H Math Chapter-9-54
H Math Chapter-9-54
beg Aa¨vq
m~P K xq I j Mvwi`gxq d vskb John Napier
¯ ‹wUk MwYZwe` Rb †bwcqvi (1550Ñ1671) †K
¯ ^vfvweK jMvwi`‡gi RbK ejv nq| ¯^vfvweK
Exponential & Logarithmic Functions jMvwi`g‡K †bwcqvb jMvwi`gI ejv nq| wZwb cÖ_g
myk„•Ljfv‡e decimal point e¨envi ïiæK‡ib|
A b yk xj b x 9 .1
cvV m¤úwK©Z MyiæZ¡c~Y© welqvw`
ev¯Íe msL¨v : mKj gyj` msL¨v Ges Ag~j` msL¨v‡K ev¯Íe msL¨v n −n
ejv nq| ev¯Íe msL¨vi †mU‡K R Øviv cÖKvk Kiv nq| m~Î 7 : a < 0 Ges n N, n > 1, n we‡Rvo n‡j, a = |a|
p n m n
g~j` msL¨v : p I q c~Y©msL¨v Ges q 0 n‡j q AvKv‡ii msL¨v‡K m~Î 8 : a > 0, m Z Ges n N, n >1 n‡j, ( a) = am
m p
g~j` msL¨v ejv nq| m~Î 9 : hw` a > 0 Ges n = q nq, †hLv‡b m, p Z Ges
p
Ag~j` msL¨v : †h msL¨v‡K q AvKvi cÖKvk Kiv hvq bv, †hLv‡b p, q n q
n, q N, n > 1, q >1 Z‡e, am = ap
c~Y©msL¨v Ges q 0 †m msL¨vK Ag~j` msL¨v e‡j| Abywm×všÍ : hw` a > 0 Ges n, k N, n >1 nq, Z‡e
c~Y©msL¨v : k~b¨mn mKj abvZ¥K I FYvZ¥K ALÊ msL¨vmg~n‡K n nk
c~Y©msL¨v ejv nq| c~Y©msL¨vi †mU‡K Z Øviv cÖKvk Kiv nq| a= ak
¯^vfvweK msL¨v : 1, 2, 3, 4 ............ BZ¨vw` mvaviYZ MYbvg~jK g~j` fMœvsk m~PK
msL¨v¸‡jv‡K ¯^vfvweK msL¨v ejv nq| ¯^vfvweK msL¨v‡K abvZ¥K 1
n
ALÊ msL¨v ejv nq| msÁv : a R Ges n N, n >1 n‡j, an = a hLb a > 0 A_ev
a < 0 Ges we‡Rvo|
¯^vfvweK msL¨vi †mU‡K N Øviv cÖKvk Kiv nq|
1
m
m
m~PKxq ivwk : m~PK I wfwË m¤^wjZ ivwk‡K m~PKxq ivwk ejv nq|
msÁv : a > 0, m Z Ges n N, n >1 n‡j (6) a n
= an
m~PK m¤úwK©Z m~Î (Laws of Exponent) : m m
m~Î 1 : a R Ges n N n‡j, a1 = a, an + 1= an.a msÁv : a n = ( n a) =
n
am †hLv‡b, a > 0, m Z, n N, n > 1
m~Î 2 : a R Ges m, n N n‡j, am. an = am + n m p
m~Î 3 : a R, a 0 Ges m, n N, m n n‡j, myZivs p Z, q Z, n > 1 hw` Ggb nq †h, = nq, Z‡e
n q
m p
a hLb m > n
m−n
m
a
= 1
m~Î-9 †_‡K †`Lv hvq †h, a n = aq
an hLb m < n m~Î 10 : a > 0, b > 0 Ges r, s Q n‡j,
an−m
n ar s
m~Î 4 : a R Ges m, n N n‡j, (am) = amn (K) ar.as = ar + s (L) as = ar − s (M) (ar) = ars
m~Î 5 : a, b R Ges n N n‡j, (a.b)n = an.bn ar
(a )
r
m~Î 6 : a 0, b 0 Ges m, n Z n‡j, (N) (ab)r = arbr (O) b = br
(K) am.an = am + n K‡qKwU cÖ‡qvRbxq Z_¨ :
am
(L) an = am − n (i) hw` ax = 1 nq, †hLv‡b a > 0, Ges a 1, Zvn‡j x = 0
n (ii) hw` ax = 1 nq, †hLv‡b a > 0 Ges x 0, Zvn‡j a = 1
(M) (am) = amn
(N) (ab)n = an.bn (iii) hw` ax = ay nq, †hLv‡b a > 0 Ges a 1, Zvn‡j x = y
n n a
(iv) hw` ax = bx nq, †hLv‡b b > 0 Ges x 0, Zvn‡j a = b
(a) = ba
(O) b n
3 3
m p 1 m m 1 −2
mgvavb : (a ) = {(a ) } [ a = (a ) ]
P m 2
n n n n a +a +1
3 3 2
−
= a ( )
1 mp
n m n
[(a ) = a m n]
=
( a +a ) −1
2 2
3 3
mp
2
−2+1
n
=a a +a
mp 3 3 3 3
m p
− −
an ( ) ==a n
(cÖgvwYZ)
1 =
( a + a + 1) (a + a − 1)
2 2 2 2
3 3
0, n 0
= a2 + a 2 − 1 = Wvbcÿ
mgvavb : g‡b Kwi, m1 = x Ges 1n = y −3
2 2
− 3
a3 + a 3 + 1
∴ mx = 1 ∴ ny = 1 3 −3 = a + a − 1 (†`Lv‡bv n‡jv)
1
1 2 2
a +a +1
GLb, (a ) = (a )
n
m x y
n
cÖkœ \ 5 \ mij Ki :
= axy [∵ (am) = amn] a
a+b
1 a − b
2 2
mxny 11
=a
mn
=a
mn
[gvb ewm‡q] a − b
1 K. xa
mn a
=a
1 a − b a + b
2 2
1
1
n 1 a a − b
myZivs a = amn (cÖgvwYZ) x
m
mgvavb :
m m m a
1 (a +(ab)(a
− b) a + b
1 a+ba+b
a
cÖkœ \ 3 \ cÖgvY Ki †h, (ab) n = an bn; †hLv‡b m Z, n N
a − b)
mgvavb : g‡b Kwi, n = x
m
= x = xa
1
m a
a
m =x = x1 = x (Ans.)
GLb, evgcÿ = (ab) = (ab) n x
[
n
= x] 3
2
= ax.bx a + ab − a
L.
m m ab − b3 a−b
n n
= a . b = Wvbcÿ 3 1
m m m a2 + ab − a a.a2 + ab − a
(ab) n an bn (cÖgvwYZ) mgvavb : =
= ab − b 3
a − b b(a − b )
2
a−b
1
cÖkœ \ 4 \ †`LvI †h, 2
a(a + b) − a
=
1 1 2 1 1 2
b(a − b2) a−b
(
K. a − b 3 ) (a + a b + b ) = a − b
3 3 3 3 3
a( a + b) − a
mgvavb : =
1 1 2 1 1 2 b{( a)2 − b2} a−b
evgcÿ = a3 − b3( ) (a + a b + b ) 3 3 3 3
=
a( a + b) − a
b( a + b) ( a − b) a−b
1 1 1 2 1 1 1 2
=(
a − b ) a + a b + b
3 3 3 3 3 3
a − a
1 3 1 3 =
=
a3
3 3 3 b( a − b) a−b
− b = a3− b3 = a − b = Wvbcÿ
a. a − b a
=
1 1 2 1 1 2 b( a − b)
(
a −b 3 ) (a + a b + b ) = a − b (†`Lv‡bv n‡jv)
3 3 3 3 3
=
a ( a − b)
=
a
(Ans.)
−3
b( a − b)
−3
3 b
3
= a + a − 1
a +a +1 2 2
L. 3 −3
2 2
a +a +1
-3
a3 + a−3 + 1 a3 + 2 + a − 1
mgvavb : evgcÿ = 3 −3 = 3 −3
2 2 2 2
a +a +1 a +a +1
beg-`kg †kÖwY : D”PZi MwYZ 352
a a 1 1 1
a−b a − ba − b c2
2 2
a+b xa xb
M.
( ) b a =
x
1
b2
1
2
1
2
= 1 (Ans.)
b b x xc xa
a−b a − b a−b
a+b
( ) b a
P.
a
(a2 − b−2) (a − b−1)b−a
a a (b2 − a −2)b (b + a−1)a − b
a−b a − b a−b
(a2 − b−2)a (b − b−1)b − a
a+b
mgvavb :
( b ) a mgvavb : 2 −2 b
(b − a ) (b + a−1)a − b
b b
a b−a
a−b a − ba − b a2 − 12 a − 1b
( )
a+b
( )
b a b
= b a−b
b2 − 12 b + 1a
( )
a
a b a b
a−b −a−b −a−b
a − ba − b
a+b
= ( )
b a 1 1
(a + b) (a − b) (a − b)
1 a b−a
a− b a−b
=
a−b a − ba − b 1 1 1 b a−b
(b + a ) (b − a) (b + a)
a+b
=( ) b a
a − b
1 1 1 1a 1 b−a a
( a + ) (a − ) (a − )
a+b
=(
b ) a b b b
=
a + b a − b a2 − b2 1 1b 1 a−b b
b
=
a
=
ab
(Ans.) ( a ) ( a) ( a )
b + b − b +
N.
1 1 1 1 1 b−a+a
a
−m −m + −n −n + −p
1 + a bn + a cp 1 + b cp + b am 1 + c am + c−pbn
=
( a + ) (a − )
b b
mgvavb : b a−b+b
1 1 1
(b − 1a) (b + 1a)
+ +
−m −m −n −n −p
1 + a bn + a cp 1 + b cp + b am 1 + c am + c−pbn 1 a 1 b ab + 1 a ab − 1b
1 1 1 =
( a + ) (a − )
b b
=
( b ) b
= + +
bn cp cp am am bn 1 b 1 a
ab − 1b ab + 1 a
1+ m+ m 1+ n+ n 1+ p + p
a a b b c c ( a) ( a ) a ( a )
b − b +
a ab − 1 a b
1 1 1 ab + 1 a
=(
ab + 1) b
= + +
am + bn + cp bn + cp + am cp + am + bn b ab − 1
am bn cp a a a b a a+b
=( ) ( ) =( ) (Ans.)
b b b
= 1
am bn cp
p + 1 m p + 1 m
a + b + c a + b + c a + bn + cp
m p n cÖkœ \ 6 \ †`LvI †h,
a m
b c n p K. hw` x = aq + r bp, y = ar + pbq, z = ap + q br nq, Z‡e xq − r.
