EEC 116 Lecture #4:
CMOS Inverter AC
  Characteristics
   Rajeevan Amirtharajah
University of California, Davis
        Jeff Parkhurst
      Intel Corporation
                               Acknowledgments
  • Slides due to Rajit Manohar from ECE 547
    Advanced VLSI Design at Cornell University
Amirtharajah/Parkhurst, EEC 116 Fall 2011        2
                                 Announcements
  • Lab 2 this week, report due next week
  • Quiz 1 on Monday!
Amirtharajah/Parkhurst, EEC 116 Fall 2011        3
                                            Outline
    • Review: CMOS Inverter Transfer Characteristics
    • Finish Lecture 3 slides
    • CMOS Inverters: Rabaey 5.4-5.5 (Kang &
      Leblebici, 6.1-6.4, 6.7)
Amirtharajah/Parkhurst, EEC 116 Fall 2011              4
           CMOS Inverter VTC: Device Operation
         P linear                                         P cutoff
         N cutoff                                         N linear
                                    P linear
                                     N sat      P sat
                                                N sat
                                                P sat
                                               N linear
Amirtharajah/Parkhurst, EEC 116 Fall 2011                            5
                              Logic Circuit Delay
   • For CMOS (or almost all logic circuit families), only
     one fundamental equation necessary to determine
     delay:
                                             dV
                                        I =C
                                             dt
                                             ΔV
   • Consider the discretized version:  I =C
                                             Δt
                                          ΔV
   • Rewrite to solve for delay:   Δt = C
                                           I
   • Only three ways to make faster logic: C, ΔV, I
Amirtharajah/Parkhurst, EEC 116 Fall 2011                    6
                    CMOS Inverter Capacitances
                                Vdd                     • Assume input
                   Cgs,p Csb,p                            transition is fixed,
                                                          then delay
                                                          determined by
                                                          output
                   Cgd,p Cdb,p
                                                        Capacitance on
Vin                                          f           node f (output):
                   Cgd,n Cdb,n              Cint
                                                   Cg
                                                        • Junction cap
                                                           Cdb,p and Cdb,n
                                                        • Gate capacitance
                                                           Cgd,p and Cgd,n
                    Cgs,n Csb,n                         • Interconnect cap
                           Gnd                          • Receiver gate cap
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                        7
           CMOS Inverter Junction Capacitances
    • Junction capacitances Cdb,p and Cdb,n:
         – Equation for junction cap:
                                                                            m
                        AC j 0                        ⎛ εq N a N d 1 ⎞
    C j (V ) =                        ,     C j0   = ⎜⎜                ⎟⎟
                                                      ⎝ 2 N a + N d φ0 ⎠
                                  m
                   ⎛ V⎞
                   ⎜⎜ 1 − ⎟⎟
                    ⎝ φ0 ⎠
         – Non-linear, depends on voltage across junction
         – Use Keq factor to get equivalent capacitance for a
           voltage transition
                        Cdb = AK eq C j + PK eqswC jsw
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                       8
               CMOS Inverter Gate Capacitances
    • Gate capacitances CGD,p and CGD,n:
          – Just after the input switches(t = 0+), what regions
            are transistors in?
          – One is in cutoff: CGD = Overlap Cap
          – One is in Saturation: CGD = Overlap Cap
          – Therefore, gate-to-drain capacitance is due to
            overlap capacitance :
                        C gd , p = C gd ,n = CoxWLD
            However, also need to consider Miller effect ...
Amirtharajah/Parkhurst, EEC 116 Fall 2011                         9
       CMOS Inverter Capacitances: Miller Effect
                 Cgd1
                                                             Vout
                                    Vout
       Vin                                   Vin                 2Cgd1
  • When input rises by ΔV, output falls by ΔV
       – Change in stored charge: ΔQ = Cgd1ΔV – (-Cgd1ΔV)
       – Effective voltage change across Cgd1 is 2ΔV
       – Effective capacitance to ground is twice Cgd1
  • Including Miller effect:
        C gd , p = C gd ,n = 2CoxWLD        (For transistor in Cutoff)
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                10
          CMOS Inverter Capacitances: Receiver
    • Receiver gate capacitance
          – Includes all capacitances of gate(s) connected to
            output node
          – Unknown region of operation for receiver
            transistor: total gate cap varies from (2/3)WLCox to
            WLCox
          – Ignore Miller effect (taken into account on output)
          – Assume worst-case value, include overlap
                    C g = WLeff Cox + 2WLD Cox
                                  Cg = WL Cox
Amirtharajah/Parkhurst, EEC 116 Fall 2011                          11
                 Inverter Capacitances: Analysis
    • Simplify the circuit: combine all capacitances at
      output into one lumped linear capacitance:
        Cload = 2*Cgd,n + 2*Cgd,p + Cdb,n + Cdb,p + Cint
        + Cg
                             Miller effect
    • Csb,n = Csb,p = 0
    • Cgs,n and Cgs,p are not connected to the load.
