0% found this document useful (0 votes)
23 views54 pages

H Math Chapter-9-54

Uploaded by

1242 Tonny
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
23 views54 pages

H Math Chapter-9-54

Uploaded by

1242 Tonny
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 54

beg-`kg †kÖwY : D”PZi MwYZ  350

beg Aa¨vq
m~P K xq I j Mvwi`gxq d vskb John Napier
¯ ‹wUk MwYZwe` Rb †bwcqvi (1550Ñ1671) †K
¯ ^vfvweK jMvwi`‡gi RbK ejv nq| ¯^vfvweK
Exponential & Logarithmic Functions jMvwi`g‡K †bwcqvb jMvwi`gI ejv nq| wZwb cÖ_g
myk„•Ljfv‡e decimal point e¨envi ïiæK‡ib|

A b yk xj b x 9 .1
cvV m¤úwK©Z MyiæZ¡c~Y© welqvw`
ev¯Íe msL¨v : mKj gyj` msL¨v Ges Ag~j` msL¨v‡K ev¯Íe msL¨v n −n
ejv nq| ev¯Íe msL¨vi †mU‡K R Øviv cÖKvk Kiv nq| m~Î 7 : a < 0 Ges n  N, n > 1, n we‡Rvo n‡j, a = |a|
p n m n
g~j` msL¨v : p I q c~Y©msL¨v Ges q  0 n‡j q AvKv‡ii msL¨v‡K m~Î 8 : a > 0, m  Z Ges n  N, n >1 n‡j, ( a) = am
m p
g~j` msL¨v ejv nq| m~Î 9 : hw` a > 0 Ges n = q nq, †hLv‡b m, p  Z Ges
p
Ag~j` msL¨v : †h msL¨v‡K q AvKvi cÖKvk Kiv hvq bv, †hLv‡b p, q n q
n, q  N, n > 1, q >1 Z‡e, am = ap
c~Y©msL¨v Ges q 0 †m msL¨vK Ag~j` msL¨v e‡j| Abywm×všÍ : hw` a > 0 Ges n, k  N, n >1 nq, Z‡e
c~Y©msL¨v : k~b¨mn mKj abvZ¥K I FYvZ¥K ALÊ msL¨vmg~n‡K n nk
c~Y©msL¨v ejv nq| c~Y©msL¨vi †mU‡K Z Øviv cÖKvk Kiv nq| a= ak
¯^vfvweK msL¨v : 1, 2, 3, 4 ............ BZ¨vw` mvaviYZ MYbvg~jK g~j` fMœvsk m~PK
msL¨v¸‡jv‡K ¯^vfvweK msL¨v ejv nq| ¯^vfvweK msL¨v‡K abvZ¥K 1
n
ALÊ msL¨v ejv nq| msÁv : a  R Ges n  N, n >1 n‡j, an = a hLb a > 0 A_ev
a < 0 Ges we‡Rvo|
¯^vfvweK msL¨vi †mU‡K N Øviv cÖKvk Kiv nq|
1
m
m
m~PKxq ivwk : m~PK I wfwË m¤^wjZ ivwk‡K m~PKxq ivwk ejv nq|
msÁv : a > 0, m  Z Ges n  N, n >1 n‡j (6) a n
= an
m~PK m¤úwK©Z m~Î (Laws of Exponent) : m m
m~Î 1 : a  R Ges n  N n‡j, a1 = a, an + 1= an.a msÁv : a n = ( n a) =
n
am †hLv‡b, a > 0, m  Z, n  N, n > 1
m~Î 2 : a  R Ges m, n  N n‡j, am. an = am + n m p
m~Î 3 : a  R, a  0 Ges m, n  N, m  n n‡j, myZivs p  Z, q  Z, n > 1 hw` Ggb nq †h, = nq, Z‡e
n q
m p
a hLb m > n
m−n
m
a
= 1
m~Î-9 †_‡K †`Lv hvq †h, a n = aq
an hLb m < n m~Î 10 : a > 0, b > 0 Ges r, s  Q n‡j,
an−m
n ar s
m~Î 4 : a  R Ges m, n  N n‡j, (am) = amn (K) ar.as = ar + s (L) as = ar − s (M) (ar) = ars
m~Î 5 : a, b  R Ges n  N n‡j, (a.b)n = an.bn ar
(a )
r
m~Î 6 : a  0, b  0 Ges m, n  Z n‡j, (N) (ab)r = arbr (O) b = br
(K) am.an = am + n K‡qKwU cÖ‡qvRbxq Z_¨ :
am
(L) an = am − n (i) hw` ax = 1 nq, †hLv‡b a > 0, Ges a  1, Zvn‡j x = 0
n (ii) hw` ax = 1 nq, †hLv‡b a > 0 Ges x  0, Zvn‡j a = 1
(M) (am) = amn
(N) (ab)n = an.bn (iii) hw` ax = ay nq, †hLv‡b a > 0 Ges a  1, Zvn‡j x = y
n n a
(iv) hw` ax = bx nq, †hLv‡b b > 0 Ges x  0, Zvn‡j a = b
(a) = ba
(O) b n

