0% found this document useful (0 votes)
46 views9 pages

Gas-to-Liquids Process Overview

Uploaded by

ngghddfghgb
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
46 views9 pages

Gas-to-Liquids Process Overview

Uploaded by

ngghddfghgb
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

‫الغاز إلى سوائل‬

‫هي عملية تكرير لتحويل الغاز الطبيعي أو الهيدروكربونات الغازية األخرى إلى ) ‪ ( GTL‬تحويل الغاز إلى سوائل‬
‫هيدروكربونات ذات سلسلة أطول‪ ،‬مثل البنزين أو وقود الديزل ‪ .‬يتم تحويل الغازات الغنية بالميثان إلى وقود صناعي سائل ‪.‬‬
‫توجد استراتيجيتان عامتان‪( :‬أ) االحتراق الجزئي المباشر للميثان إلى ميثانول و (ب) عمليات شبيهة بفيشر تروبش التي‬
‫تحول أول أكسيد الكربون والهيدروجين إلى هيدروكربونات‪ .‬تتبع االستراتيجية الثانية طرًق ا متنوعة لتحويل مخاليط‬
‫الهيدروجين وأول أكسيد الكربون إلى سوائل‪ .‬تم إثبات االحتراق الجزئي المباشر في الطبيعة ولكن لم يتم تكراره تجارًي ا‪ .‬تم‬
‫] ‪. [ 1 ] [ 2‬تسويق التقنيات التي تعتمد على االحتراق الجزئي بشكل أساسي في المناطق حيث يكون الغاز الطبيعي غير مكلف‬

‫‪.‬يتم استخدام ناقالت الغاز الطبيعي المسال لنقل غاز الميثان‬

‫إن الدافع وراء تحويل الغاز إلى سوائل هو إنتاج الوقود السائل‪ ،‬والذي يتم نقله بسهولة أكبر من الميثان‪ .‬يجب تبريد الميثان‬
‫إلى ما دون درجة حرارته الحرجة ‪ 82.3-‬درجة مئوية حتى يتم تسييله تحت الضغط‪ .‬وبسبب جهاز التبريد المصاحب‪،‬‬
‫ُت ستخدم ناقالت الغاز الطبيعي المسال للنقل‪ .‬الميثانول هو سائل قابل لالشتعال سهل التعامل معه‪ ،‬لكن كثافة طاقته تعادل‬
‫] ‪. [ 3‬نصف كثافة البنزين‬

‫عملية فيشر‪-‬تروبش‬

‫عملية تحويل الغاز إلى سوائل باستخدام طريقة فيشر تروبش‬

‫يمكن إنشاء عملية تحويل الغاز إلى سوائل من خالل عملية فيشر‪-‬تروبش التي تتألف من عدة تفاعالت كيميائية تعمل على‬
‫إلى هيدروكربونات طويلة السلسلة‪ .‬تكون هذه ) ‪ (H‬والهيدروجين )‪ (CO‬تحويل خليط من أول أكسيد الكربون‬
‫‪2‬‬
‫( الهيدروكربونات عادة سائلة أو شبه سائلة ولها الصيغة المثالية‬C n H n ).
2 +2

In order to obtain the mixture of CO and H2 required for the Fischer–Tropsch process, methane
(main component of natural gas) may be subjected to partial oxidation which yields a raw
synthesis gas mixture of mostly carbon dioxide, carbon monoxide, hydrogen gas (and
sometimes water and nitrogen).[4] The ratio of carbon monoxide to hydrogen in the raw synthesis
gas mixture can be adjusted e.g. using the water gas shift reaction. Removing impurities,
particularly nitrogen, carbon dioxide and water, from the raw synthesis gas mixture yields pure
synthesis gas (syngas).

The pure syngas is routed into the Fischer–Tropsch process, where the syngas reacts over an
iron or cobalt catalyst to produce synthetic hydrocarbons, including alcohols.

Methane to methanol process

Methanol is made from methane (natural gas) in a series of three reactions:

Steam reforming
CH4 + H2O → CO + 3 H2 ΔrH = +206 kJ mol−1
Water shift reaction
CO + H2O → CO2 + H2 ΔrH = -41 kJ mol−1
Synthesis
2 H2 + CO → CH3OH ΔrH = -92 kJ mol−1

The methanol thus formed may be converted to gasoline by the Mobil process and methanol-to-
olefins.