= + +
am + bn + cp am + bn + cp am + bn + cp y r − p.zp − q = 1
am + bn + cp mgvavb : †`Iqv Av‡Q, x = aq + rbp
= m = 1 (Ans.) y = ar + pbq
a + bn + cp
b c a
z = ap + qbr
bc x
c ca x
a ab x
b evgcÿ = xq − r.yr − p.zp − q
O. c a b = (aq + r.bp)q − r.(ar + p.bq)r − p.(ap + q.br)p − q
x
b
x
c
x
a
= a(q + r)(q − r)bpq − pr.a(r + p)(r − p).bqr − pq.a(p + q)(p − q).bpr − qr
2 2 2 2 2 2
b c a = aq − r .ar − p .ap − q .bpq − pr.bqr − pq.bpr − qr
bc c ca a ab b 2 2 2 2 2 2
mgvavb :
x x x = aq − r + r − p + p − q .bpq − pr + qr − pq + pr − qr
c a b
b c a = a0b0 = 1.1 = 1 = Wvbcÿ
x x x
b 1 c 1 a 1
xq − r. y r − p.zp − q = 1 (†`Lv‡bv n‡jv)
c bc a ca b ab L. hw` ap = b, bq = c Ges cr = a nq, Z‡e pqr = 1
x x x
= c 1 a 1 b 1 mgvavb : †`Iqv Av‡Q, ap = b, bq = c Ges cr = a
ab
x
b bc
x
c ca a
x GLv‡b, ap = b
ev, (cr)p = b
ev, cpr = b
ev, (bq)pr = b
beg-`kg †kÖwY : D”PZi MwYZ 353
ev, bpqr = b1 1 −1
pqr = 1 (†`Lv‡bv n‡jv) M. hw` a = 23 + 2 3 nq, Z‡e †`LvI †h, 2a3 − 6a = 5
1 −1
M. hw` ax = p, ay = q Ges a2 = (pyqx)z nq, Z‡e xyz = 1 mgvavb : †`Iqv Av‡Q, a = 2 + 2 3 3
mgvavb : 1 1
†`Iqv Av‡Q, ax = p, ay = q Ges a2 = (pyqx)
z
( − ) [Dfqcÿ‡K Nb K‡i]
ev, a3 = 23 + 2 3
3
GLv‡b, a2 = (pyqx)z 1 3
−
1 3 1
−
1 1 1
ev, a = (2 ) + ( 2 ) + 3.2 .2 (2 + 2 )
3 3 3 3 3 −
3 3
ev, a2 = {(ax)y(ay)x}z
1 1
z −
ev, a2 = (axy.axy) ev, a3 = 2 + 2 + 3.23 . 2
−1 3
.a
ev, a2 = a2xyz 1
ev, 2 = 2xyz ev, a = 2 + 2 + 3.1.a
3
3 3 3
N. hw` a2 + 2 = 3 + 3
3 3 Ges, a 0 nq, Z‡e †`LvI †h,
†`Iqv Av‡Q, x a + y b + z c = 0 3a3 + 9a = 8
3 3 3 mgvavb :
ev, x a + y b = − z c 2
3 − 23
( 3
) (
ev, x a + y b = − z c
3 3
) 3
[Dfqcÿ‡K Nb K‡i] †`Iqv Av‡Q, a2 + 2 = 33 + 3
2 2 3
−3
ev, (x a) + (y b)
3
3
3
3
ev, (a2 + 2)3 = 33 + 3 ( ) [ Dfqcÿ‡K Nb K‡i]
2 3
3 3
+ 3.x a.y b x a + y b = − z3c ( 3 3
) 3 2
ev, (a2) + 3(a2) 2 + 3.a2.22 + 23 = 33 ( )
ev, x3a + y3b + 3xy ab −z c = − z3c
3
( 3
) +
2 3
( 3 ) + 3. 3 .3 (3 + 3 )
−
3
2
3
−
2
3
2
3
−
2
3
3
ev, x3a + y3b − 3xyz abc = − z3c 1 + 23 − 3
2
ev, x3 = 2a + 3x(a2− b )
1
2 3
evgcÿ = () +() ()
b a
=
b
+
a ( )
1 1 1 1
1
=
a32 b23 = a22 + b33
2 3 2
ev, x = 2a + 3x(c ) 3 3
[ a − b = c ] [ b3 = a2]
b3 + a a b
3 2 2 3
ev, x3 = 2a + 3x.c 1 1 1 1
ev, x3 = 2a + 3cx = (a3 − 2)2 + (b2 − 3)3 = a2 + (b−1)3
x3 − 3cx − 2a = 0 (†`Lv‡bv n‡jv) 1
−
1
= a2 + b 3
= Wvbcÿ
beg-`kg †kÖwY : D”PZi MwYZ 354
3 2 1 1 b
−
a 2 b 3 x = ya
A_©vr ( ) +( ) =a +b
b
2
a
1
2 3
(†`Lv‡bv n‡jv)
Avevi, zc = yb
b
P. hw` b = 1 + 3 + 3 nq, Z‡e †`LvI †h, b − 3b − 6b − 4 = 0
3 3 3 2
z = yc
mgvavb : GLb, xyz = 1
2 1 b b
†`Iqv Av‡Q, b = 1 + 33 + 33 ev, ya.y. yc = 1
2 1 b b
3
ev, (b − 1) = 3 + 3
3 (
) [ Dfqcÿ‡K Nb K‡i]
3 3 ev, ya + 1 + c = 1
bc + ac + ab
2 1 2 1 2 1
ev, y = y
3 3
ev, b − 3b + 3b − 1 = (3 ) + (3 ) + 3.3 .3 (3 + 3 )
ac
3 2 3 3 3 3 3 3
bc + ac + ab
1 + 23 +13 ev, ac
=0
ev, b − 3b + 3b − 1 = 3 + 3 + 3
3 2 2
.(b−1)
3 +2 +1 bc + ac + ab = 0 (Ans.)
y x
ev, b3 − 3b2 + 3b − 1 = 9 + 3 + 3 3 (b − 1) M. hw` 9x = (27) nq, Zv n‡j y Gi gvb KZ?
ev, b3 − 3b2 + 3b − 1 = 12 + 9 (b − 1) mgvavb :
ev, b3 − 3b2 + 3b − 1 = 12 + 9b − 9 †`Iqv Av‡Q, 9x = (27)y
b3 − 3b2 − 6b − 4 = 0 (†`Lv‡bv n‡jv) ev, (32)x = (33)y
−3
1 1 ev, 32x = 33y
[we: `ª: cvV¨ eB‡qi cÖ‡kœ 3 Gi ¯’‡j 3 n‡e] 3
ev, 2x = 3y
x 3
Q. hw` a + b + c = 0 nq, Z‡e †`LvI †h, = (Ans.)
y 2
1
+
1
+
1
=1
cÖkœ \ 9 \ mgvavb Ki :
xb + x− c + 1 xc + x− a + 1 xa + x− b + 1 (K) 32x + 2 + 27x + 1 = 36
mgvavb : mgvavb :
1 1 1
evgcÿ = xb + x− c + 1 + xc + x− a + 1 + xa + x− b + 1 32x + 2 + 27x + 1 = 36
ev, 32x + 2 + 33x + 3 = 36
1 1 1
= + + ev, 32x.32 + 33x.33 − 36 = 0
1 b 1 + x c + xb + c a 1
x + c+1
x
x + b+1
x ev, (3x)2.32 + (3x)3.33− 36 = 0
[ a + b + c = 0 b + c = −a] ev, a2.9 + a3.27 − 36 = 0 [3x = a a‡i]
xc 1 xb ev, 27a3 + 9a2 − 36 = 0
= b+c + b+c +
c
1+x + x 1+x + xc
x a+b
+ 1 + xb ev, 9(3a3 + a2 − 4) = 0
c
x 1 xb ev, 3a3 − 3 + a2 −1 = 0
= c b+c + c b+c +
1+x +x 1+x +x x + xb +1
-c
ev, 3(a3 − 1) + a2 −1 = 0
c
x 1 xb ev, 3(a − 1) (a2 + a + 1) + (a − 1) (a + 1) = 0
= c b+c + c b+c + 1
1+x + x 1+x + x
xc
+ xb +1 ev, (a − 1) (3a2 + 3a + 3 + a + 1) = 0
xc 1 xb.xc ev, (a − 1) (3a2 + 4a + 4) = 0
= c
1+x + x b+c + c
1+x + x b+c +
1+ xc + xb+c nq, a − 1 = 0 A_ev, 3a2 + 4a + 4 = 0
c
x +1+x b+c c
1+x +x b+c
−4 42 − 4.3.4
= = = 1 = Wvbcÿ (†`Lv‡bv n‡jv) ev, a = 1 a=
1+xc+xb+c 1+xc + xb+c 2.3
cÖkœ \ 8 \ K. hw` ax = b, by = c Ges cz = 1 nq, Z‡e xyz = KZ ? −4 16 − 48
ev, 3x = 30 [gvb ewm‡q] =
6
mgvavb :
−4 − 32
†`Iqv Av‡Q, ax = b, by = c Ges cz = 1 x=0 =
6
GLv‡b, cz = 1
GLv‡b −32 Aev¯Íe| myZivs GwU MÖnY‡hvM¨ bq|
ev, (by)z = 1 [ by = c]
wb‡Y©q mgvavb x = 0
ev, {(a ) } = 1
x y z
[ ax = b]
(L) 5x + 3y = 8
ev, {a } = 1
xy z
− −
5x 1 + 3y 1 = 2
ev, axyz = a x y
e¨vL¨v : 729 = 93 = 9
iii. ( a) = a
m
2 1 2
n m n
3
3 3 3 9
= 3 =32
=3 wb‡Pi †KvbwU mwVK?
15
x10 i L ii M iii N i, ii I iii
x8 7. k~‡b¨i m~PK k~b¨ n‡j Zvi gvb KZ?
2. x4 Gi mij gvb †KvbwU?
1 K0 L1 M Amxg AmsÁvwqZ
K x15 Lx x
15
N1 8. a 1 n‡j ax = am n‡e, hw` Ges †Kej hw` wb‡Pi †KvbwU?
3. al = b, bm = c, cn = a n‡j, lmn Gi gvb KZ? K a=x L a=m x=m N x=±m
l wb‡Pi Z‡_¨i Av‡jv‡K 9 I 10 bs cÖ‡kœi DËi `vI :
K abc L l N −l
abc 1 1 1
4. ax = b, by = c Ges cz = a n‡j, xyz = KZ? + + ......... GKwU Amxg aviv|
z + 1 (z + 1)2 (z + 1)3
K −1 L0 1 N2
beg-`kg †kÖwY : D”PZi MwYZ 356
9. wb‡Pi †Kvb k‡Z© avivwUi AmxgZK mgwó _vK‡e? K z < − 2 Ges z < 0 L z < − 2 Ges z > 0
K |r| < − 1 |r| < 1 M |r| > 1 N |r| > − 1 z < − 2 Ges z > 0 N z > − 2 Ges z < 0
10. z-Gi †Kvb gv‡bi Rb¨ avivwUi AmxgZK mgwó wbY©q Kiv hvq?
i. wfwË 3
2
ii. gvb
16 27. 2 Ges − 2 DfqB 16 Gi KZZg g~j? (mnR)
181
K 32 Zg g~j L 16 Zg g~j M 4 Zg g~j 4 Zg g~j
iii. m~PK 4
28. −27 Gi Nbg~j wb‡Pi †KvbwU? (mnR)
wb‡Pi †KvbwU mwVK? (mnR) K9 L3 −3 N −9
K i I ii i I iii M ii I iii N i, ii I iii 29. 0 Gi nZg g~j KZ? (mnR)
16. ev¯Íe msL¨vi †ÿ‡ÎÑ 1
i. mKj c~Y© msL¨vi †mU
Kn 0 − N −1
M
2
ii. Q mKj g~j` msL¨vi †mU 30. cÖ‡Z¨K abvZ¥K ev¯Íe msL¨v a Gi GKwU Abb¨ abvZ¥K n
iii. mKj ev¯Íe msLvi †mU Zg g~j i‡q‡Q| G‡K wb‡Pi †Kvb cÖZxKwU Øviv cÖKvk Kiv
wb‡Pi †KvbwU mwVK? (mnR) nq? (mnR)
K i I ii L i I iii ii I iii N ii I iii n a
a L n M an N an
17. †mU cÖKv‡ki ixwZ AbyhvqxÑ
31. a FYvZ¥K ev¯Íe msL¨v Ges n we‡Rvo ¯^vfvweK msL¨v n‡j,
i. Z n‡jv c~Y© msL¨vi †mU
a Gi GKwU Abb¨ FYvZ¥K nZg g~j i‡q‡Q| G‡K Kx cÖZxK
ii. R n‡jv ev¯Íe msL¨vi †mU
iii. Q n‡jv g~j` msL¨vi †mU Øviv cÖKvk Kiv nq? (mnR)
wb‡Pi †KvbwU mwVK? (ga¨g) n a n n
K a L n M a − a
i I ii L i I iii M ii I iii N i, ii I iii
enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi
92 : m~PK m¤úwK©Z m~Î 32. a, b > o n‡jÑ
mvaviY enywbe©vPwb cÖ‡kœvËi i. ax = 1 Ges x 0 n‡j a = 1
18. a cÖZxKwU‡Z a †K Kx ejv nq?
m
(mnR) ii. ax = ay Ges a 1 n‡j x = y
wfwË L m~PK M kw³ N AbycvZ iii. ax = bx Ges x 0 n‡j x = a
19. mKj ¯^vfvweK msL¨v ev abvZ¥K c~Y© msL¨vi †mU wb‡Pi wb‡Pi †KvbwU mwVK? (KwVb)
†KvbwU? (mnR) i I ii L i I iii M ii I iii N i, ii I iii
K R LZ MQ N 33. ax = by = cz n‡jÑ
20. a n‡j, a1 = KZ? (mnR) y
x
i. a = b
beg-`kg †kÖwY : D”PZi MwYZ 357
z m p
ii. b = c
y 45. hw` a > 0 Ges n = q nq †hLv‡b m, pZ Ges n, qN, n
y
z > 1, q > 1 Z‡e wb‡Pi †KvbwU mwVK? (KwVb)
iii. c = b
wb‡Pi †KvbwU mwVK? (ga¨g) K
m
an =
n
am
n
am =
q
ap
K i I ii L i I iii M ii I iii i, ii I iii m n
a a x x
−
1 3
a b b 1 ev, (xx)
x
= x.x2 ( ) = (x ) 2
67. ( ) =a
b
Ges a = 3b n‡j b = KZ? (mnR)
ev, (xx)= (xx) 2
x 3
K1 3 M4 N9 3
ev, x = 2
68. ( 3)5 m~PKxq ivwki wbavb ev wfwË KZ? (ga¨g)
9
5 ∴x=
K5 L 3 M 3 4
2 1 1 2 1 1 2
3 −1 −1
69. {1 − (1 − x ) } = KZ? (KwVb) 82. (a − b ) (a + a . b
3 3 3 3 3+b3 ) Gi gvb †KvbwU?