Abykxjbxi cÖkœ I mgvavb


beg-`kg †kÖwY : D”PZi MwYZ  351
p 3 2 3 −3 3
− − 2

cÖkœ \ 1 \ cÖgvY Ki †h, (a ) = a


m
n
mp
n
; †hLv‡b m, p  Z Ges n  N
=
( a ) + 2.a .a
2
+ (a ) − 1
2 2 2

3 3
m p 1 m m 1 −2
mgvavb : (a ) = {(a ) } [ a = (a ) ]
P m 2
n n n n a +a +1
3 3 2

= a ( )
1 mp
n m n
[(a ) = a m n]
=
( a +a ) −1
2 2

3 3
mp
2
−2+1
n
=a a +a
mp 3 3 3 3
m p
− −
 an ( ) ==a n
(cÖgvwYZ)
1 =
( a + a + 1) (a + a − 1)
2 2 2 2

3 3

cÖkœ \ 2 \ cÖgvY Ki †h, a ( ) =a


1
m
n 1
mn
, †hLv‡b m, n  N, m 
3
(a + a− + 1)
−3
2 2

0, n  0
= a2 + a 2 − 1 = Wvbcÿ
mgvavb : g‡b Kwi, m1 = x Ges 1n = y −3
2 2 
− 3
a3 + a 3 + 1
∴ mx = 1 ∴ ny = 1  3 −3 = a + a − 1 (†`Lv‡bv n‡jv)
1
1 2 2
a +a +1
GLb, (a ) = (a )
n
m x y
n
cÖkœ \ 5 \ mij Ki :
= axy [∵ (am) = amn] a
a+b
 1 a − b 
2 2
mxny 11

=a
mn
=a
mn
[gvb ewm‡q]   a − b 
1 K. xa 
mn a
=a
 1 a − b a + b
2 2
1
 
1
n 1  a a − b 
myZivs a  = amn (cÖgvwYZ) x 
m
mgvavb : 
m m m a
 1 (a +(ab)(a 
− b) a + b
 1 a+ba+b
a
cÖkœ \ 3 \ cÖgvY Ki †h, (ab) n = an bn; †hLv‡b m  Z, n  N
 a − b)    
mgvavb : g‡b Kwi, n = x
m
= x   = xa  
1
m a
a
m =x = x1 = x (Ans.)
GLb, evgcÿ = (ab) = (ab) n x
[
n
= x] 3
2
= ax.bx a + ab − a
L.
m m ab − b3 a−b
n n
= a . b = Wvbcÿ 3 1
m m m a2 + ab − a a.a2 + ab − a
 (ab) n an bn (cÖgvwYZ) mgvavb : =
= ab − b 3
a − b b(a − b )
2
a−b
1
cÖkœ \ 4 \ †`LvI †h, 2
a(a + b) − a
=
1 1 2 1 1 2
b(a − b2) a−b
(
K. a − b 3 ) (a + a b + b ) = a − b
3 3 3 3 3
a( a + b) − a
mgvavb : =
1 1 2 1 1 2 b{( a)2 − b2} a−b
evgcÿ = a3 − b3( ) (a + a b + b ) 3 3 3 3
=
a( a + b) − a
  b( a + b) ( a − b) a−b
  
