Algebra 1
Algebra 1
Let          16 ,                 %)       and         (H 0)           ,
                                                                                    be
                                                                                              groups.
 A   homomorphism                                           #   :
                                                                            -H            is      a       function
that              satisfies
                  &            (x
                                       o y)         =
                                                            P(x)ob(y)fx                                    ,
                                                                                                               y
                                                                                                                   +   6
EX   :
              0 (1230  :
                                                ,   x)      >
                                                            -               (1 ,+ )
X - In X
· (xy) =
                                                    (nxy            =       1nx +
                                                                                      my          =       bX   +
                                                                                                                       by
 Let          p            :
                               /6 )     :
                                                    +       (H 0)   ,
                                                                                 be   a
                                                                                               group homomorphism
         Then                          1) $(eb) en              =                                     +
                                       2) P(g))                         =
                                                                                 24(g)3
                                   24(20)3"d(es) = (e)
                                                                            =
              2) b(g)                               =
                                                            P(g)
Proof :                    g
                               .
                                       g"   =
                                                    ex
                                                                                                      P
                                                                                                          (g )             EP(g)3
                                                                                          I
                                                                                                                   =
              P(g g )              :
                                                    =
                                                            p(eb)
              ↓ (g) od                              (g)         =
                                                                            eH
              6LnIIR)                           IR"              EIR(303)
     1)
                                   >
                                   -                        =
                     A-        >
                                                def(A)                        (nonzero)
sign
 2) SneE113                                         ,
                                                            de        sgns
                                                    Sgnd               =
                                                                           sgnW sght
3)        6-H             ,
                                   gees                         Itrivial       homomorphism
4)        6 abelian
                                   ,
                                           6e 6
                              1) If
                                            ge
                                                        6    ,       ordd(g)          =
                                                                                           ord(g)
                              2)       If       K is              a
                                                                      subgroup         of 6 with (k) =
                                       then                 P(K)      is      a
                                                                                     subgroup of H with
                                   P(k)         =       n
                     5)       &"                :
                                                    H -G               is     an
                                                                                     isomorphism
 Direct         product
 If        (A0) and (B )
                ,                                .
                                                            are
                                                                    groups then                   AXB
 is    a
            group under
                     (a   ..   b   .   )   ·
                                                (a2 , bi)     =    La       ,   092    ,   bobe)
                                                                  (2a2b)                    [1]phasorar
                                                          =
                                                               (02      ,       02)
Groups of order 6
Theorem
            Let6          be                                                    with       elements
                                       a
                                                cyclic group                           n
            then                                                                 to In 2
                               G is                  isomorphic
                (bE2(n2)
                     [an]              -ga
          ↑:    is    well                 defined
= a -b = K forsore KEY
                     ga-bne
                                  ga        gb sop([a]n)                                   P([b]n)
                                                                                       =
                                       =
↓ is surjective :
                                  y
                                       =
                                           gm
                                   y   =    q(cm)n)
      since          (z/n21                         =
                                                        16)   =   n c      +   10
                                   ↓       is
                                                injective
isomorphism :
                                                +   b
      P[a + b(n
                     P
                                  =
                                  is
                                       ga               =
                                                            gag"   =
                                                                        P([a]n)P([b]n)
           so                                   an
                                                              isomorphism
      Chinese                        Remainder Theores
 Proof          :
                     Suppose that                           g(d(m n)    ,        /
                                                                                 >
                     Then                km (min)                                        is
                                                              m n
                                                              =                  ,
(On 0x),
 Ff                                          1
           gcd(m                 n)      =
        Cyclic groups
·
                                                     won't have
        symmetric groupe                                                           any questions
    ·
            -
                 encledean
                  cycli groups
        -
                 lagrange
                                     -
                                             applications
        -
        If p is          a
                             prime           and
                                                             p   =    3mod 4
s   t
 solution                                            3   +   4k           4-       IN
                                         p
                                             =
                                                                      ,
                                  that           X- =            -1modp
                  Suppose
                  If p       divices         X       then        X2
                                                 ,                    =    0 modp
                  Then       p    does not divide                          X
                Since        is                                  (x ,p)            1
                         p        prive ,             g(d                      =
                           *"
Hence        FLT                           1
        by
                                       =
                   ,   X
                           p
                               -   1
                                               modp
                   (x2)                    =   1
                                                   modp
Since                  - Elmodp
        +N
                               pl
                                       + 2
                       (   -
                                               =    /
    +2
                                                        modp
=
                       -
1 = /mudp
                               2           =
                                               omodp
    Contradiction      since                   P33
  Homomorphism
                                  :
   Let       6   andH             be
                                groups .                   A        homomorphism                            is    a
                       #n     (g 92)      ..
                                                     =
                                                         (g gzN)
                                                               ,                    (gzN)           =
                                                                                                        in (g )N(g2)
                                                                                                                  ,
Ex :     N   = e0396                      .