Methanol to gasoline (MTG) and methanol to olefins

In the early 1970s, Mobil developed an alternative procedure in which natural gas is converted to
syngas, and then methanol. The methanol reacts in the presence of a zeolite catalyst to form
alkanes. In terms of mechanism, methanol is partially dehydrated to give dimethyl ether:

2 CH3OH → CH3OCH3 + H2O

The mixture of dimethyl ether and methanol is then further dehydrated over a zeolite catalyst
such as ZSM-5, which in practice is polymerized and hydrogenated to give a gasoline with
hydrocarbons of five or more carbon atoms making up 80% of the fuel by weight. The Mobil MTG
process is practiced from coal-derived methanol in China by JAMG. A more modern
implementation of MTG is the Topsøe improved gasoline synthesis (TiGAS).[5]

Methanol can be converted to olefins using zeolite and SAPO-based heterogeneous catalysts.
Depending on the catalyst pore size, this process can afford either C2 or C3 products, which are
important monomers.[6][7]

Syngas to gasoline plus process (STG+)

The STG+ Process

A third gas-to-liquids process builds on the MTG technology by converting natural gas-derived
syngas into drop-in gasoline and jet fuel via a thermochemical single-loop process.[8]

The STG+ process follows four principal steps in one continuous process loop. This process
consists of four fixed bed reactors in series in which a syngas is converted to synthetic fuels.
The steps for producing high-octane synthetic gasoline are as follows:[9]

1. Methanol Synthesis: Syngas is fed to Reactor 1, the first of four reactors, which converts
most of the syngas (CO and H2) to methanol (CH3OH) when passing through the catalyst
bed.

2. Dimethyl Ether (DME) Synthesis: The methanol-rich gas from Reactor 1 is next fed to
Reactor 2, the second STG+ reactor. The methanol is exposed to a catalyst and much of it is
converted to DME, which involves a dehydration from methanol to form DME (CH3OCH3).

3. Gasoline synthesis: The Reactor 2 product gas is next fed to Reactor 3, the third reactor
containing the catalyst for conversion of DME to hydrocarbons including paraffins (alkanes),
aromatics, naphthenes (cycloalkanes) and small amounts of olefins (alkenes), mostly from
C6 (number of carbon atoms in the hydrocarbon molecule) to C10.

4. Gasoline Treatment: The fourth reactor provides transalkylation and hydrogenation


treatment to the products coming from Reactor 3. The treatment reduces durene
(tetramethylbenzene)/isodurene and trimethylbenzene components that have high freezing
points and must be minimized in gasoline. As a result, the synthetic gasoline product has
high octane and desirable viscometric properties.

5. Separator: Finally, the mixture from Reactor 4 is condensed to obtain gasoline. The non-
condensed gas and gasoline are separated in a conventional condenser/separator. Most of
the non-condensed gas from the product separator becomes recycled gas and is sent back
to the feed stream to Reactor 1, leaving the synthetic gasoline product composed of
paraffins, aromatics and naphthenes.
Biological gas-to-liquids (Bio-GTL)

With methane as the predominant target for GTL, much attention has focused on the three
enzymes that process methane. These enzymes support the existence of methanotrophs,
microorganisms that metabolize methane as their only source of carbon and energy. Aerobic
methanotrophs harbor enzymes that oxygenate methane to methanol. The relevant enzymes are
methane monooxygenases, which are found both in soluble and particulate (i.e. membrane-
bound) varieties. They catalyze the oxygenation according to the following stoichiometry:

CH4 + O2 + NADPH + H+ → CH3OH + H2O + NAD+

Anaerobic methanotrophs rely on the bioconversion of methane using the enzymes called
methyl-coenzyme M reductases. These organisms effect reverse methanogenesis. Strenuous
efforts have been made to elucidate the mechanisms of these methane-converting enzymes,
which would enable their catalysis to be replicated in vitro.[10]

Biodiesel can be made from CO2 using the microbes Moorella thermoacetica and Yarrowia
lipolytica. This process is known as biological gas-to-liquids.[11]

Commercial uses

INFRA M100 GTL Plant

Using gas-to-liquids processes, refineries can convert some of their gaseous waste products
(flare gas) into valuable fuel oils, which can be sold as is or blended only with diesel fuel. The
World Bank estimates that over 150 billion cubic metres (5.3 × 1012 cu ft) of natural gas are flared
or vented annually, an amount worth approximately $30.6 billion, equivalent to 25% of the United
States' gas consumption or 30% of the European Union's annual gas consumption,[12] a resource
that could be useful using GTL. Gas-to-liquids processes may also be used for the economic
extraction of gas deposits in locations where it is not economical to build a pipeline. This
process will be increasingly significant as crude oil resources are depleted.