1 1 1 2 1 1 1 2
=(
a − b ) a  + a b + b  
3 3 3 3 3 3
a − a
1 3 1 3 =
= 
a3
 3 3 3 b( a − b) a−b
− b  = a3− b3 = a − b = Wvbcÿ
a. a − b a
=
1 1 2 1 1 2 b( a − b)
(
 a −b 3 ) (a + a b + b ) = a − b (†`Lv‡bv n‡jv)
3 3 3 3 3
=
a ( a − b)
=
a
(Ans.)
−3
  b( a − b)
−3
3 b
3
= a + a − 1
a +a +1 2 2
L. 3 −3
2 2
a +a +1
-3
a3 + a−3 + 1 a3 + 2 + a − 1
mgvavb : evgcÿ = 3 −3 = 3 −3
2 2 2 2
a +a +1 a +a +1
beg-`kg †kÖwY : D”PZi MwYZ  352
a a 1 1 1
a−b a − ba − b c2

2 2
a+b xa xb
M.
( ) b  a  =
x
1
b2
 1
2
 1
2
= 1 (Ans.)
b b x xc xa
a−b a − b a−b

a+b
( ) b  a 
P.
a
(a2 − b−2) (a − b−1)b−a
a a (b2 − a −2)b (b + a−1)a − b
a−b a − b a−b
 (a2 − b−2)a (b − b−1)b − a
a+b

mgvavb :
( b )  a  mgvavb : 2 −2 b
(b − a ) (b + a−1)a − b
b b
a b−a
a−b a − ba − b a2 − 12 a − 1b
( )

a+b
( )
b  a   b
= b a−b
b2 − 12 b + 1a
( )
 a
a b a b
a−b −a−b −a−b
a − ba − b

a+b
= ( )
b  a   1 1 
(a + b) (a − b) (a − b)
1 a b−a

a− b a−b  
=
a−b a − ba − b  1 1  1 b a−b
 (b + a ) (b − a) (b + a)
a+b
=( ) b  a   

a − b
1 1 1 1a 1 b−a a

 ( a + ) (a − ) (a − )
a+b
=(
b )  a  b b b
=
a + b a − b a2 − b2 1 1b 1 a−b b

b
= 
a
=
ab
(Ans.) ( a ) ( a) ( a )
b + b − b +

N.
1 1 1 1 1 b−a+a
a
−m −m + −n −n + −p
1 + a bn + a cp 1 + b cp + b am 1 + c am + c−pbn
=
( a + ) (a − )
b b
mgvavb : b a−b+b
1 1 1
(b − 1a) (b + 1a)
+ +
−m −m −n −n −p
1 + a bn + a cp 1 + b cp + b am 1 + c am + c−pbn 1 a 1 b ab + 1 a ab − 1b
1 1 1 =
( a + ) (a − )
b b
=
( b )  b 
= + +
bn cp cp am am bn 1 b 1 a
ab − 1b ab + 1 a
1+ m+ m 1+ n+ n 1+ p + p
a a b b c c ( a) ( a )  a  ( a )
b − b +
a ab − 1 a b