1 1 1
1 1 1 2−x 3
Ka+b a−b M a3 − b 3 N (a−b) 3
K 3+1 1− 3 M N
x x 1 + x3 1 + x2 1 1 2 1 1 2
−2 L −1 M2 N4 = ( 3
a −b
3
) {( ) a
3 3
+a .b +
3
( )}b
3
beg-`kg †kÖwY : D”PZi MwYZ 359
3 3
1 1
() ()3 3
3
−8 = 2
= a − b
=a−b iii.
83. (a2b3)5 Gi gvb wb‡Pi †KvbwU? wb‡Pi †KvbwU mwVK? (ga¨g)
a10.b15 L a25b125 M (ab)30 N a3b2 i I ii L i I iii M ii I iii N i, ii I iii
e¨vL¨v : a, b R GwU nN n‡j (a, b)n = an.bn
(a2b3)5 = (a2)5. (b3)5
88. i. hw` ax = 1 nq, †hLv‡b a > 0 Ges a 1 Zvn‡j x = 0
= a2 5.b3 5 ii. hw` ax = 1 nq, †hLv‡b a > 0 x 0, Zvn‡j a = 1
= a10.b15
a b iii. hw` ax = ay nq, †hLv‡b a > 0 Ges a 1, Zvn‡j x = y
a a
84. ( ) ( ) = KZ?
b
b wb‡Pi †KvbwU mwVK?
K i I ii L i I iii
ab a+b a a −b a+b
K (ba) (2ba) L M
b
(ba) M ii I iii i, ii I iii
Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi
a b
a a
e¨vL¨v : ( ) ( )
b b
a
=( )
a−b
GKwU m~PKxq mgxKiY Ges 2x = y
4x − 3.2x + 2 + 25 = 0
b
Dc‡ii Z‡_¨i Av‡jv‡K 89 Ñ 91 bs cÖ‡kœi DËi `vI :
enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi 89. y2 − 12y = KZ? (KwVb)
n −32 L −36
85. i. a (1) = a1 ; †hLv‡b a > o, n
n
n
n
M −48
90. y-Gi gvb KZ?
N − 52
(ga¨g)
b b
ii. ( ) = ; †hLv‡b a, b , b> 0 Ges n
n K 3, 2 L 1, 4 4, 8 N −2, 0
a a
n am 91. x = KZ? (ga¨g)
iii. (am) = ; †hLv‡b a Ges n 3
an 2, 3 L 1, 9 M 3, 4 N −2, −
wb‡Pi †KvbwU mwVK? (ga¨g) 2
x x
i I ii L i I iii M ii I iii N i, ii I iii x = (x x)x
86. i. 2 Zg g~j‡K eM©g~j e‡j Dc‡ii Z‡_¨i Av‡jv‡K 92 I 93bs cÖ‡kœi DËi `vI :
ii. −27 Gi Nbg~j 3 92. x Gi gvb KZ? (ga¨g)
iii. 0 Gi n Zg g~j 0 2 3 2 5
K M− N
wb‡Pi †KvbwU mwVK? (ga¨g) 3 2 3 2
K i I ii i I iii M ii I iii N i, ii I iii 93. x Gi gvb wb‡Pi †KvbwU? (KwVb)
87. i. a2 = a hLb a > 0 K−
2
L
3
9
N
29
3 2 4 8
ii. a2 = −a hLb a < 0
m−n
() x
y
n−m
K ax + a L ax − a
ax
M
(xy) N
() x
y
ax. a
24
N
a
x x
97. x = (x x) x n‡j, x Gi gvb KZ? 102. a8 a6 a4 Gi mij gvb KZ?
7 8 9 1
K 4 L M
2 3 4
K a12 L a12
98. 3mx −1 = 3amx − 2 ; a > 0, a 3 I m 0 n‡j, x Gi gvb
KZ? a N1
m 2 103. a R , a 0 n‡j,
K
2 m
i. a = 1
M 2m N 2m
beg-`kg †kÖwY : D”PZi MwYZ 360
1 M i I iii N i, ii I iii
n
ii. a−n
=a
n mn
hw` x = a nq Z‡e
n
iii. (am) = a
Dc‡ii Z‡_¨i Av‡jv‡K 105 I 106 bs cÖ‡kœi DËi `vI :
wb‡Pi †KvbwU mwVK?
K i I ii L ii I iii 105. n = 5 nq n‡j, wb‡Pi †KvbwU mwVK?
i I iii N i, ii I iii K x = a5 L x= a
104. am an = am + n n‡j, wb‡Pi †Kvb k‡Z© GwU mwVK? 5 n
x= a N x=a
i. a R. a = 0
106. DÏxcKwU wb‡Pi †Kvb k‡Z© mwVK n‡e?
ii. m, n N, m > n
K a R, n R a R, n N
iii. a R, m, n N
M n N, n 1 N a R, n < 1
wb‡Pi †KvbwU mwVK?
K i I ii ii I iii
K. n = 1 Gi Rb¨ evK¨wUi mZ¨Zv hvPvB Ki| 2 =a m + n [ gvb ewm‡q ] (mZ¨Zv hvPvB Kiv n‡jv)
L. MvwYwZK Av‡ivn c×wZ‡Z †`LvI †h, m, nN Gi œ 4 KwZcq m~PK mgwš^Z ivwk ay 1− p, by 1 − q, cy 1 − r Ges
cÖk-
Rb¨ evK¨wU mZ¨| 4 ay 1 −p = by1−q = cy 1 − r = x|
M. (i) m > 0 Ges n < 0 (ii) m < 0 Ges n < 0 Gi
K. a, b I c Gi gvb x, y Gi gva¨‡g cÖKvk Ki| 2
Rb¨ evK¨wUi mZ¨Zv hvPvB Ki| 4
L. aq − r b r − p c p − q Gi gvb wbY©q Ki| 4
3bs cª‡kœi mgvavb pa a2 + ab + b2 pb b2 + bc + c2
K. n =1 n‡j,
M. †`LvI †h, pb () ()
pc
evgcÿ = am.an = am.al = am.a = am +1 pc c2 + ca + a2
Wvbcÿ = am + n = am + 1 ()
a
p
= aq − r b r − p cp − q 4
myZivs n = 1 Gi Rb¨ evK¨wU mZ¨| 4bs cª‡kœi mgvavb
L. ÔK' n‡Z m = n = 1 Gi Rb¨ evK¨wU mZ¨|
myZivs m = n = k Gi Rb¨ mZ¨ n‡e K. †`Iqv Av‡Q, ay1 − p = by 1 − q = cy1− r = x
ay 1 −p = x
ak.ak = ak + k x
= a 2k ............. (i) ev, a = y1 −p
m = n = k + 1 Gi Rb¨ evK¨wU mZ¨ n‡e hw` I †Kej hw`
a = xyp −1
ak + 1. ak + 1 = ak + 1 + k + 1
= a2k + 2 Avevi, by1 − q = x
= a2(k+1) ......................(ii) x
ev, b = y 1 − q = xyq −1
(i) I (ii) n‡Z †`Lv hvq k Gi Rb¨ evK¨wU mZ¨ n‡j k + 1
Gi Rb¨ evK¨wU mZ¨| Ges cy1 − r = x
beg-`kg †kÖwY : D”PZi MwYZ 362
x 12
ev, c = y1 − r = xyr −1 = (a8) a6 a4 [1 − 1 {1 − (1 −
x3)−1}−1]−1
a = xyp −1, b = xyq−1, c = xyr −1
= a [1 − 1 {1 − (1 − x3)−1}−1]−1
L. ÔKÕ †_‡K cvB, a = xyp − 1, b = xyq − 1 Ges c = xyr − 1 −1
1 −1
= a 1 − 1 1 −
aq − r.br − p.cp − q = (xyp − 1)q − r.(xyq−1)r − p.(xyr − 1)p − q
= xq − ry(p − 1)(q − r).xr − py(q − 1) (r − p).xp − qy(r −1)(p − q)
1−x 3
−1
− x3 − 1−1
= a 1 − 1
= xq − r + r − p + p − q.y pq − pr − q + r + qr − pq − r + p + pr − qr − p + q 1
= x0.y0 1−x 3
−1
= 1 1 = 1 (Ans.) − x3
= a 1 − 1
M. ÔLÕ n‡Z cvB, Wvbcÿ = aq−r br − p cp − q = 1 1 − x3
2 2 2 2 2 2 −1
1 − x3−1
= a 1 −
a + ab + b b + bc + c c + ca + a
pa pb pc
evgcÿ = ()
p b
p ()
c
pa () −x 3
−1 −1
p p − a) (c + ca + a ) 1 − x3 x3 +1 − x3
2 2 2 2 2 2
= a 1 + =a
(a−b) (a + ab + b ) (b−c) (b + bc + c ) (c
=p
=p a3
− b 3
p b 3
− c3
p c3
− a3
x
3
x3
3 3 −1
= pa − b + b −c + c − a
3 3 3 3
1
= p = 1 = Wvbcÿ
0 =a [ ] = ax = Wvbcÿ
x3
3
x c
xa
1
+ 1 x b +1
x
1
M. GLv‡b, a ( ) = a1 ............ (i)
1
n
= + + 1
1 + xc + xb+c xa.xc + 1 + xa xa.xb + 1 + xb
xa xb cÖ_g avc : n = 1 Gi Rb¨ (i) Gi evgcÿ = a ( ) = 1a
1
xc xa xb 1 1
=1 + xc + xb+c + 1 + xa + xa + c + 1 + xb + x a + b Wvbcÿ = =
a1 a
xc 1 xb n = 1 Gi Rb¨ (i) evK¨wU mZ¨|
= + +
1 + xc + xb+c 1 + xc + x b+ c 1+ xb + x− c
wØZxq avc : awi, n = k Gi Rb¨ (i) evK¨wU mZ¨|
[∵ a + b + c = 0, ∵ a + b = − c] k
=
x c
+
1
1 + x c + xb + c 1 + x c + xb + c
+
xb
1
( ) = a1
A_©vr, a
1
k
1 + xb + c k+1 k
x 1 1 .1
=
xc
+
1
+
xb+c
1 + xc + xb +c 1 + xc + x b+c 1 + xc + xb+c
GLb, n = k + 1 n‡j, a () =
a ()
a
1 .1 1 1
1 + xc +xb +c = k = k = k+1
= a a a .a a
1 +xc + xb+c k+1
=1
a + b + c = 0 n‡j cÖ`Ë ivwk wZbwUi †hvMdj 1. (†`Lv‡bv n‡jv) (1a) =
1
ak+1
œ 7 a, b N Ges an, n N n‡j MvwYwZK Av‡ivn c×wZ‡Z
cÖk- n = k + 1 Gi
Rb¨ (i) evK¨wU mZ¨|
†`LvI †h, MvwYwZK Av‡ivn c×wZ Abymv‡i mKj n Gi Rb¨
m n
K. (a ) = a mn
2 n
L. (a.b)n = anbn
n
4 (1) = a1
myZivs a n (†`Lv‡bv n‡jv)
1 1 1
M. (1a) = a1 †hLv‡b, a > 0
n œ 8
4 cÖk- + +
1 + a−mbn+a−mcp 1 + b−ncp + b−nam 1 + c−pam + c−pbn
7bs cª‡kœi mgvavb K. cÖ`Ë ivwki cÖ_g As‡ki mijxKiY Ki| 2
m n
K. GLv‡b, (a ) = amn L. cÖ`Ë ivwki mij gvb †ei Ki| 4
b b+c c+a
cÖ_g avc : (i) bs G n = 1 ewm‡q cvB, M. †`LvI †h, cÖ`Ë ivwki mij gvb c
x
a
xc
evgcÿ = (am)1 = am x x
Wvbcÿ = am.1 = am a a+b
xb Gi mij gv‡bi mgvb| 4
n = 1 Gi Rb¨ (i) bs evK¨wU mZ¨| x
wØZxq avc : awi, n = k Gi Rb¨ (i)bs evK¨wU mZ¨| 8bs cª‡kœi mgvavb
k
(am) = amk 1
k+1 k K. cÖ`Ë ivwki cÖ_g Ask = 1 + a−mbn + a−mcp
GLb, (am) = (am) am
am(k +1) = amk + m = am(k + 1) am
=
n = k + 1 Gi Rb¨ (i) bs evK¨wU
mZ¨|
m
a (1 + a−mbn + a−mcp)
m
a
MvwYwZK Av‡ivn c×wZ Abymv‡i mKj n Gi Rb¨ =
am + am.a−mbn + am.a−m.cp
(am)n = amn (†`Lv‡bv n‡jv) am
= m (Ans.)