      These are part of the gate capacitance Cg
Amirtharajah/Parkhurst, EEC 116 Fall 2011                  12
                        First-Order Inverter Delay
 • Suppose ideal voltage step at input
 • Assume: Current charging or
   discharging capacitance Cload is
   nearly constant Iavg                              Vout
                                            Vin
 • tPHL = Cload (Vdd - Vdd/2) / Iavg                  Cload
 • tPLH = Cload (Vdd/2 - Vss) / Iavg
Amirtharajah/Parkhurst, EEC 116 Fall 2011                   13
                           Inverter Delay: Falling
                                            ID.n         Cload
                       Vin
    • Assume PMOS fully off (ideal step input, ID,p = 0)
             dV
        I =C
             dt
                              dVout
        I D ,n = Cload                             Need to determine ID,n
                               dt
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                   14
                           Inverter Delay: Falling
                                        NMOS in saturation
     Vdd
Vdd - Vtn                                   NMOS in linear region
     Vdd/2
                         t0 t1 t2
    • From t0 to t1: NMOS in saturation
    • From t1 to t2: NMOS in linear region
    • Find ID in each region
Amirtharajah/Parkhurst, EEC 116 Fall 2011                           15
                       Inverter Delay: Falling t1-t0
   • Assumption: Input fast enough to go through
     transition before output voltage changes
   • Vout drops from VOH to VDD-VTN (NMOS saturated)
        I DS = kn (Vin − VT 0,n ) / 2 = kn (VOH − VT 0,n ) / 2
                                            2                         2
                                                VOH −VT 0 , n
                      − 2CL
        t1
        ∫t dt = kn (VOH − VT 0,n )2                  ∫ dV
                                                    VOH
                                                                out
          0
                       2CLVT 0,n
        t1 − t0 =
                  kn (VOH − VT 0,n )2
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                 16
                       Inverter Delay: Falling t2-t1
    • Vout drops from (VOH-VT0,n) to VDD/2
    • NMOS in linear region
              [
I DS = kn (VOH − VT 0,n )Vout − 12 Vout
                                     2
                                                    ]
                     (VOH +VOL ) / 2
                                                  dVout
t2 − t1 = −CL               ∫
                       VOH −VT 0 ,n
                                         [
                                       kn (VOH − VT 0,n )Vout − 12 Vout
                                                                     2
                                                                          ]
                CL            ⎡ 2(VOH − VT 0,n ) − (VOH + VOL ) / 2 ⎤
t2 − t1 =                   ln⎢                                     ⎥
          kn (VOH − VT 0,n ) ⎣          (VOH + VOL ) / 2            ⎦
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                     17
                     Inverter Delay: Falling, Total
    • Total fall delay = (t1-t0) + (t2-t1)
                 CL           ⎡ 2VT 0,n          ⎛ 4(VOH − VT 0,n ) ⎞⎤
t PHL   =                     ⎢             + ln⎜⎜                 − 1⎟⎟⎥
          k n (VOH − VT 0,n ) ⎣VOH − VT 0,n      ⎝ VOH + VOL           ⎠⎦
Amirtharajah/Parkhurst, EEC 116 Fall 2011                             18
                              Inverter Delay: Rising
  • Similar calculation as for falling delay
  • Separate into regions where PMOS is in linear,
    saturation
                       CL              ⎡      2 VT 0, p          ⎛ 4(VOH − VOL − VT 0, p ) ⎞⎤
t PLH =                                 ⎢                    + ln⎜                        − 1⎟⎥
          k p (VOH   − VOL − VT 0, p ) ⎣⎢VOH − VOL − VT 0, p     ⎜      V   + V              ⎟⎥
                                                                 ⎝       OH    OL            ⎠⎦
  • Note: to balance rise and fall delays (assuming VOH =
    VDD, VOL = 0V, and VT0,n=VT0,p) requires
                                                    ⎛W ⎞
                               kp                   ⎜ ⎟
                                                    ⎝ L ⎠ p μn
                                     =1             ⎛W ⎞
                                                           =
                                                             μp
                                                                ≈ 2.5
                               kn                   ⎜ ⎟
                                                    ⎝ L ⎠n
 Amirtharajah/Parkhurst, EEC 116 Fall 2011                                                 19
                         Inverter Rise, Fall Times
• Summary -- Exact method: separate into two regions
     – t1
         • Vout drops from 0.9VDD to VDD-VT,n (NMOS in
           saturation)
         • Vout rises from 0.1VDD to |VT,p| (PMOS in saturation)
     – t2
         • Vout drops from VDD-VT,n to 0.1VDD (NMOS in linear
           region)
         • Vout rises from |VT,p| to 0.9 VDD (PMOS in linear
           region)
     – tf,r = t1 + t2