1 1 1 ab + 1 a
=(
ab + 1)  b
 
= + +
am + bn + cp bn + cp + am cp + am + bn b ab − 1
am bn cp a a a b a a+b
=( ) ( ) =( ) (Ans.)
b b b
= 1      
am bn cp
p + 1 m p + 1 m
 a + b + c   a + b + c   a + bn + cp
m p n cÖkœ \ 6 \ †`LvI †h,
a m
b c n p K. hw` x = aq + r bp, y = ar + pbq, z = ap + q br nq, Z‡e xq − r.
= + +
am + bn + cp am + bn + cp am + bn + cp y r − p.zp − q = 1
am + bn + cp mgvavb : †`Iqv Av‡Q, x = aq + rbp
= m = 1 (Ans.) y = ar + pbq
a + bn + cp
b c a
z = ap + qbr
bc x
c ca x
a ab x
b evgcÿ = xq − r.yr − p.zp − q
O. c  a  b = (aq + r.bp)q − r.(ar + p.bq)r − p.(ap + q.br)p − q
x
b
x
c
x
a
= a(q + r)(q − r)bpq − pr.a(r + p)(r − p).bqr − pq.a(p + q)(p − q).bpr − qr
2 2 2 2 2 2
b c a = aq − r .ar − p .ap − q .bpq − pr.bqr − pq.bpr − qr
bc c ca a ab b 2 2 2 2 2 2

mgvavb :
x x x = aq − r + r − p + p − q .bpq − pr + qr − pq + pr − qr
c a  b
b c a = a0b0 = 1.1 = 1 = Wvbcÿ
x x x
b 1 c 1 a 1
 xq − r. y r − p.zp − q = 1 (†`Lv‡bv n‡jv)
c  bc a  ca b  ab L. hw` ap = b, bq = c Ges cr = a nq, Z‡e pqr = 1
x x x
= c 1  a 1  b 1 mgvavb : †`Iqv Av‡Q, ap = b, bq = c Ges cr = a
   ab
x
b bc
x
c ca a
x GLv‡b, ap = b
ev, (cr)p = b
ev, cpr = b
ev, (bq)pr = b
beg-`kg †kÖwY : D”PZi MwYZ  353
ev, bpqr = b1 1 −1
 pqr = 1 (†`Lv‡bv n‡jv) M. hw` a = 23 + 2 3 nq, Z‡e †`LvI †h, 2a3 − 6a = 5
1 −1
M. hw` ax = p, ay = q Ges a2 = (pyqx)z nq, Z‡e xyz = 1 mgvavb : †`Iqv Av‡Q, a = 2 + 2 3 3
mgvavb : 1 1
†`Iqv Av‡Q, ax = p, ay = q Ges a2 = (pyqx)
z
( − ) [Dfqcÿ‡K Nb K‡i]
ev, a3 = 23 + 2 3
3

GLv‡b, a2 = (pyqx)z 1 3

1 3 1

1 1 1
ev, a = (2 ) + ( 2 ) + 3.2 .2 (2 + 2 )
3 3 3 3 3 −
3 3
ev, a2 = {(ax)y(ay)x}z
1 1
z −
ev, a2 = (axy.axy) ev, a3 = 2 + 2 + 3.23 . 2
−1 3
.a
ev, a2 = a2xyz 1
ev, 2 = 2xyz ev, a = 2 + 2 + 3.1.a
3

 xyz = 1(†`Lv‡bv n‡jv) ev, a3 =


4 + 1 + 6a
3 3 3
2
cÖkœ \ 7 \ K. hw` x a + y b + z c = 0 Ges a2 = bc nq, Z‡e ev, a3 = 5 + 6a
†`LvI †h, ax3 + by3 + cz3 = 3axyz  2a3 − 6a = 5 (†`Lv‡bv n‡jv)
mgvavb : 2

2

3 3 3
N. hw` a2 + 2 = 3 + 3
3 3 Ges, a  0 nq, Z‡e †`LvI †h,
†`Iqv Av‡Q, x a + y b + z c = 0 3a3 + 9a = 8
3 3 3 mgvavb :
ev, x a + y b = − z c 2
3 − 23
( 3
) (
ev, x a + y b = − z c
3 3
) 3
[Dfqcÿ‡K Nb K‡i] †`Iqv Av‡Q, a2 + 2 = 33 + 3
2 2 3
−3
ev, (x a) + (y b)
3
3
3
3
ev, (a2 + 2)3 = 33 + 3 ( ) [ Dfqcÿ‡K Nb K‡i]
2 3
3 3
+ 3.x a.y b x a + y b = − z3c ( 3 3
) 3 2
ev, (a2) + 3(a2) 2 + 3.a2.22 + 23 = 33 ( )
ev, x3a + y3b + 3xy ab −z c = − z3c
3
( 3
) +
2 3
( 3 ) + 3. 3 .3 (3 + 3 )