a + bn + cp
L. GLv‡b, (a.b)n = an.bn .................. (i)
L. ÔK' n‡Z cvB,
cÖ_g avc : n = 1 n‡j (i) ev‡K¨i evgcÿ = (a.b)1 = a.b
am
Wvbcÿ = a1.b1 = a.b cÖ`Ë ivwki cÖ_g As‡ki mij gvb = am + bn + cp
n = 1 Gi Rb¨ (i) evK¨wU mZ¨| bn
Abyiƒcfv‡e wØZxq As‡ki mij gvb = am + bn + cp
wØZxq avc : awi, n = k Gi Rb¨ (i) evK¨wU mZ¨|
A_©vr, (a.b)k = ak.bk .................... (ii) cp
Ges Z…Zxq As‡ki mij gvb = am + bn + cp
GLb, (a.b)k + 1 = (a.b)k.(a.b)1
cÖ`Ë ivwk,
= ak.bk.a1.b1 1 1 1
= ak + 1.bk + 1 + +
1+ a−mbn + a−mcp 1+ b−ncp + b−nam 1+c−pam + c−pbn
n = k + 1 Gi Rb¨ (i) evK¨wU mZ¨|
beg-`kg †kÖwY : D”PZi MwYZ 364
am bn cp 1
+y+z
1 1
= p+ m p+ m x
a + b + c a + b + c a + bn + cp
m n n
ev, k = k0
am + bn + cp 1 1 1
= m n p = 1 (Ans.) + + =0
x y z
(cÖgvwYZ)
a +b +c
1 1 1
M. ÔLÕ n‡Z cvB cÖ`Ë ivwki mij gvb 1. Avevi, x + y + z = 0
b b+c c+a a+b 1 1 1
GLb, xc
x
a
xc
xb
xa ev, x + y = − z
x 3 3
1 1 1
= (xb −
2
c b+c
2
)
2
(xc − a)c + a (xa − b)a + b
2 2 2
( ) ( )
ev, x + y z
[Nb K‡i]
= −
= xb − c xc − a xa − b 1 1 1 1 1 1 1
2 2
= x b −c + c − a + a − b
2 2 2 2
x y ( )
ev, 3 + 3 + 3 . x . y x + y = − 3
z
= x0 = 1 hv cÖ`Ë ivwki mij gv‡bi mgvb|(†`Lv‡bv n‡jv) 1 1 1 1 1
œ 9 ax = by = cz; †hLv‡b a b c.
cÖk-
( )
ev, 3 + 3 + 3 . xy − z = − 3
x y z
1 1 1 1
y y ev, x3 + y3 − 3 . xyz + z3 = 0
y z z−1
K. b = z Ges c = y n‡j †`LvI †h, ( ) =y
z
2 1 1 1
x y z
3
3 + 3 + 3 = xyz (†`Lv‡bv n‡jv)
L. a, b Ges c ci¯úi wZbwU abvZ¥K ALÊ msL¨v n‡j
1 1 2 3 3 3
cÖgvY Ki †h, x + y = z œ 10 x a + y b + z c = 0 Ges a2 = bc.
4 cÖk-
1 1 1 3 3
M. abc = 1 n‡j †`LvI †h, x + y + z = 0 Ges y a− c
K. a 0 Ges x + y + z = 0 n‡j †`LvI †h, z = 2
3 3
1 1 1
+ + =
3
4 b− a
x3 y3 z3 xyz L. †`LvI †h, ax3 + by3 + cz3 = 3axyz 4
9bs cª‡kœi mgvavb 1
3
−
1
3
M. a = 2 + 2 Ges xyz = 1 n‡j †`LvI †h,
K. b = z Ges c = y n‡j
6(by3 + cz3) = (2a3 − 5)(3 − x3) 4
cÖ`Ë kZ©g‡Z, zy = yz .............. (i)
y
y y y y 10bs cª‡kœi mgvavb
z z z z
Zvn‡j, z (y) = (y) = (y)z
y
z
1
y z
=
y
1
z z
=
y
y1
3
K. †`Iqv Av‡Q, x a + y b + z c = 0 ........ (i)
3 3
1
−
1 b a
3 3 1 1
a=2 +2 ................ (i)
= 2 + 3 [ a2 = b3]
a 2 b 3
3 2
1 1
−
3
ev, a3 = (2 + 2 ) 3 3
[Nb K‡i] a b
1 1 1 1
1 1 1 1 1 1 −
− − − −2 2
3 3 3 3
ev, a3 = (2 ) + (2 ) + 3.2 .2 (2 + 2 ) 3 3 3 3 = (a3 ) + (b2 − 3)3 = a2 + b 3
1
ev, a3 = 2 + 2−1 + 3.20.a [(i) †_‡K] =a +
2 1
1 = a+
1
= Wvbcÿ
1 3
ev, a = 2 + 2 + 3a
3 3 b
b
ev, 2a3 = 4 + 1 + 6a evgcÿ = Wvbcÿ (cÖgvwYZ)
ev, 2a3 = 5 + 6a œ 12 GKwU m~PKxq ivwk we‡ePbv Ki,
cÖk-
ev, 6a = 2a3 − 5
3 3 3 3 3 3
1 1 2 1 1 2
2a3 − 5
a= 6
a − b a + a . b + b ; a, b > 0
K. ivwkwUi mv‡_ b †hvM K‡i mijxKiY Ki| 2
ÔLÕ bs †_‡K cvB, 2
3
ax3 + by3 + cz3 = 3axyz L. ÔKÕ †_‡K cÖvß mijgvbwUi eM© mgvb −2 + 3 +
ev, ax3 + by3 + cz3 = 3a.1 [ xyz = 1] −
2
3
ev, by + cz = 3a − ax
3 3 3 3 n‡j †`LvI †h, 3a3 + 9a − 8 = 0 4
2 1
ev, by3 + cz3 = a (3 − x3) 3 3
2a − 5 2a − 5
M. ÔKÕ †_‡K cÖvß mijgvbwU 1 + 3 + 3 Gi mgvb
ev, by3 + cz3 = 6 (3 − x3) a = 6
3 3
n‡j †`LvI †h, a3 − 3a2 − 6a − 4 = 0 4
6(by3 + cz3) = (2a3 − 5)(3 − x3) (†`Lv‡bv n‡jv) 12bs cª‡kœi mgvavb
1 1 K. cÖ`Ë ivwkwUi mv‡_ b †hvM Ki‡j `uvovq,
œ 11 a > 0 Ges a 0, x = (a + b) + (a − b) Ges a2 = b3
cÖk- 3 3
1 1 2 1 1 2
3 3 3 3 3 3
K. †`LvI †h, a0 = 1 2 (a − b ) (a + a .b + b ) + b
1 1 1 1 1 1
L. hw` a2 − b2 = c3 nq, Z‡e †`LvI †h, x3 − 3cx − 2a = 0 4 3 3 3 3 3 3
= (a − b ) {(a )2 + a .b + (b )2} + b
3 2 1 1
a 2 b 3 1
M. cÖgvY Ki †h, () () b
+
a
= a+
3
b
4
=a−b+b
3
= (a )3 − (b )3 + b
3
2
1 1 2
1 a − 1 −1
= a. = = 1 ev, a2 = 3 + 3 − 2.33.3
3 3 3
a a
a =1 (†`Lv‡bv n‡jv)
0
3 − 32
1 1
ev, a = 3 − 3
2
L. †`Iqv Av‡Q, 1 1
1 1 −
3 3 ev, a = 33 − 3 3
[eM©g~j K‡i]
x = (a + b) + (a − b) ............... (i)
1 1 3
1 1 −
ev, a3 = 3 − 3
3 3
ev, x3 = {(a + b)3 + (a − b)3}3 [Nb K‡i] [Nb K‡i]
− 33 3 3
− 3
1 1 1 1 1 3 1 −1 1 1 1
ev, a = 3 − 3.3 .3 3 − 3
3 3
3
ev, x = (a + b) + (a − b) + 3(a + b) (a − b) {(a + b) + (a − b) }
3 3 3 3 3
− 3
1 1 −1
1
ev, x = 2a + 3(a − b ) .x [(i) †_‡K]
3 2 2 3 ev, a = 3 − 3 − 3.a [ a = 33 − 3
3 3
]
1
3 3
ev, 3a3 = 9 − 1 − 9a
ev, x3 = 2a + 3x(c ) [ a2 − b2 = c3]
3a3 + 9a − 8 = 0 (†`Lv‡bv n‡jv)
beg-`kg †kÖwY : D”PZi MwYZ 366
M. ÔKÕ †_‡K cÖvß gvb a ev, y − 2 = 1 + 2.1 y −9 + y −9
2 1
3 3 ev, y −2 −y + 9 −1 = 2 y −9
a=1+3 +3
ev, 6 = 2 y −9
3 33
2 1
ev, (4 )
1 4x + 7
5 = {(64) } 11 ev, 44x − 30x = 105 − 77
ev, 14x = 28
4x + 7 6x + 21
ev, 4 5
=4 11
x=
28
am = an AvKv‡i †`Lv‡bv n‡jv| 14
=2
L. 2x2 + 5x −2 − 2x2 + 5x −9 =1 wb‡Y©q mgvavb x = 2
ev, y −2 − y −9 = 1 [2x2 + 5x = y a‡i] mgxKiY؇qi g‡a¨ GKwU mvaviY g~j Av‡Q Ges Zv n‡”Q x
ev, y −2 = 1 + y −9 =2
ev, ( y −2 )2 = (1 + y −9 )2 [eM© K‡i]
x ev, y = kb ...............(2)
M. hw` 9x = (27)y nq, Zvn‡j y
Gi gvb KZ? 4 zc = k
1
14bs cª‡kœi mgvavb ev, z = kc ...............(3)
K. †`Iqv Av‡Q, ax = b ........................(1) (1) (2) (3) n‡Z cvB
by = b ........................(2) 1 1 1
cz = 1 .........................(3) xyz = ka. kb. kc
(i) n‡Z cvB, ax = b 1 + 1 +1
cÖkœ-17 a = 23 + 2 3 Ges b2 + 2 = 33 + 3 3, b 0.
K. m~PK mgxKiY : m~PK I wfwË m¤^wjZ mgxKiY‡K m~PK 1
−
1
ev, x2 = 4 [ am = an n‡j m = n]
beg-`kg †kÖwY : D”PZi MwYZ 368
1
−
1
= xq − r − 1 + r − p −1 + p − q − 1. y(p − 1) (q − r − 1) + (q − 1) (r − p − 1) + (r − 1) (p − q − 1)
(
= 3 −3
3
)
3
= x−3.ypq − pr − p − q + r + 1 + qr − pq − q − r + p + 1 + pr − qr − r − p + q + 1
1
−
1
= x−3.y3−(p + q + r) [ p + q + r = 3]
b=3 −3
3 3
(†`Lv‡bv n‡jv) = x−3.y3 − 3 = x−3.y0
1
−
1 = x−3 = Wvbcÿ (†`Lv‡bv n‡jv)
L. ÔKÕ n‡Z cvB, b = 33 − 3 3 [ b 0 †h‡nZz abvZ¥K gvb wb‡q] M. †`Iqv Av‡Q, p + q + r = 3
1 1 pq + qr + rp = 3
= (3 − 3 )
3 − 3
ev, b3
3
[Dfqcÿ‡K Nb K‡i] a−2 b−2 c−2
1 3 1 3 1 1 1 1
cÖ`Ë ivwk = ap + 1 bq + 1 cr + 1
ev, b3 = 3 ( ) − (3 ) − 3.3 .3 (3 −3 )
3
−
3 3
−
3 3
−
3
=
(xyp − 1)−2 (xyq − 1)−2 (xyr − 1)−2
(xyp − 1)p + 1 (xyq − 1) q + 1 (xyr − 1)r + 1
[ (a − b)3 = a3 − b3 − 3ab (a − b)]
x−2.y−2p + 2.x−2. y−2q + 2.x−2.y−2r + 2
ev, b3 = 3−3−1 − 3.30.b [(a − b)3 = a3 − b3 − 3ab (a − b)] = p + 1 p2 − 1 q + 1 q2 − 1 r + 1 r2 − 1
x .y x y x .y
2 2
1 = x−2 − 2 −2 − p − 1 − q − 1 − r − 1y−2p + 2 − 2q + 2 − 2r + 2 − p + 1 − q + 1 − r + 1
2
ev, b3 = 3 − 3 − 3b 2 + q2 + r2)
=x −9 − (p + q + r) y 9 − 2(p + q + r) − (p
2
ev, b3 + 3b = 3
8 = x−9−3 y9 − 2.3 − {(p + q + r) − 2(pq + qr + rp)} [ p + q + r = 3]
[ p + q + r = 3 Ges pq + r + rp = 3]
2 − 2.3}
=x y
−12 9 − 6 − {(3)
[ 2 .2 3
−
3
= 23
1
−
1
3
= 20
−
Ges 23 + 2 3 = a ] K. 1g I 4_© ivwki gvb wbY©q Ki| 2
pa a2 + ab + b2 pb b2 + bc + c2 pc c2 + ca + a2
ev, a3 = 2 + 2 + 3a
1 L. () pb
c
p
() (p ) a
= x3 = (pa − b)(a + ab + b )
2 2
(p b − c)(b + bc + c )
2 2
(pc − a)(c
2
+ ca + a2)
3 3 − b3 3 − c3 3 − a3
abc = x (†`Lv‡bv n‡jv) = pa pb pc
L. evgcÿ = aq − r − 1. br − p − 1.cp − q − 1
3 3 3 3 3 3
= pa − b + b −c +c −a
p (y + z)2 y−z 3 3
ev, x−1 + y−1 + z−1 = 0 (†`Lv‡bv n‡q‡Q)
Abyiƒcfv‡e, pyz = py −z
1 1 1
Avevi, x + y + z = 0
2 z−x
p(z + x) 1 1 1
Ges pzx = pz3 − x3 ev, x + y = −z
2 1 1 1
+ +
1
3 2 ev, 1 = kx y z [ abc = 1]
= a ( ) + (b ) = a + 1
3
2 1
3
3 1
2
1
1 1 1
+ +
ev, k0 = kx y z
b3 1 1 1
1 + + = 0 (†`Lv‡bv n‡q‡Q)
x y z
= a+ = Wvbcÿ 1 1 1
3
b GLb, x + y + z
3 2
a b 1 1 1 1
b () ()= 2
+
a
3
a+ (†`Lv‡bv n‡jv) ev, x + y = −z
3
b −1 3
ev, x + y = z [Nb K‡i]
1 1 3
M. †`Iqv Av‡Q, ax = by = cz †hLv‡b, a b c ( )
awi, ax = by = cz = k 1 1 11 1 1 1
ax = k by = k cz = k
ev, x3 + y3 + 3.x y x + y = −z3 [(i) ( ) e¨envi K‡i]
1 1 1 1 1 1 1
a=k x
b=k y
c=k z ev, x3 + y3 − 3xyz = −z3
GLb, abc = 1 1 1 1 3
1 1 1 3+ 3+ 3=
x y z xyz
(†`Lv‡bv n‡jv)
ev, kx ky kz = 1 [gvb ewm‡q]
1 1 1
+ +
ev, kx y z
= k0
................................................................................ cÖ_g Aa¨vq A_©bxwZ cwiPq..................................................................................370
K. cÖgvY Ki y2 − 12y + 32 = 0 2
A b yk xj b x 9 .2
cvV m¤úwK©Z MyiæZ¡c~Y© welqvw`
jMvwi`g : Logos Ges arithmas bvgK `ywU wMÖK kã n‡Z jMvwi`g kãwUi DrcwË| Logos A_© Av‡jvPbv Ges arithmas A_© msL¨v
A_©vr, we‡kl msL¨v wb‡q Av‡jvPbv|
msÁv : hw` ax = b nq, †hLv‡b a > 0 Ges a 1, Z‡e x †K ejv nq b Gi a wfwËK jMvwi`g, A_©vr, x = logab
AZGe, ax = b x = logab
wecixZµ‡g, hw` x = logab ax = b n‡e|
G‡ÿ‡Î b msL¨vwU‡K wfwË a Gi mv‡c‡ÿ x Gi cÖwZjM (anti-log arithm) e‡j Ges Avgiv wjwL b = anti loga x
hw` loga = n nq, Z‡e a †K n Gi cÖwZjM ejv nq A_©vr, loga = n n‡j a = anti log n.