                                                   6/N     =
Eges] ge 63 ,
                                                           =
                                                                   5593 ge 63        ,
                                               61e3        = C                           Since
                                                                                                        #
                                                                                                             =   10   50
- 61ze0
                                                   g - Eg3
                                                                        =
                                                                            g5203
         what about           :
                                                616 =          213
                                                 6     -           616
                                                g
                                                     +
                                                                   g6
                                                                                =
                                                                                    e66         =
                                                                                                        6
     Kernel
Defi
     Let       6    :
                            6-I          be    a
                                                    homomorphism
  The         Kernel             knd           E      6
                                                         b(g) en3
                                                                :
                                          =                                      =
                                                       =
                                                   g
 Ex      :    det       GLn(IR)          >
                                         -      IR"    =
                                                            IRIS03
         Kn det             =2       At       GLn(IR)          :
                                                                    det A        =
                                                                                         13
Ex   :
             sgn
                        ·
Sn-5113
             knsgn
                            =
                                 EdeSn             :
                                                       Sgn(0) 13            =            :
                                                                                             An
EX   :        6+        6/N                   (Nab)
              ge gN                  knTn          =
                                                       Egt6
                                                                        :
                                                                                gN       =
                                                                                             N3   =
                                                                                                      N
 Properties                 Kernel of              a
                                                       group of homomorphism ?
     Prop          Let          66   ·
                                         6-                be       a
                                                                        group homomorphism
                   Then          Ker     -6
 ProofKerTed(eb)                                           =
                                                               e
Hence P(xy) =
                                               q(x)d(y)                 =
                                                                            en
                                                                                     -
                                                                                         +
                                                                                             H    =
                                                                                                      2H
             Hence
                            Xye          Kerd
3)    x =   kerd        .
                             P(x-)          =   P(x)"   =
                                                            en"    =
                                                                       en
so t Kerd
We
      prove         that     Kerd      is       normal      in C
Let
      geG       and         Xe   Kerd
↓ (gxg )                b(g)P(x)P(g)
            -
                    =
= (g) e + P(g ) +
                =
                        d(g)d(g)
                =
                        d(gg")
                =       d(es)
                =
                        CH
 Hence
                gxg"         >
                             -
                                 Ker
 Hence          Kerd16
Prop   If             :       Get              is   a
                                                             group of                  homomorphism
       Then               o    is             C Kerd
                                        injective
                                                                                            =
                                                                                                 Eec3
&of    Assume                 o    is
                                            injective .              We show             Kerd         =
                                                                                                          Se03
       ext Kerb                            ples)
                                        since                         =
                                                                              en
       If    Xt       Kerd          ,
                                         Hence       &(x)            =
                                                                              CH   =
                                                                                       P(es)
       since              o   is        injective             X      =
                                                                          ec
       Hence                  Kerd            =
                                                  Ees3
# suppose Kerd                            =
                                              Eeu3 We'll .
                                                                       show             o   is
                                                                                                 injective
       let                         G          be    such              that
              x   ,
                          y
                                  d(x)
                                    d(y)      =
                              d(x)(d(y)) "                            =
                                                                              eH
                              P(x)d(y                    1)           em
                                                     -
                               d(xy -)               =       e
                                                                 +
                                  xy          =    kerp           =
                                                                          Ee63
        so
                  xy                    ep          so                         Hence        o    is
                                                                                                      injective
                                                                     y
                                   =                          x=          .
 The first           Isomorphism                      Theorem
                                  groups                                                   a
                                                                                               group
 homomorphism
        Then
                          6/erd           =       $(6)
Proof   :
                Define Gard       :
                                                          >
                                                          -    &(6)
                                          gkerd           >
                                                          -
                                                                   P(g)
#
well-defined
        is
 Suppose             g Kerd
                      ,
                                      =
                                          gz Kerd
            >
            -        gz"g     ,
                                   t       kerd
           =>        d(gz" g)                 =
                                                  et
        >            ↓(gz")f(g                        )       en
        -
                                                          =
                                                  .
    =>              P(g ) .
                              =
                                      P(qz)
⑦     is        a
                    homomorphism
↑ (g Kerd) (gzkerd) = (g
            ,
                                                                       .
                                                                               g2      kerd)
                                                      =
                                                           p (g 92)            ,
                                                  =
                                                              p(g ) +(2)   .
                                        =   e
                                                +
           =         P(g)       =
                                    en
          >
          -
                        ge Kard
          E           gkerd         =
                                        kerd
Ker =
                            Ekerd3                  =
                                                        es/kerd
    so   ot     is
                      injective
↑   is     surjective
         let
              ye
                   $(6)             ,   then y          =
                                                            &(x)
         for   some    X+   6       and         hence
           ↑ (xkerd)            =
                                        b(x) y      =