3
2
3

2
3
2
3

2
3
3
ev, x3a + y3b − 3xyz abc = − z3c 1 + 23 − 3
2

3 ev, a6 + 6a4 + 12a2 + 8 = 32 + 3− 2 + 3 (a2 + 2)


ev, x3a + y3b + z3c = 3xyz abc 1
3 ev, a6 + 6a4 + 12a2 + 8 = 9 + 9 + 3(a2 + 2)
ev, ax + by + cz = 3xyz a.a [ a = bc]
3 3 3 2 2
1
ev, ax3 + by3 + cz3 = 3axyz ev, a6 + 6a4 + 12a2 + 8 = 9 + 9 + 3a2 + 6
 ax3 + by3 + cz3 = 3axyz (†`Lv‡bv n‡jv) 1
1 1 ev, a6 + 6a4 + 9a2 = 7 + 9
L. hw` x = (a + b) + (a − b) Ges a2 − b2 = c3 nq, Z‡e
3 3
63 + 1
†`LvI †h, x3 − 3cx − 2a = 0 ev, (a3)2 + 2.a3.3a + (3a)2 = 9
mgvavb : 64
1 1 ev, (a3 + 3a)2 = 9
†`Iqv Av‡Q, x = (a + b) + (a − b) 3 3
8
1 1 3
ev, a3 + 3a = 3 [Dfqcÿ‡K eM©g~j K‡i]
ev, x 3
= {(a + b) + (a−b) } 3 3
[Dfqcÿ‡K Nb [ a  0 †m‡nZz ïay abvZ¥K gvb wb‡q]
K‡i]  3a + 9a = 8 (†`Lv‡bv n‡jv)
3
1 1 1 1
3
3 {
ev, x = (a + b) } + { (a − b) } + 3 (a + b)
3 3 3 3
O. hw` a2 = b3 nq, Z‡e †`LvI †h, b () ()a
3
2
+
b
a
2
3
1
= a2 + b

1
3
1 1 1
(a − b) {(a + b) + (a − b) } 3 3 3
mgvavb :
1 1 †`Iqv Av‡Q, a2 = b3
ev, x = a + b + a − b + 3 {(a + b) (a − b) } x
3 3 3 3 2 1 1
a 2 b 3  a 32  b 23

ev, x3 = 2a + 3x(a2− b )
1
2 3
evgcÿ = () +() ()
b a
=
 b
 + 
  a ( ) 
1 1 1 1
1
=
a32 b23 = a22 + b33
2 3 2
ev, x = 2a + 3x(c ) 3 3
[ a − b = c ] [ b3 = a2]
b3 +  a  a  b 
3 2 2 3

ev, x3 = 2a + 3x.c 1 1 1 1
ev, x3 = 2a + 3cx = (a3 − 2)2 + (b2 − 3)3 = a2 + (b−1)3
 x3 − 3cx − 2a = 0 (†`Lv‡bv n‡jv) 1