Royal Dutch Shell produces a diesel from natural gas in a factory in Bintulu, Malaysia. Another
Shell GTL facility is the Pearl GTL plant in Qatar, the world's largest GTL facility.[13][14] Sasol has
recently built the Oryx GTL facility in Ras Laffan Industrial City, Qatar and together with
Uzbekneftegaz and Petronas builds the Uzbekistan GTL plant.[15][16][17] Chevron Corporation, in a
joint venture with the Nigerian National Petroleum Corporation is commissioning the Escravos
GTL in Nigeria, which uses Sasol technology. PetroSA, South Africa's national oil company, owns
and operates a 22,000 barrels/day (capacity) GTL plant in Mossel Bay, using Sasol GTL
technology.[18]

Aspirational and emerging ventures

New generation of GTL technology is being pursued for the conversion of unconventional,
remote and problem gas into valuable liquid fuels.[19][20] GTL plants based on innovative Fischer–
Tropsch catalysts have been built by INFRA Technology. Other mainly U.S. companies include
Velocys, ENVIA Energy, Waste Management, NRG Energy, ThyssenKrupp Industrial Solutions,
Liberty GTL, Petrobras,[21] Greenway Innovative Energy,[22] Primus Green Energy,[23] Compact
GTL,[24] and Petronas.[25] Several of these processes have proven themselves with demonstration
flights using their jet fuels.[26][27]

Another proposed solution to stranded gas involves use of novel FPSO for offshore conversion
of gas to liquids such as methanol, diesel, petrol, synthetic crude, and naphtha.[28]

Economics of GTL

GTL using natural gas is more economical when there is wide gap between the prevailing natural
gas price and crude oil price on a Barrel of oil equivalent (BOE) basis. A coefficient of 0.1724
results in full oil parity.[29] GTL is a mechanism to bring down the diesel/gasoline/crude oil
international prices at par with the natural gas price in an expanding global natural gas
production at cheaper than crude oil price. When natural gas is converted in to GTL, the liquid
products are easier to export at cheaper price rather than converting in to LNG and further
conversion to liquid products in an importing country.[30][31]

However, GTL fuels are much more expensive to produce than conventional fuels.[32]

See also

Biomass to liquid
Carbon-neutral fuel

Coal to liquid

Bibliography

Boogaard, P. J., Carrillo, J. C., Roberts, L. G., & Whale, G. F. (2017) Toxicological and
ecotoxicological properties of gas-to-liquid (GTL) products (https://www.tandfonline.com/doi/
pdf/10.1080/10408444.2016.1214676) . 1. Mammalian toxicology. Critical reviews in
toxicology, 47(2), 121-144.

References

1. Höök, Mikael; Fantazzini, Dean; Angelantoni, André; Snowden, Simon (2013). "Hydrocarbon
liquefaction: viability as a peak oil mitigation strategy" (http://uu.diva-portal.org/smash/rec
ord.jsf?pid=diva2:670680) . Philosophical Transactions of the Royal Society A. 372 (2006):
20120319. Bibcode:2013RSPTA.37220319H (https://ui.adsabs.harvard.edu/abs/2013RSPT
A.37220319H) . doi:10.1098/rsta.2012.0319 (https://doi.org/10.1098%2Frsta.2012.031
9) . PMID 24298075 (https://pubmed.ncbi.nlm.nih.gov/24298075) . Retrieved
2009-06-03.

2. Kaneko, Takao; Derbyshire, Frank; Makino, Eiichiro; Gray, David; Tamura, Masaaki (2001).
"Coal Liquefaction". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
doi:10.1002/14356007.a07_197 (https://doi.org/10.1002%2F14356007.a07_197) .
ISBN 978-3-527-30673-2.

3. "Alternative Fuels Data Center: Fuel Properties Comparison" (https://www.afdc.energy.gov/f


uels/fuel_properties.php) .

4. "Gas POX - Natural Gas Partial Oxidation" (https://www.engineering-airliquide.com/gas-pox-


natural-gas-partial-oxidation) . Air Liquide. 2016-03-18. Retrieved 2021-02-18.

5. Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T. V. W.; Joensen, F.; Bordiga, S.;
Lillerud, K. P. (2012). "Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and
Pore Size Controls Product Selectivity". Angew. Chem. Int. Ed. 51 (24): 5810–5831.
doi:10.1002/anie.201103657 (https://doi.org/10.1002%2Fanie.201103657) .
hdl:2318/122770 (https://hdl.handle.net/2318%2F122770) . PMID 22511469 (https://pub
med.ncbi.nlm.nih.gov/22511469) . S2CID 26585752 (https://api.semanticscholar.org/Corp
usID:26585752) .

6. Tian, P.; Wei, Y.; Ye, M.; Liu, Z. (2015). "Methanol to Olefins (MTO): From Fundamentals to
Commercialization" (https://doi.org/10.1021%2Facscatal.5b00007) . ACS Catal. 5 (3):
1922–1938. doi:10.1021/acscatal.5b00007 (https://doi.org/10.1021%2Facscatal.5b0000
7) .
7. Ismaël Amghizar; Laurien A. Vandewalle; Kevin M. Van Geem; Guy B. Marin (2017). "New
Trends in Olefin Production" (https://doi.org/10.1016%2FJ.ENG.2017.02.006) . Engineering.
3 (2): 171–178. doi:10.1016/J.ENG.2017.02.006 (https://doi.org/10.1016%2FJ.ENG.2017.0
2.006) .

8. LaMonica, Martin. Natural Gas Tapped as Bridge to Biofuels (http://www.technologyreview.


com/view/428356/natural-gas-tapped-as-bridge-to-biofuels/) MIT Technology Review, 27
June 2012. Retrieved: 7 March 2013.

9. Introduction to Primus' STG+ Technology (http://www.primusge.com/press-room/white-pap


ers/) Archived (https://archive.today/20130411161606/http://www.primusge.com/press-r
oom/white-papers/) 2013-04-11 at archive.today Primus Green Energy, undated. Retrieved:
5 March 2013.

10. Lawton, T. J.; Rosenzweig, A. C. (2016). "Biocatalysts for methane conversion: big progress
on breaking a small substrate" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC516162
0) . Curr. Opin. Chem. Biol. 35: 142–149. doi:10.1016/j.cbpa.2016.10.001 (https://doi.org/1
0.1016%2Fj.cbpa.2016.10.001) . PMC 5161620 (https://www.ncbi.nlm.nih.gov/pmc/article
s/PMC5161620) . PMID 27768948 (https://pubmed.ncbi.nlm.nih.gov/27768948) .

11. Microbes paired for biological gas-to-liquids (Bio-GTL) process (http://www.pnas.org/conte


nt/113/14/3717.full)

12. World Bank, GGFR Partners Unlock Value of Wasted Gas" (http://go.worldbank.org/ESORQZ
PSJ0) Archived (https://web.archive.org/web/20170709180320/http://go.worldbank.org/
esorqzpsj0) 2017-07-09 at the Wayback Machine, World Bank 14 December 2009.
Retrieved 17 March 2010.

13. "Pearl Gas-to-Liquids Plant, Ras Laffan, Qatar" (http://www.chemicals-technology.com/proje


cts/pearl-gtl/) . Retrieved 2009-06-22.

14. Gold, Russell (4 April 2012). "Shell Weighs Natural Gas-to-Diesel Processing Facility for
Louisiana" (https://www.wsj.com/articles/SB100014240527023040720045773237708560
80102) . Wall Street Journal. Retrieved 2012-05-05.

15. "Petronas signs Uzbek GTL pact" (http://www.upstreamonline.com/live/article175457.ec


e) . Upstream Online. NHST Media Group. 2009-04-08. Retrieved 2009-07-18.

16. "Malaysia's Petronas in Uzbekistan oil-production deal" (https://archive.today/20130201144


832/http://uk.reuters.com/article/idUKSP2975220080514?sp=true) . Reuters. 2009-05-14.
Archived from the original (http://uk.reuters.com/article/idUKSP2975220080514?sp=true)
on February 1, 2013. Retrieved 2009-07-18.
17. "Contract let for GTL plant in Uzbekistan" (http://www.ogj.com/index/article-display/831606
9679/articles/oil-gas-journal/processing-2/gas-processing/gtl/2010/03/contract-let_for_gt
l.html) . Oil & Gas Journal. PennWell Corporation. 2010-03-08. Retrieved 2010-03-14.

18. Wood, D.A.; et al. (November 2021). "A review of an industry offering several routes for
monetizing natural gas". Journal of Natural Gas Science and Engineering. 9: 196–209.
doi:10.1016/j.jngse.2012.07.001 (https://doi.org/10.1016%2Fj.jngse.2012.07.001) .