Amirtharajah/Parkhurst, EEC 116 Fall 2011                          20
                            CMOS Inverter Delay
 • Review of approximate
   method
       – Assume a constant average                                I1
                                                   V1=Vdd
         current for the transition
       – Iavg = average of drain     V2=½Vdd                           I2
         current at beginning and end
         of transition
                                                                  t1 t2
            t PHL   =
                      Cload
                            (VDD − 12 VDD )
                      I avg                                 Iavg = ½(I1+I2)
            t PLH   =
                      Cload
                                ( 12 VDD − VSS )
                      I avg
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                     21
        CMOS Inverter Delay: 2nd Approximation
 • Another approximate
   method:
    – Again assume constant Iavg
    – Iavg = current I1 at start of                          I1
                                                 V1=Vdd
      transition
                           CloadVDD
            t PHL   =                           V2=½Vdd
                      k n (VDD − VTn )
                                      2
                             CloadVDD
            t PLH =
                       k p (VDD − VTP       )
                                            2                t1 t2
       – Why is this a good                               Iavg = I1
         approximation (esp. for deep
         submicron)?
Amirtharajah/Parkhurst, EEC 116 Fall 2011                             22
       CMOS Inverter Delay: Finite Input Transitions
           • What if input has finite rise/fall time?
              – Both transistors are on for some amount of time
              – Capacitor charge/discharge current is reduced
                                                Empirical equations:
                                                                                        2
                                                                               ⎛ tr ⎞
tpHL(ns)
                                            t phl (actual ) = t phl ( step ) + ⎜ ⎟
                                                                2
                                                                               ⎝2⎠
                                                                                        2
                                                                            ⎛tf ⎞
                                            t plh (actual ) = t ( step ) + ⎜⎜ ⎟⎟
                                                                  2
                                                                  plh
                                                                            ⎝2⎠
                        trise(ns)
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                               23
                          How to Improve Delay?
    • Minimize load capacitances
          – Small interconnect capacitance
          – Small Cg of next stage
    • Raise supply voltage
          – Increases current faster than increased swing ΔV
    • Increase transistor gain factor
          – Increase transistor drive current for
            charging/discharging output capacitance
    • Use low threshold voltage devices
          – More subthreshold leakage power dissipation
Amirtharajah/Parkhurst, EEC 116 Fall 2011                      24
                      Inverter Power Consumption
    • Static power consumption (ideal) = 0
          – Actually DIBL (Drain-Induced Barrier Lowering),
            gate leakage, junction leakage are still present
    • Dynamic power consumption
                                                  T
                                             1
                                     Pavg   = ∫ v(t )i(t )dt
                                             T0
                      1⎡        ⎛         dVout ⎞                    ⎛       dVout ⎞ ⎤
                        T /2                          T
              Pavg   = ⎢ ∫ Vout ⎜ − Cload       ⎟dt + ∫ (VDD − Vout )⎜ Cload       ⎟dt ⎥
                      T⎣0       ⎝          dt   ⎠    T /2            ⎝        dt   ⎠ ⎦
                         ⎡                  T /2                                T ⎤
                       1 ⎢⎛          Vout ⎞
                                           ⎟ + ⎛⎜VDDVout Cload − CloadVout 2 ⎞⎟ ⎥
                                         2
                                                                1
              Pavg   =     ⎜ − Cload
                       T ⎢⎜⎝          2 ⎟⎠       ⎝              2             ⎠ T /2 ⎥
                         ⎣                  0                                        ⎦
                               1
                     Pavg     = CloadVDD = CloadVDD f
                                      2          2
                               T
Amirtharajah/Parkhurst, EEC 116 Fall 2011                                                  25
     Next Time: Combinational Logic and Layout
• Combinational MOS Logic
    – DC Characteristics, Equivalent Inverter method
    – AC Characteristics, Switch Model
• Combinational Logic Layout
Amirtharajah/Parkhurst, EEC 116 Fall 2011              26