1
= a2 + b 3
= Wvbcÿ
beg-`kg †kÖwY : D”PZi MwYZ  354
3 2 1 1 b

a 2 b 3  x = ya
A_©vr ( ) +( ) =a +b
b
2
a
1
2 3
(†`Lv‡bv n‡jv)
Avevi, zc = yb
b
P. hw` b = 1 + 3 + 3 nq, Z‡e †`LvI †h, b − 3b − 6b − 4 = 0
3 3 3 2
 z = yc
mgvavb : GLb, xyz = 1
2 1 b b
†`Iqv Av‡Q, b = 1 + 33 + 33 ev, ya.y. yc = 1
2 1 b b
3
ev, (b − 1) = 3 + 3
3 (
) [ Dfqcÿ‡K Nb K‡i]
3 3 ev, ya + 1 + c = 1
bc + ac + ab
2 1 2 1 2 1
ev, y = y
3 3
ev, b − 3b + 3b − 1 = (3 ) + (3 ) + 3.3 .3 (3 + 3 )
ac
3 2 3 3 3 3 3 3
bc + ac + ab
1 + 23 +13 ev, ac
=0
ev, b − 3b + 3b − 1 = 3 + 3 + 3
3 2 2
.(b−1)
3 +2 +1  bc + ac + ab = 0 (Ans.)
y x
ev, b3 − 3b2 + 3b − 1 = 9 + 3 + 3 3 (b − 1) M. hw` 9x = (27) nq, Zv n‡j y Gi gvb KZ?
ev, b3 − 3b2 + 3b − 1 = 12 + 9 (b − 1) mgvavb :
ev, b3 − 3b2 + 3b − 1 = 12 + 9b − 9 †`Iqv Av‡Q, 9x = (27)y
 b3 − 3b2 − 6b − 4 = 0 (†`Lv‡bv n‡jv) ev, (32)x = (33)y
−3
1 1 ev, 32x = 33y
[we: `ª: cvV¨ eB‡qi cÖ‡kœ 3 Gi ¯’‡j 3 n‡e] 3
ev, 2x = 3y
x 3
Q. hw` a + b + c = 0 nq, Z‡e †`LvI †h,  = (Ans.)
y 2
1
+
1
+
1
=1
cÖkœ \ 9 \ mgvavb Ki :
xb + x− c + 1 xc + x− a + 1 xa + x− b + 1 (K) 32x + 2 + 27x + 1 = 36
mgvavb : mgvavb :
1 1 1
evgcÿ = xb + x− c + 1 + xc + x− a + 1 + xa + x− b + 1 32x + 2 + 27x + 1 = 36
ev, 32x + 2 + 33x + 3 = 36
1 1 1
= + + ev, 32x.32 + 33x.33 − 36 = 0
1 b 1 + x c + xb + c a 1
x + c+1
x
x + b+1
x ev, (3x)2.32 + (3x)3.33− 36 = 0
[ a + b + c = 0  b + c = −a] ev, a2.9 + a3.27 − 36 = 0 [3x = a a‡i]
xc 1 xb ev, 27a3 + 9a2 − 36 = 0
= b+c + b+c +
c
1+x + x 1+x + xc
x a+b
+ 1 + xb ev, 9(3a3 + a2 − 4) = 0
c
x 1 xb ev, 3a3 − 3 + a2 −1 = 0
= c b+c + c b+c +
1+x +x 1+x +x x + xb +1
-c
ev, 3(a3 − 1) + a2 −1 = 0
c
x 1 xb ev, 3(a − 1) (a2 + a + 1) + (a − 1) (a + 1) = 0
= c b+c + c b+c + 1
1+x + x 1+x + x
xc
+ xb +1 ev, (a − 1) (3a2 + 3a + 3 + a + 1) = 0
xc 1 xb.xc ev, (a − 1) (3a2 + 4a + 4) = 0
= c
1+x + x b+c + c
1+x + x b+c +
1+ xc + xb+c nq, a − 1 = 0 A_ev, 3a2 + 4a + 4 = 0
c
x +1+x b+c c
1+x +x b+c
−4  42 − 4.3.4
= = = 1 = Wvbcÿ (†`Lv‡bv n‡jv) ev, a = 1 a=
1+xc+xb+c 1+xc + xb+c 2.3
cÖkœ \ 8 \ K. hw` ax = b, by = c Ges cz = 1 nq, Z‡e xyz = KZ ? −4  16 − 48
ev, 3x = 30 [gvb ewm‡q] =
6
mgvavb :
−4  − 32
†`Iqv Av‡Q, ax = b, by = c Ges cz = 1 x=0 =
6
GLv‡b, cz = 1
GLv‡b −32 Aev¯Íe| myZivs GwU MÖnY‡hvM¨ bq|
ev, (by)z = 1 [ by = c]
wb‡Y©q mgvavb x = 0
ev, {(a ) } = 1
x y z
[ ax = b]
(L) 5x + 3y = 8
ev, {a } = 1
xy z
− −
5x 1 + 3y 1 = 2
ev, axyz = a x y