19. "Smaller-scale and modular technologies drive GTL industry forward" (http://gasprocessing
news.com/features/201706/smaller-scale-and-modular-technologies-drive-gtl-industry-forw
ard.aspx) .

20. Popov, Dmitry. "Unlocking the value of stranded and remote offshore gas assets" (https://w
eb.archive.org/web/20170211155803/http://dm.epmag.com/i/754860-dec-2016) .
Archived from the original (http://dm.epmag.com/i/754860-dec-2016) on 2017-02-11.
Retrieved 2017-02-10.

21. Chetwynd, Gareth (20 January 2012). "Petrobras puts gas flares out of fashion with GTL" (ht
tp://compactgtl.com/wp-content/documents/120120_Upstream.pdf) (PDF). CompactGTL.

22. "Greenway Technologies Inc. Marks Milestone, Completes First Commercial G-Reformer®"
(https://www.globenewswire.com/news-release/2018/03/07/1417633/0/en/Greenway-Tec
hnologies-Inc-Marks-Milestone-Completes-First-Commercial-G-Reformer.html) (Press
release). 7 March 2018.

23. "Primus Green Energy Demonstration Plant Operating Results Confirm Compelling
Performance and Economics According to Independent Engineers' Report" (https://web.arc
hive.org/web/20150924081748/https://www.primusge.com/?press-release=primus-green-e
nergy-demonstration-plant-operating-results-confirm-compelling-performance-and-economi
cs-according-to-independent-engineers-report) . Primus Green Energy. November 7, 2013.
Archived from the original (https://www.primusge.com/?press-release=primus-green-energy
-demonstration-plant-operating-results-confirm-compelling-performance-and-economics-ac
cording-to-independent-engineers-report) on 2015-09-24.

24. Fairley, Peter (15 March 2010). "Turning Gas Flares into Fuel" (https://www.technologyrevie
w.com/s/418020/turning-gas-flares-into-fuel/) . MIT Technology Review.

25. "UPDATE 2-Malaysia's Petronas in Uzbekistan oil-production deal" (https://web.archive.org/


web/20180325171247/https://uk.reuters.com/article/petronas-uzbekistan/update-2-malay
sias-petronas-in-uzbekistan-oil-production-deal-idUKSP2975220080514?sp=true) .
Reuters. 14 May 2008. Archived from the original (https://uk.reuters.com/article/petronas-u
zbekistan/update-2-malaysias-petronas-in-uzbekistan-oil-production-deal-idUKSP29752200
80514?sp=true) on March 25, 2018.
26. "Qatar Airways Makes GTL History" (https://www.rigzone.com/news/oil_gas/a/149274/Qat
ar_Airways_Makes_GTL_History/?oc=dst) .

27. "A380 makes test flight on alternative fuel" (https://www.reuters.com/article/environment-ai


rbus-fuel-dc/a380-makes-test-flight-on-alternative-fuel-idUSL0120071420080201?rpc=6
4) . Reuters. February 2008.

28. "Innovative Engineering in Energy Technologies" (http://www.bpp-tech.com/index.php?optio


n=com_content&view=article&id=60&Itemid=59) . Bpp-Tech. Retrieved 2014-04-12.

29. Hecht, Andrew (6 January 2020). "Crude Oil vs Natural Gas" (https://www.thebalance.com/c
rude-oil-versus-natural-gas-competing-energy-markets-808876) . The Balance.

30. "Turkmenistan gas-to-liquids refinery ships first synthetic gasoline to Afghanistan" (https://
www.greencarcongress.com/2019/07/20190709-turkmenistan.html) . Retrieved
25 December 2019.

31. "‫ مليار دوالر لمشروع محطة تحويل الغاز إلى سوائل‬2.3 ‫( "أوزبكستان تقترض‬https://energy.economictimes.
indiatimes.com/news/oil-and-gas/uzbekistan-borrows-2-3-billion-for-gas-to-liquids-plant-pr
oject/67111971) . 2019 ‫ ديسمبر‬25 ‫ تم االسترجاع في‬. (https://energy.economictimes.indiatime
s.com/news/oil-and-gas/uzbekistan-borrows-2-3-billion-for-gas-to-liquids-plant-project/671
11971)

32. 2‫ب‬.‫ ص‬،2009 ‫ أكتوبر‬14 ‫ األربعاء‬،‫ وول ستريت جورنال‬،‫الخطوط الجوية القطرية تطير بطائرة تعمل بالوقود الجديد‬

You might also like