jMvwi`‡gi m~Îvewj
1. logaa = 1 Ges loga1 = 0 2. loga(M N) = logaM + logaN 5. logaM = logbM logab
3. loga(M)N = N loga M 4. loga N = logaM − logaN (M)
ciggvb : GKwU ivwk abvZ¥K A_ev FYvZ¥K hvB †nvK bv †Kb abvZ¥K wPýhy³ gvb‡K H ivwki ciggvb ejv nq| †hgb : †h
†Kv‡bv ev¯Íe msL¨v x Gi gvb k~b¨, abvZ¥K ev FYvZ¥K wKš‘ x Gi ciggvb memgqB k~b¨ ev abvZ¥K| x Gi ciggvb‡K |x|Øviv
cÖKvk Kiv nq| ciggvb wbgœwjwLZfv‡e msÁvwqZ Kiv hvq|
beg-`kg †kÖwY : D”PZi MwYZ 371
x hLb x > 0
| x | = 0 hLb x = 0
−x hLb x < 0
†hgb: |0| = 0, |3| = 3, |−3| = −(−3) = 3
ciggvb dvskb : hw` xR nq, Z‡e
x hLb x > 0
= −x hLb x < 0
y = (x) = |x| †K ciggvb dvskb ejv nq|
†Wv‡gb = R Ges †iÄ R = [0, ]
dvsk‡bi †Wv‡gb I †iÄ wbY©q :
†h‡nZz cÖ‡Z¨K dvskb GKwU Aš^q| myZivs dvsk‡bi †Wv‡gb Ges †iÄ ej‡Z Aš^‡qi †Wv‡gb Ges †ićKB †evSv‡e|
AZGe y = (x) dvsk‡bi (x,y) µ‡gv‡Rvo¸‡jvi x Gi Gi gb‡K †Wv‡gb Ges y Gi gvb‡K †iÄ e‡j|
weKí c×wZ‡Z dvsk‡bi †iÄ wbY©q :
mvaviYfv‡e †Wv‡gb wbY©q AwaKZi mnR| †Kv‡bv dvsk‡bi †Wv‡gb I †iÄ h_vµ‡g wecixZ dvsk‡bi †iÄ I †Wv‡gb|
A_©vr, g~j dvsk‡bi †Wv‡gb = wecixZ dvsk‡bi †iÄ
Avevi, g~j dvsk‡bi †iÄ = wecixZ dvsk‡bi †Wv‡gb|
a + b
= logk n n n
n n n
a b c
1. xa Gi mijgvb †KvbwU? b c a
K0 L1 Ma x = logk1 = 0 = Wvbcÿ (†`Lv‡bv n‡jv)
2. hw` a, b, p > 0 Ges a 1, b 1 nq, Z‡eÑ
i. logaP = logbP logab (a) (b)
(L) logk(ab)logk b + logk(bc)logk c + logk(ca)logk a = 0 ( c)
ii. loga a logb b logc c Gi gvb 2 mgvavb :
iii. x
logay
=y
logax
a −1
1 5 ev, logkxy = logkp [Dfq cv‡k logk wb‡q]
ev, x = 2 a−1
ev, logkx + logky = logkp
1+ 5 1− 5
ev, x = 2 A_ev, 2 logkx + (a − 1) logky = logkp ......... (i)
b −1
1− 5 Avevi, xy = q
GLv‡b x = 2
MÖnY‡hvM¨ bq| KviY x Gi FYvZ¥K
b −1
gv‡bi Rb¨ logx Gi †Kv‡bv gvb †bB| ev, logkxy = logkq
b−1
1+ 5 ev, logkx + logky = logkq
x = 2 (†`Lv‡bv n‡jv)
ev, logkx + (b − 1) logky = logkq ............ (ii)
x − x2 − 1 c−1
Ges, xy = r
(N) †`LvI †h, log = = 2log (x − x2 − 1)
x+ x −1 2
c−1
ev, logkxy = logkr
mgvavb : c−1
x− x2 − 1
ev, logkx + logky = logkr
evgcÿ = log logkx + (c − 1) logky = logkr ........... (iii)
x+ x2 − 1
(x − x − 1)(x −
2
x − 1)
2 GLb, evgcÿ = (b − c)logkp + (c − a)logkq + (a − b)logkr
= log = (b − c) {logkx + (a −1) logky} + (c − a) {logkx +
(x + x2 − 1)(x − x2 − 1)
[je I ni‡K (x − x2−1 Øviv ¸Y K‡i] (b −1) logky} + (a − b) {logkx + (c −1) logky}
= (b−c) logkx + (b − c)(a−1) logky + (c − a) logkx
(x − x2 − 1)2
= log + (c − a)(b −1) logky + (a − b) logkx + (a − b)(c−1) logky
x2 − ( x2 − 1) 2
= (b−c)logkx + (c−a)logkx + (a−b)logkx +
(x − x2 − 1)2
= log (b−c)(a−1)logky + (c−a)(b−1)logky + (a−b)(c−1)logky
x2 − x 2 + 1
2 = (b − c + c − a + a − b)logkx + (ab − b − ac + c +
= log (x − x2 − 1)
bc − c − ab + a + ac − a − bc + b) logky
= 2log (x − x−2 − 1) = 0 logkx + 0 logky
= Wvbcÿ (†`Lv‡bv n‡jv) =0
3 − x 5x 5 + x 3x = Wvbcÿ (†`Lv‡bv n‡jv)
(O) hw` a b =a b nq, Z‡e †`LvI †h, xlogk a = logka (b) ab logk(ab) bc logk(bc) ca logk(ca)
mgvavb : (Q) hw` a+b
=
b+c
=
c+a
nq, Z‡e †`LvI
3 − x 5x 5 + x 3x
†`Iqv Av‡Q, a b =a b †h, a = b = c
a b c
b 5x
a5+x ab logk(ab) bc logk(bc) ca logk(ca)
ev, b3x = mgvavb : a + b = b + c = c + a = p (awi)
a3 − x
5x − 3x
5 + x−3 + x ab logk(ab)
ev, b =a Zvn‡j, a + b = p
2x 2 + 2x
ev, b = a ev, ab logk(ab) = p(a + b)
2x 2 2x
ev, b = a .a p(a + b)
2x ev, logk(ab) = ab
b 2
ev, 2x =a p(a + b)
a logka + logkb = ab .......... (i)
2x
(b) = a
ev, a
2
p(b + c)
Abyiƒcfv‡e, logkb + logkc = bc .................. (ii)
b 2x p(c + a)
ev, log (a) = log a [Dfq cv‡k log wb‡q] Abyiƒcfv‡e, logkc + logka = ca ................... (iii)
2
k k k
x+1
(M) y = 3
mgvavb : cÖ`Ë dvskb y = 3x + 1 −x + 1
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi (O) y = 3
−x + 1
ZvwjKv ˆZwi Kwi : mgvavb : cÖ`Ë dvskb y = 3
x −2 −1 0 1 2 cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi
y 0.33 1 3 9 27 ZvwjKv ˆZwi Kwi :
QK KvM‡R XOX eivei x Aÿ Ges YOY eivei y Aÿ x −2 −1 0 1 2
AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK y 27 9 3 1 0.33
Ges y Aÿ eivei ¶z`ªZg e‡M©i cÖwZevûi ˆ`N©¨‡K GKK a‡i QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ
(−2, 0.33), (−1, 1), (0, 3), (1, 9) I (2, 27) we›`y¸‡jv QK AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK
KvM‡R ¯’vcb K‡i mvejxjfv‡e †hvM K‡i dvskbwUi †jLwPÎ Ges y Aÿ eivei cÖwZ evûi ˆ`N©¨‡K GKK a‡i (−2, 27),
A¼b Kwi| (−1, 9), (0, 3), (1, 1), (2, 0.33) we›`y¸‡jv QK KvM‡R ¯’vcb
Kwi Ges mvejxjfv‡e †jLwPÎ A¼b Kwi|
(N) y = − 3x + 1
x−1
mgvavb : cÖ`Ë dvskb y = − 3x + 1 (P) y = 3
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi mgvavb : cÖ`Ë dvskb y = 3
x−1
1
ev, − (y) = log2(1 − y) †jLwPÎ A¼b : cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y
1 Gi gvb¸‡jvi ZvwjKv ˆZwi Kwi :
(x) = log2 (1 − x)
−
x
x 0.5 1 2 3 4 5
†jLwPÎ A¼b : y = 1 − 2 Gi †jLwPÎ A¼‡bi Rb¨ x I y y −0.3 0 0.3 0.5 0.6 0.7
Gi gvb¸‡jvi ZvwjKv ˆZwi Kwi :
x −2 −1 0 1 2 3
y 075 05 0 −1 −3 3, −7
QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ Ges 0
g~jwe›`y| QK KvM‡Ri ¶z`ªZg e‡M©i Pvi evûi ˆ`N©¨‡K GKK
a‡i (−2, 075), (−1, 05), (0, 0), (1, −7), (2, −3)(3, −7)
we›`y¸‡jv QK KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i
dvskbwUi †jLwPÎ A¼b Kwi| †jLwPÎ †_‡K †`Lv hvq †h,
Avevi, x22 = 2 = 4 (1 − 2 5 + 5)
†ÿÎdj = xy = 2 3 eM© GKK = 6 eM© GKK (Ans.) 1− 5 1
2 2
Ges e‡M©i ˆ`N©¨ = AB + BC GKK 1 3 5
2 2
= 3 +2 GKK = (6 − 2 5) = −
4 2 2
= 9 +4 GKK = 13 GKK (Ans.)
