 1
L f ′(0) = lim 1 − x;
h→0 −h x < −1
1 Since f (x) = 1 − x or 1 + x are polynomial functions
(0 − h) sin (− ) − (0)
h 1 and f (x) = 2 is a constant function.
= lim = lim − sin
h→0 −h h→0 h
∴ These are continuous at all points .....(i)
= a quantity which lies between – 1 and 1
f (0 + h) − f (0)
R f ′(0) = lim
h→0 h
1
(0 + h) sin −0 –1 1
h 1
= lim = lim sin ∴ f (x) is differentiable at all the points, except at
h→0 h h→0 h
= a quantity which lies between – 1 and 1 x = 1 and at x = −1 .....(ii)
Hence L f ′(0) ≠ R f ′(0) 40. (a) We have, f (x) =| x | + | x − 1|
1 − 2, x < 0
L g′(0) = 0 × − 1 ≤ sin ≤ 1 ⇒ L g′(0) = 0
h Now f ' (x) = 0, 0 ≤ x < 1
2, x ≥ 1
1
(0 + h) 2 sin − 0
f (0 + h) − f (0) h Here x = 0, f ' (0 + ) = 0 while f ' (0 − ) = −2
and Rg′(0) = lim = lim
h→0 h h→0 h
and at x = 1, f ' (1+ ) = 2 while f ' (1− ) = 0
1 1
= lim h sin = 0 × − 1 ≤ sin ≤ 1 = 0 Thus, f (x) is not differentiable at x = 0 and 1.
h→0 h h