=1+
1 5 1 − 5
=1+ −
log (1 + x) 2 2 2
cÖkœ \ 16 \ †`Iqv Av‡Q, log x
=2 x22 = 1 + x2
K. cÖ`Ë mgxKiYwU‡K x PjK msewjZ
GKwU wØNvZ mgxKi‡Y myZivs g~j؇qi cÖwZwUi eM© Zvi ¯^xq gvb A‡cÿv 1 †ewk (cÖgvwYZ)
cwiYZ Ki| 1+ 5 1− 5
L. cÖvß mgxKiYwU‡K mgvavb Ki Ges †`LvI †h, x Gi †Kej GLb, x1 = 2
= 1.618 Ges x2 = 2
= −0.618
GKwU exR mgxKiYwU‡K wm× K‡i| QK KvM‡R ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK a‡i,
M. cÖgvY Ki †h, g~j؇qi cÖwZwUi eM© Zvi ¯^xq gvb A‡cÿv 1 (1.618, 0) Ges (−0.618, 0) we›`y w`‡q y A‡ÿi mgvšÍivj
(GK) †ewk Ges Zv‡`i †jLwPÎ ci¯úi mgvšÍivj| K‡i †jL‡iLv `yBwU A¼b Kwi|
beg-`kg †kÖwY : D”PZi MwYZ 381
x
y = 2 Gi ˆewk󨸇jv wbgœiƒc :
(i) †jLwPÎwU (0, 1) we›`yMvgx
x
(ii) †jLwPÎwU EaŸ©Mvgx; x Gi gvb evovi mv‡_ mv‡_ 2 Gi
gvbI evo‡e|
x
(iii) x → − n‡j y = 2 → 0+
(iv) x Gi †h †Kvb gv‡bi Rb¨ y abvZ¥K|
x
M. †`Iqv Av‡Q, y = 2
ev, x = log2y
1
Avgiv Rvwb, y = (x) n‡j, − (y) = x
1
− (y) = log2y
†jL n‡Z †`Lv hvq †iLvØq ci¯úi mgvšÍivj| 1
− (x) = log2x
x
cÖkœ \ 17 \ †`Iqv Av‡Q, y = 2 cÖ`Ë dvsk‡bi wecixZ dvskb, (x) = log2x
K. cÖ`Ë dvskbwUi †Wv‡gb Ges †iÄ wbY©q Ki| awi, x1R Ges x2R
L. dvskbwUi †jLwPÎ A¼b Ki Ges Gi ˆewk󨸇jv †jL| 1
Zvn‡j, − (x1) = log2x1
M. dvskbwUi wecixZ dvskb wbY©q K‡i GwU GK-GK wKbv Zv 1
Ges − (x2) = log2x2
wba©viY Ki Ges wecixZ dvskbwUi †jLwPÎ AuvK| 1 1
GLb, − (x1) = − (x2)
mgvavb : ev, log2x1 = log2x2
x 0
K. †`Iqv Av‡Q, y = 2 hLb x = 0 ZLb y = 2 = 1 ev, x1 = x2
wecixZ dvskbwU GK-GK|
Avevi, x Gi FYvZ¥K †h †Kv‡bv gv‡bi Rb¨ y Gi gvb †Kv‡bv
wecixZ dvskbwUi †jLwPÎ A¼b Ki‡Z n‡e A_©vr y = log2x
mgq (0) k~‡b¨i LyeB KvQvKvwQ †cuŠQvq wKš‘ k~b¨ nq bv| Gi †jLwPÎ A¼b KivB h‡_ó|
+
A_©vr x → −, y → 0 x
†h‡nZz y = log2x n‡j y = 2 Gi wecixZ dvskb|
GKBfv‡e, x Gi †h †Kv‡bv abvZ¥K gv‡bi Rb¨ y Gi gvb y = x †iLvi mv‡c‡ÿ m~PK dvsk‡bi cÖwZdjb jMvwi`wgK
µgvš^‡q Wvbw`‡K (Dc‡i) e„w× †c‡Z _vK‡e ev w`‡K dvskb wbY©q Kiv n‡q‡Q, hv y = x †iLvi mv‡c‡ÿ m`„k|
avweZ n‡e| 0
Avevi, 2 = 1 Kv‡RB y = log21 = 0
A_©vr, x → −, y → −
myZivs †iLvwU (1, 0) we›`yMvgx|
myZivs †Wv‡gb, D = (−, ) hLb x → − ZLb y → 0
Ges †iÄ R = (0, ) y = log2x †iLvwU e„w×cÖvß|
x
L. y = 2 Gi †jLwPÎ A¼b : wb‡P †iLvwUi †jLwPÎ A¼b Kiv n‡jv|
x
cÖ`Ë dvskb y = 2
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi gvb¸‡jvi
wbgœiƒc ZvwjKv ˆZwi Kwi|
x −3 −2 −1 0 1 2
y 0.125 0.25 0.5 1 2 4
QK KvM‡R XOX eivei x Aÿ I YOY eivei y Aÿ Ges
g~jwe›`y O| ¶z`ªZg e‡M©i cÖwZ Pvi evûi ˆ`N©¨‡K GKK a‡i
(−3, 0.125), (− 2, 0.25), (−2, 0.5), (0, 1), (1, 2), (2, 4)
x
we›`y¸‡jv ¯’vcb K‡i mvejxjfv‡e †hvM K‡i, y = 2 Gi
†jLwPÎ A¼b Kiv n‡jv|
beg-`kg †kÖwY : D”PZi MwYZ 382
Ka b M1 N aa
1
40. log x = 3 3 n‡j x Gi gvb †KvbwU?
8
(KwVb) 97 : m~PKxq, jMvwi`gxq I ciggvb dvskb
beg-`kg †kÖwY : D”PZi MwYZ 384
mvaviY enywbe©vPwb cÖ‡kœvËi 32 L 23 M
10
N
3
3 10
51. loga loga loga aa ( b ) Gi gvb KZ? (KwVb)
70. ciggvb dvskb (x) = |x| Gi †Wv‡gb KZ?
L M {0} N (0, )
(mnR)
b
Ka b M1 N aa 71. ciggvb dvskb (x) = |x| Gi †iÄ KZ? (ga¨g)
52. log2 5 400 =x n‡j x Gi gvb KZ? (KwVb) K (−, ) L (0, ) M (, 0) [0, )
K −1 L1 M2 4 5+x
53. logarithm kãwU G‡m‡Q †Kvb kã †_‡K? (mnR) 72. y = ln
5−x
dvskbwU‡Z x→5 n‡j, y Gi gvb KZ? (mnR)
K j¨vwUb L cZ©ywMR wMÖK N divwm K0 M1 N 10
54. log264 = KZ? (ga¨g) 73. wb‡Pi †KvbwU x- †K b Gi a wfwËK jMvwi`g ejv nq?
K2 6 M8 N 64 K b = log ax L b = log xb
55. log864 = KZ? (ga¨g) x = log ab N b = log ba
2 L4 M8 N 16 74. y = 3x Gi †iÄ KZ?
56. loga(M N) = KZ? (mnR) K (−, 0) (0, () M (0, (() N (((, ()
logaM + logaN L logMa + logaN 75. y = 3x Gi wecixZ dvsk‡bi †iÄ KZ?
L (−, 0)
M loga (MN) N logaM − logaN K (0 )
a+x
(−, ) N (−1. 1)
wb‡Pi †KvbwU mwVK? (ga¨g) wb‡Pi Z‡_¨i Av‡jv‡K 88 I 89 bs cÖ‡kœi DËi `vI :
K i I ii L ii I iii i I iii N i, ii I iii y = x2; x > 0
84. i. log512 = 2log52 3 88. dvskbwUi †Wv‡gb KZ? (ga¨g)
ii. log53 log35 = 1 K (0, ) M − {0} N N
iii. xlogay = ylogax 89. dvskbwUi †iÄ KZ? (ga¨g)
wb‡Pi †KvbwU mwVK? (ga¨g) (0, ) L − {0} M − {2} N (−, 9[
i I ii L i I iii M ii I iii N i, ii I iii (x) = x + |x| hLb −2 x < 2
85. y = (x) = e−x; 2 < e < 3 Dc‡ii eY©bv n‡Z 90 Ñ 92 bs cÖ‡kœi DËi `vI :
i. G‡ÿ‡Î x → n‡j, y → 0 + nq
90. dvskbwU GKwUÑ (mnR
ii. GwU (0, 1) we›`yMvgx
K jMvwi`wgK dvskb ciggvb dvskb
iii. x → − n‡j, y → nq
M m~PK dvskb N wecixZ dvskb
wb‡Pi †KvbwU mwVK? (ga¨g)
91. cÖ`Ë dvsk‡bi †Wv‡gb KZ? (ga¨g)
K i I ii L i I iii M ii I iii i, ii I iii
K (−2, 2) L [−2, 2] M (−2, 2] [−2, 2)
86. a, b > 0 Ges a b n‡jÑ 92. cÖ`Ë dvsk‡bi †iÄ KZ? (ga¨g)
i. (ap)qr = a n‡j, pqr = 1 K (0,4) L (0, 4] M {0, 4} (0, 4)
2
ii. (axy)(axy)z = a2 n‡j, xyz = 1 logka logkb logkc
iii. logk n + logk n + logk n = 0
n n n = =
a b c y−z z−x x−y
b c a
Dc‡ii ivwk n‡Z 93 Ñ 95 bs cÖ‡kœi DËi `vI :
wb‡Pi †KvbwU mwVK? (KwVb)
93. axbycz = KZ? (ga¨g)
K i I ii L ii I iii i I iii N i, ii I iii
1
87. (x) = 2x n‡jÑ K0 L xyz 1 N
xyz
i. (x) Gi †Wv‡gb = (−, )
2 2 2 2 2 2
94. a y + yz + z
.a z + zx + x
.a x + xy + y
= KZ? (KwVb)
ii. (x) Gi †iÄ = (0, ) K0 1 M logka N
iii. −1(x) = log2x 95. ay + z.bz + x.cx + y = KZ? (KwVb)
wb‡Pi †KvbwU mwVK? (mnR) K0 L z−x M y −z 2 2
1
K i I ii L ii I iii M i I iii i, ii I iii
wb‡Pi Z‡_¨i Av‡jv‡K 108 − 111 bs cÖ‡kœi DËi `vI : 111. dvskbwUi †iÄ nq?
K [−, 0] L [−, ] MR R+
(x) = 3x2 GKwU m~PKxq dvskb, †hLv‡b x R
108. −1(3) = KZ?
a
a
(b − c)log p + (c − a)log q + (a − b)log r Gi gvb wbY©q
ab −1
= =ab = (Wvbcÿ) Ki‡Z n‡e|
a1
a a cÖ`Ë ivwk = (b − c)log p + (c − a)log q + (a − b) log r
(a )
b = a = (†`Lv‡bv n‡jv)
b b
−1
= (b − c)log (xya−1) + (c − a)log (xyb−1)
+ (a − b) (xyc−1)
L. †`Iqv Av‡Q, p = xya − 1, q = xyb − 1, r = xyc − 1
= (b − c)log x + (b − c)logy + (c − a)logx
a−1
p q r
evgcÿ = (b + a)log q + (c + b)log r + (a + c)log p + (c−a)logyb−1 + (a − b)logx + (a − b)logc−1
p q r = (b − c)logx + (b − c) (a − 1) logy + (c − a)logx + (c − a)
= (a + b)log
q
+ (b + c)log + (c + a)log
r q (b − 1) logy + (a − 1) logx + (a − b) (c − 1) logy
xya−1 xyb−1 xyc−1 = (b − c + c − a + a − b)logx + {(b − c) (a − 1)
= (a + b)log b−1 + (b + c)log c−1 + (c + a)log a−1
xy xy xy + (c − a) (b − 1) + (a − b)(c − 1)} logy
ya−1 yb−1 yc−1 = 0 logx + {(b − c) (a − 1)
= (a + b)log b−1 + (b + c)log c−1 + (c + a)log a−1 + (c − a) (b − 1) + (a − b)(c − 1)} logy
y y y
= 0 + {(ab − ca − b + c) + (bc − ab − c + a)
= (a + b)log ya − 1 − b + 1 + (b + c)log yb − 1 − c + 1
+ (ca − bc − a + b)}logy
+ (c + a)log yc − 1 − a + 1
− − = (ab − ca − b + c + bc − ab − c + a + ca − bc − a + b)logy
= (a + b)log y a b + (b + c) log y b c + (c + a) log yc − a
= 0 log y = 0
= (a + b) (a − b)log y + (b + c)(b − c)log y + (c + a) (c − a)log y
= (a2 − b2)log y + (b2 − c2)log y + (c2 − a2)log y
wb‡Y©q gvb 0
= (a2 − b2 + b2 − c2 + c2 − a2)log y
= 0 log y = 0 = (Wvbcÿ)
1 1 1
ev, 1 = x + y + z
yz + zx + xy
ev, xyz
=1
xyz = zy + yz + zx (cÖgvwYZ)
M. †`Iqv Av‡Q, x = 1 + logabc
ev, x − 1 = logabc
ev, ax − 1 = bc ................ (i)
Avevi, y = 1 + logbca
ev, y − 1 = logbca
ev, by − 1 = ca ............... (ii)
Abyiƒcfv‡e, cz − 1 = ab .......... (iii) 1, 5
(i), (ii) I (iii) ¸Y K‡i cvB,
ax −1. by − 1. cz − 1 = bc. ca. ab
ev, ax − 1. by − 1. cz − 1 = a2.b2.c2 (−2 251 ) −1, 51 (0, 1)
ax − 1 by − 1 cz − 1 −1 −2 −3 O
ev, a2 . b2 . c2 = 1 X
Y
1 2 3 X
1
ev, f−1 : y → log2 y ev, −1 : y → y − 2
y+1
logkp = c(y − z) ..........(i) ïaygvÎ abvZ¥K ev¯Íe msL¨vi Rb¨ jMvwi`g msÁvwqZ nq|
logkq = c(z − x) ........... (ii) 1
>0 hw` 1 − y > 0 nq|
1−y
logkr = c(x − y) ........... (iii)
ev, 1 > y
(i), (ii) I (iii) bs †hvM K‡i cvB,
logkp + logkq + logkr = c(y − z + z − x + x − y) y<1
ev, logkpqr = c.0 = 0 = logk1 †iÄ R = (− , 1)
pqr = 1 (cÖgvwYZ) L. †jLwPÎ A¼b : cÖ`Ë dvskb, y = 1 − 2−x
L. mgxKiY (i), (ii) I (iii) †K h_vµ‡g (y + z), (z + x) I (x + y) cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gv‡bi GKwU
Øviv ¸Y Kivi ci †hvM K‡i cvB, ZvwjKv cÖ¯‘Z Kwi :
(y + z)logkp + (z + x)logkq + (x + y)logkr = x −3 −2 −1 0 1 2
c {(y + z)(y − z) + (z + x)(z − x) + (x + y)(x − y)} y −7 −3 −1 0 0.5 0.75
ev, logkp(y + z) + logkq(z + x) + logkr(x + y) =
c{y2 − z2 + z2 − x2 + x2 − y2}
QK KvM‡R gvb¸‡jv ¯’vcb Ki‡j wbgœiƒc †jLwPÎ cvIqv hvq|
ev, logk(py + z.qz + x.rx + y) = c.0 = 0 = logk1 x-Aÿ : cÖwZ 4 eM© = 1 GKK a‡i
py + z.qz + x.rx + y = 1 (cÖgvwYZ) y-Aÿ : cÖwZ 4 eM© = 1 GKK a‡i
ab b
1 1 1
= logalogaa .1 = logaa logaa ev, x + y + z = 1
= logaab.1 = blogaa = b.1 = b = Wvbcÿ
1 1 1
ab log (abc) + log (abc) + log (abc) = 1 (†`Lv‡bv n‡jv)
A_©vr logalogaloga(aa ) = b (†`Lv‡bv n‡jv) a b c
2y + 1
ev, (y) = y − 1 K. cÖgvY Ki †h, x2 − x − 1 = 0 2
1+ 5
2y + 1 L. †`LvI †h, x = 4
ev, x = y − 1 2
1+ 5
ev, 2y + 1 = xy − x M. x = 2
Ges log Gi wfwË 2 a‡i DcwiD³
ev, 2y − xy = −1− x mgxKi‡Yi mZ¨Zv hvPvB Ki| 4
ev, y (2 − x) = −(1 + x) 14 bs cª‡kœi mgvavb
−(x + 1)
ev, y = −(x − 2) logk(1 + x)
K. †`Iqv Av‡Q, logkx
=2
x+1
ev, y = x − 2 ev, logk(1 + x) = 2logkx
−1(x) =
x+1 ev, logk(1 + x) = logkx2
x−2
ev, 1 + x = x2
x − 2 = 0 ev, x = 2 emv‡j dvskbwU AmsÁvwqZ nq| x2 − x − 1 = 0 (cÖgvwYZ)
−1
†Wv‡gb = − {2} (Ans.)
x+1 L. ÔKÕ †_‡K cvB, x2 − x − 1 = 0
Avevi awi, y = x − 2 1 2
ev, xy − 2y = x + 1
ev, (x)2 − 2.x.2 + 2 (1) − 14 − 1 = 0
ev, xy − x = 2y + 1 1 2
5 52
ev, x(y − 1) = 2y + 1
( )
ev, x − 2 =
4 2
=
1 5
x=
2y + 1 ev, x − 2 = 2
y−1
y = 1 emv‡j x Gi gvb AmsÁvwqZ nq| 1
nq, x − 2 = 2
5 1
A_ev, x − 2 = − 2
5
−1
†iÄ = − {1} (Ans.)
5 1 5 1
M. †h‡nZz jMvwi`g ïaygvÎ abvZ¥K ev¯Íe msL¨vi Rb¨ msÁvwqZ ev, x = 2 + 2 ev, x = − 2 + 2
5+x
>0 1+ 5 − 5 + 1 −( 5 − 1)
5−x x= x=− =
2 2 2
hw` (i) 5 + x > 0Ges 5 − x >0 nq −( 5 − 1)
A_ev, (ii) 5 + x<0 Ges 5 − x<0 nq| GLv‡b, x = 2
MÖnY‡hvM¨ bq|
n‡Z x > −5 Ges 5 > x KviY x Gi FYvZ¥K gv‡bi Rb¨ logx Gi gvb msÁvwqZ bq|
beg-`kg †kÖwY : D”PZi MwYZ 394
x=
1+ 5
2
(†`Lv‡bv n‡jv) xlogk (ba) = log a (†`Lv‡bv n‡jv)
k
logk(1 + x)
M. †`Iqv Av‡Q, log x = 2 œ 16 x = 1 + logabc, y = 1 + logbca Ges z = 1 + logcab
cÖk-
k 1
cÖkœg‡Z, k = 2 [ wfwË = 2] K. †`LvI †h, a = (abc)x 2
logk(1 + x) log2(1 + x) L. cÖgvY Ki †h, xyz = xy + yz + zx 4
evgcÿ =
logkx
=
log2x
M. †`LvI †h, ax − 3.by − 3.cz − 3 = 1 4
log210 log10 (1 + x) log(1 + x)
=
log210 log10x
=
logx
16bs cª‡kœi mgvavb
K. †`Iqv Av‡Q x = 1 + logabc
log 1 +
1 + 5
2 log 2.618 ev, x = logaa + logabc
= = = 2.000006
ev, x = logaabc
log
1 + 5 log 1.618
2 ev, ax = abc
= 2 Wvbcÿ (†`Lv‡bv n‡jv) 1
a = (abc)x (†`Lv‡bv n‡jv)
œ 15 a3 − x b5x = a5 + xb3x
cÖk-
K. hw` x = 0 nq Z‡e cÖgvY Ki 2logka = 0 2 1
x
L. †`LvI †h, (1 + x)logka = xlogkb 4 L. ÔKÕ n‡Z cvB, a = (abc) .............. (i)
1
M. †`LvI †h, xlogk a = logka (b) 4 Abyiƒcfv‡e, b = (abc)y .............. (ii)
15bs cª‡kœi mgvavb 1
x
b 2x 2
ev, log (a) = log a
k k
2 œ 17 y = 2 GKwU m~PK dvskb Ges −3 x 3
cÖk-
b K. cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi
ev, 2x log (a) = 2 log a
k k gv‡bi ZvwjKv cÖ¯‘Z Ki| 2
L. dvskbwUi †jLwPÎ A¼b Ki| 4
M. dvskbwUi †Wv‡gb I †iÄ wbY©q Ki| 4
beg-`kg †kÖwY : D”PZi MwYZ 395
17bs cª‡kœi mgvavb x
x M. †`Iqv Av‡Q, y = 22
x
K. awi, y = (x) = 22
x Gi K‡qKwU wbw`©ó gv‡bi Rb¨ y-Gi Avmbœ Abym½x gvb awi, y = (x) = 22
wbY©q Kwi Ges Q‡K wjwL : x Gi †h‡Kv‡bv ev¯Íe gv‡bi Rb¨ y = (x) Gi gvb msÁvwqZ
x −3 −2 −1 0 1 2 3 nq|
y myZivs dvskbwUi †Wv‡gb D =
0.35 0.5 0.70 1 1.41 2 2.82
GLb,
L. ÔKÕ Gi cÖvß we›`y¸‡jv QK KvM‡R myweavg‡Zv x Aÿ XOX (x) = y
Ges y-Aÿ YOY AuvwK| x-Aÿ eivei 4 ¶z`ªZg eM© = 1 ev, −1(y) = x .......... (i)
GKK Ges y Aÿ eivei ¶z`ªZg 10 eM© Ni = 1 GKK a‡i (x, x
y) we›`y¸‡jv cvZb Kwi| we›`y¸‡jv‡K mnRfv‡e eµ‡iLvq hy³ Ges y = 22
K‡i y = (x) Gi †jL cvIqv hvq| x
ev, log2y = 2
hv wb‡P †`Lv‡bv n‡jv Ñ
ev, x = 2log2y .......... (ii)
ïaygvÎ abvZ¥K ev¯Íe msL¨vi jMvwi`g msÁvwqZ nq|
myZivs y-Gi abvZ¥K ev¯Íe gv‡bi Rb¨ x-Gi ev¯Íe gvb Av‡Q|
dvskbwUi †iÄ R = {xR : x > 0}
(xx )
a
ev, log (1 x+ x) = 0 = log1
2
1+x
2 2
= (xa − b)a + ab + b (xb − c)b + bc + c (xc − a)c
2 2 2 + ca + a2
ev, x2 = 1
3 3 3 3 3 3
= x(a − b ) x(b − c ) x(c − a ) ev, x2 = 1 + x
3 3 3 3 3 3
= xa − b + b − c + c − a
ev, x2 − x − 1 = 0
= x0 = 1 = Wvbcÿ
1 1 1
a2 + ab + b2 b2 + bc + c2 c2 + ca + a2 ev, x2 − 2x.2 + 4 − 1 − 4 = 0
q−1 −1 −1
p q r
r q =1 (†`Lv‡bv n‡jv) 2
( 1) = 54
ev, x − 2
1 1 1
M. 1 + p + q−1 + 1 + q + r−1 + 1 + r + p−1 1 5
ev, x − 2 = 2 [FYvZ¥K gvb eR©b K‡i]
beg-`kg †kÖwY : D”PZi MwYZ 397
5 1 1+ 5 Y
x=
2 2
+ =
2
(†`Lv‡bv n‡jv) (35, 468)
Y
†jLwPÎ n‡Z †`Lv hvq †h, x Gi gvb hZ e„w× cvq, y Gi
gvb ZZB 1 Gi KvQvKvwQ †cŠQvq wKš‘ 1 nq bv| A_©vr x →
, y → ZLb y → 1| x Gi gvb hZB FYvZ¥K w`‡K e„w×
cvq, y Gi gvb ZZB n«vm †c‡Z _v‡K Ges µgvš^‡q −
w`‡K avweZ nq| A_©vr x → − , y → −
†Wv‡gb Dr = (−,); †iÄ Rr = (− , 1) (Ans.)
p−1 q−r q −1 r − p r −1 p − q
xb = log{(xy ) .(xy ) .(xy ) }
K. †`Iqv Av‡Q, Q = xc = xb–c = log1 [(i) Gi mvnv‡h¨]
hw` Q = 1 nq, = 0 (Ans.)
1 = xb–c œ 32 x = logay †hLv‡b a > 0, a 1
cÖk-
ev, x = xb–c x
ev, 0 = b – c 1 x − y x − y
2 2
x x + y
b = c (†`Lv‡bv n‡jv) K. 2 Gi gvb KZ? 2
L. †`Iqv Av‡Q, pa+b–c . Qb+c–a . Rc+a–b 1
−
1
a a+b–c b b+c–a c c+a–b
L. y = 23 + 2 3 n‡j, †`LvI †h, 2y3 − 6y − 5 = 0 4
= (xx ) (xx ) (xx )
b c a
log10(1 + x)
= (xa–b)a+b–c . (xb–c)b+c–a . (xc–a)c+a–b M. x Gi †Kvb gv‡bi Rb¨ log10x
=2 n‡e? 4
2 2 2 2 2 2
= xa +ab–ac–ab–b +bc . xb +bc–ab–bc–c +ac . xc +ac–bc–ac–a +ab
=x a2–ac–b2+bc
.x b 2–ab–c2+ac
.x c2–bc–a2+ab 32bs cª‡kœi mgvavb
= x = 1 x x
1 x − y x − y 1 (x − y) (x + y)x − y
2 2
pa+b–c . Qb+c–a . Rc+a–b =1 (†`Lv‡bv n‡jv)
x x+y (x + y)
M. (a2 + ab + b2) logkP + (b2 + bc + c2) logkQ + (c2 + ca + a2) logkR K. 2 = 2x
xa xb (x − y)x
= (a2 + ab + b2) logk b + (b2 + bc + c2) logk c + 1 x−y 1x
= 2x = 2x = 21 = 2 (Ans.)
x x
2 2
xc 1 1
(c + ca + a ) logk a −
x 3 3
L. y=2 +2 ........................ (i)
= (a2 + ab + b2) logkxa–b + (b2 + bc + c2) logkxb–c +
(c2 + ca + a2) logkxc–a
− 33
1 1
= 2 +2
3
= (a – b) (a2 + ab + b2) logkx + (b2 + bc + c2) (b – c) logkx ev, y 3
[Nb K‡i]
+ (c2 + ca + a2) (c – a) logkx
33 − 33 − 3
1 1 1 1
= (a3 – b3) logkx + (b3 – c3) logkx + (c3 – a3) logkx 1
−
1
ev, y3 = 2 + 2 + 3.23.2 32 + 2
3
= (a3 – b3 + b3 – c3 + c3 – a3) logkx
= 0.logkx
=0 ev, y3 = 2 + 2−1 + 3.20.y [(i) †_‡K]
(a2 + ab + b2) logkP + (b2 + bc + c2) logkQ + (c2 + ca + 1
a2) logkR = 0 (cÖgvwYZ) ev, y3 = 2 + 2 + 3y
œ 31 a = xyp − 1, b = xyq − 1 Ges C = xyr − 1
cÖk- ev, 2y3 = 4 + 1 + 6y
K. aq−r Gi mij gvb wbY©q Ki| 2 2y3 − 6y − 5 = 0 (†`Lv‡bv n‡jv)
L. †`LvI †h, aq − rbr − pcp − q = 1 4
log10(1 + x)
M. mij Ki : (q − r) loga + (r − p) logb + (p − q) M. =2
log10x
logc 4
31bs cª‡kœi mgvavb ev, 2log10x = log10(1 + x)
xb xc xa
b 1 c 1 a 1
xcbc xaca xbab
=
c 1 a 1 b 1
x
b bc x xaab
c ca
1 1 1
2 2 2
x c xa x b
= = 1 (Ans.)
1 1 1
2 2 2
xb xc xa
x− x2 − 1
M. evgcÿ = logk g‡b Kwi, QK KvM‡Ri XOX eivei x-Aÿ, YOY eivei y
x+ x2 − 1
Aÿ Ges O g~jwe›`y| x-A‡ÿ cÖwZ ¶z`ªZg 2 eM© = 1 GKK
(x − x2 − 1)(x − x2 − 1) Ges y A‡ÿ cÖwZ ¶z`ªZg 10 eM© = 1 GKK a‡i Q‡K cÖvß
= logk
(x + x − 1)(x −
2
x2 − 1) (x, y) we›`y¸‡jv QK KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e hy³
K‡i cÖ`Ë dvsk‡bi †jLwPÎ A¼b Kwi|
beg-`kg †kÖwY : D”PZi MwYZ 401
b b+c c c+a a a+b
ev, x2 − 12x + 32 = 0
œ 35 A = xc
cÖk- (x ) (xx ) a (xx )b
ev, x(x − 8) − 4(x − 8) = 0
2 2 (x − 4) (x − 8) = 0
B = a2 − 33 − 33 + 2 Ges a 0 x = 4 A_ev 8
P = loga(bc), q = logb(ca), r = logc(ab) n‡j, wb‡Y©q mgvavb, x = 4 A_ev 8
K. †`LvI †h, A = 1 2 3 3
L. †`Iqv Av‡Q, a2 − b2 = c3 Ges x = a + b + a − b
L. B = 0 n‡j †`LvI †h, 3a3 + 9a = 8 4
evgcÿ = x3 − 3cx − 2a
1 1 1
M. cÖgvY Ki †h, p + 1 + q + 1 + r + 1 = 1 4 3
= ( 3
a+b+ ) + 3.c ( a + b + a − b) − 2a
3 3
a−b
3
= ( a + b) + 3. a + b. a − b( a + b + a − b)
3 3 3
2 2 3 3 3
−
L. †`Iqv Av‡Q, B = a2 − 33 − 3 3 + 2 Ges B = 0
+ ( a − b) −3.c( a + b + a − b) − 2a
3 3 3
2 2 3
−
A_©vr a2 + 2 + 33 −3 3 =0
3 2
2
−
2 = a + b + 3. a − b2. x + a − b − 3cx − 2a
ev, a2 +2= 33 +3 3
3 3
1 2 1 2 = 2a + 3 − 3cx − 2a = 3cx − 3cx = 0 = Wvbcÿ
c .x
( ) + (3 ) − 2
ev, a2 = 33
−
3 x3 − 3cx − 2a = 0 (†`Lv‡bv n‡jv)
1 2 1 2 1 1 1 1
ev, a = (3 ) + (3 ) − 23
− −
[ −
] 3
3 3 3 3 3 33. 3 3 = 3 = 1
(ba) + (ba) = 1
2 2 2
2
M. cÖgvY Ki‡Z n‡e, a+
1 1 3
ev, a = (3 ) − b
2 3−3 3
3 3 2
(ba) + (ba)
1 1
− evgcÿ =
ev, a = 33 − 3 3 [Dfqc‡ÿ eM©g~j Ges
a 0 abvZ¥K gvb wb‡q]
a3 3 b2 1 3 b2 a = b3
= a3. 3 +
b3 a2 = b3
1 1 3 = +
ev, a3 ( −
33 − 3 3 ) [Dfqcÿ‡K Nb K‡i]
b3 a2 b
1 3 1 3 1 1 1 1 a a 3 1 1
ev, a3 = ( ) − (3 ) −
33
−
3
−
3.33.3 3 (3 −
3−3 3 ) =
a
+
b
= a+
3
= Wvbcÿ
[ (a − b)3 = a3 − b3 − 3ab (a − b)] b
ev, a3 =3− 3−1 − 3.30.a a 3 3
b 2 1
1 1 1 1 1 1 ()b
+ ()= a
a+ (cÖgvwYZ)
− − − 3
[ 33 .3 3 = 33 3 = 3 Ges 33 −3 3 = a] b
1 loge(1 + x)
ev, a3 = 3 − 3 − 3a œ 37
cÖk- logex
=2 GKwU jMvwi`wgK mgxKiY|
8 K. cÖ`Ë mgxKiYwU‡K x PjK msewjZ GKwU exRMvwYwZK
ev, a3 + 3a = 3
wØNvZ mgxKi‡Yi Av`k©iƒ‡c cÖKvk Ki| 2
(†`Lv‡bv n‡jv)
3a3 + 9a = 8
L. ÔK' n‡Z cÖvß wØNvZ mgxKibwUi g~‡ji cÖK…wZ
M. Abykxjbx- 9.2 c„ôv-192, D`vniY-10 bs `ªóe¨|
wbY©q Ki Ges †jLwP‡Îi mvnv‡h¨ mgvavb Ki| 4
3 3 − x 5x
3
œ 36 hw` a > 0 Ges x = a + b + a − b Ges a = b3 nq
cÖk- M. hw` a b = a b nq Z‡e †`LvI †h,
5 + x 3x
Z‡e,
K. mgvavb Ki : log10 [98 + − 12x + 36] = 2 x2 2
x loge (ba) = log a e 4
(x + xk ) = x + C x (xk ) + C x (xk ) + C
n 2
n n n−1 n n−2 n
2 1 2 2 2 3
(xk ) + ...................
3
n−3
x 2
(−3, 11) (4, 11)
k n k2 k3
= xn + nxn − 1 2 + C2 xn − 2 4 + nC3 xn − 3 6 + .......
x x x
(3, 5) = xn + nxn − 3 k + nC2 xn − 6 k2 + nC3 xn − 9 k3 + ............
we¯Í„wZwUi 4_© c` nC3 xn − 9 k3
(−1, 1) (2, 1) ivwkwU x gy³ e‡j
X X xn − 9 = x0
Y ev, n − 9 = 0
n = 9 (Ans.)
Aw¼Z †jLwU X- Aÿ‡K x = 16 Ges M. ÔLÕ Ask n‡Z cÖvß, n = 9, we¯Í„wZwU‡Z ewm‡q cvB,
x = −06 we›`y‡Z †Q` K‡i‡Q| k 9
wb‡Y©q mgvavb : x = −06, 16 ( )
x + 2 = x9 + 9c1x9 − 3 k + 9c2x9 − 6 k2 + 9c3x9 − 9 k3 +
x
.............
M. †`Iqv Av‡Q, a3 − x b5x = a5 + x b3x = x9 + 9c1x6 k + 9c2x3 k2 + 9c3 k3 + ..................
b5x a5 + x cÖkœg‡Z, c2k2 = 144
9
ev, b3x = a3 − x [Dfqcÿ‡K a3 −x. b3x Øviv fvM K‡i]
98
ev, b5x − 3x = a5 + x − 3 + x ev, 12 k2 = 144
ev, b2x = a2 + 2x 72
ev, 2 k2 = 144
ev, b2x = a2.a2x
ev, 36 k2 = 144
b2x
ev, a2x = a2 [Dfqcÿ‡K a2x Øviv fvM K‡i] 144
ev, k2 = 36
b2x
ev, logea2x = logea2 [Dfqc‡ÿ loge wb‡q] ev, k2 = 4
2x k = 2 (†`Lv‡bv n‡jv)
(b) = log a
ev, loge a e
2
x3 + 2x2 + 1
œ 39 (x) = x2 − 2x − 3 Ges g(y) = 22y − 3.2y + 2 + 32.
cÖk-
b
ev, 2x log (a ) = 2log a
b
e e
( 1)
K. − 3 wbY©q Ki| 2
x log (a ) = log a (†`Lv‡bv n‡jv)
e e L. g(y) = 0 n‡j y Gi gvb wbY©q Ki| 4
M. (x) †K AvswkK fMœvs‡k cÖKvk Ki| 4
cÖk-œ 38 wb‡Pi Z_¨¸‡jv j¶ Ki Ges cÖkœ¸‡jvi DËi `vI: 39 bs cª‡kœi mgvavb
(i) am.an = (am)n GKwU m~PKxq mgxKiY| x3 + 2x2 + 1
K. †`Iqv Av‡Q, (x) = x2 − 2x − 3
beg-`kg †kÖwY : D”PZi MwYZ 403
1 1 3 2 x(x2 − 2x − 3) + 4x2 + 3x + 1
1
(− ) =
(− ) + 2 (− ) + 1
3 3
=
2
x2 − 2x − 3
3 2 4x + 3x + 1
(−13) − 2 (−13) − 3 =x+ 2
x − 2x − 3
1 2 −1 + 6 + 27 4(x2 − 2x − 3) + 11x + 13
− + +1 =x+
x2 − 2x − 3
27 9 27
= =
1 2 1 + 6 − 27 11x + 13
+ −3 =x+4+ 2
9 3 9 x − 2x − 3
32 11x + 13
=x+4+
27 32 9 (x + 1)(x − 3)
= =
−20 27 −20 11x + 13
9
GLv‡b, (x + 1)(x − 3) GKwU cÖK…Z fMœvsk|
8 11x + 13 A B
=−
15
(Ans.) awi, (x + 1)(x − 3) (x + 1) + (x − 3) ............(i)
L. †`Iqv Av‡Q, (i) bs mgxKi‡Yi Dfqcÿ‡K (x + 1)(x − 3) Øviv ¸Y K‡i cvB,
g(y) = 22y − 32y + 2 + 32 11x + 13 A(x − 3) + B(x + 1) .......................(ii)
GLb, g(y) = 0 (ii) bs mgxKi‡Y x = 3 ewm‡q cvB,
ev, 22y − 32y + 2 + 32 = 0 33 + 13 = 4B
ev, 22y − 32y. 22 + 32 = 0 ev, 4B = 46
ev, 22y − 32y 4 + 32 = 0 23
B=
2
ev, (2y)2 − 122y + 32 = 0
Avevi, (ii) bs mgxKiY x = − 1 ewm‡q cvB,
ev, x2 − 12x + 32 = 0 [2y = x a‡i]
−11 + 13 = − 4A
ev, x2 − 8x − 4x + 32 = 0 ev, − 4A = 2
ev, x(x − 8) − 4(x − 8) = 0 1
A=−
ev, (x − 8)(x − 4) = 0 2
nq, x − 8 = 0 A_ev, x − 4 = 0 A I B Gi gvb (i) bs mgxKi‡Y ewm‡q cvB,
ev, x = 8 ev, x = 4 11x + 13
=
23
−
1
(x + 1)(x − 3) 2(x − 3) 2(x + 1)
ev, 2 = 2
y 3 ev, 2y = 22
wb‡Y©q AvswkK fMœvsk,
y=3 y=2
23 1
y Gi gvb 2, 3 (Ans.) f(x) = x + 4 + − (Ans.)
2(x − 3) 2(x + 1)
x3 + 2x2 + 1
M. †`Iqv Av‡Q, f(x) = x2 − 2x − 3