 xyz = 0 (Ans.) mgvavb : 5 + 3 = 8........... (i)


x−1 y−1
L. hw` xa = yb = zc Ges xyz = 1 nq, Z‡e ab + bc + ca = KZ ? 5 + 3 = 2....... (ii)
mgvavb : (ii) bs mgxKiY †_‡K cvB,
x −1 y −1
†`Iqv Av‡Q, xa = yb 5 .5 + 3 .3 = 2
beg-`kg †kÖwY : D”PZi MwYZ  355
5
x
3
y
 x = −2
ev, 5 + 3 = 2 x Gi gvb (iii) bs mgxKi‡Y ewm‡q cvB,
x y 2(−2) − y + 2 = 0
3.5 + 5.3
ev, 15
=2 ev, −4−y + 2 = 0
x ev, y = −2
ev, 3.5 + 5.3y = 30 ........ (iii)
 y = −2
(iii)  1 − (i)  3 n‡Z cvB,
y
wb‡Y©q mgvavb : x = − 2, y = − 2
2.3 = 6
y (N) 22x + 1.23y + 1 = 8
ev, 3 = 3 2x + 2.2y + 2 = 16
y=1 mgvavb :
y Gi gvb (i) bs mgxKi‡Y ewm‡q cvB,
x 1
22x + 1.23y + 1 = 8 ...........(i)
5 +3 =8 2x + 2.2y + 2 = 16........... (ii)
(i) bs mgxKiY n‡Z cvB,
x
ev, 5 = 8 − 3
x 22x + 1 + 3y + 1 = 23
ev, 5 = 5
ev, 2x + 3y + 2 = 3
x=1
wb‡Y©q mgvavb : x = 1, y = 1 ev, 2x + 3y = 3−2
 2x + 3y =1 ....... (iii)
3y−2 x+y x + 2y 2x+1
(M) 4 = 16 ; 3 =9 (ii) bs mgxKiY n‡Z cvB,
mgvavb : 43y−2 =16x + y............ (i) 2x + 2 + y + 2 = 24
3x + 2y = 92x + 1.......... (ii) ev, x + y + 4 = 4
(i) bs mgxKiY n‡Z cvB, ev, x + y = 0
43y−2 = (42)x + y  y = − x .............. (iv)
3y−2 2x+2y (iv) Gi gvb (iii) bs-G ewm‡q cvB,
ev, 4 = 4
2x + 3(−x) = 1
ev, 3y − 2 = 2x + 2y ev, 2x −3x = 1
ev, 2x − y + 2 = 0.......... (iii) ev, −x =1
(ii) bs mgxKiY n‡Z cvB,
x + 2y 2x + 1
x=−1
3 = (32) x Gi gvb (iv) bs-G ewm‡q,
ev, 3 x + 2y
= 34x + 2 y = −(−1)
ev, x + 2y = 4x + 2 y=1
ev, 3x−2y + 2 = 0 ........... (iv) wb‡Y©q mgvavb : x = − 1, y = 1
(iii)  2 − (iv)  1 n‡Z cvB,
x+2=0

¸iæZ¡c~Y© enywbe©vPwb cÖ‡kœvËi


3 5. hw` x, y, z  0, px = qy = rz nq Z‡e, wb‡Pi †KvbwU mwVK?
3 z z y z
3
1. 729 Gi gvb KZ?  q=r
y
L r=q
y
Mq=r
z
N p=q
y
1 2 1
9 9 3 6. a > 0, m  Z, n  N Ges n > 1 n‡j-
K3 3 M3 N3
3
3
3
3
3
3
3
3
i. ( n a) = n a
m
m ii. ( a n) = ( a m)
m m

e¨vL¨v : 729 = 93 = 9
iii. ( a) = a
m
2 1 2
n m n
3 
3 3 3 9
= 3 =32
=3 wb‡Pi †KvbwU mwVK?
15
x10 i L ii M iii N i, ii I iii
x8 7. k~‡b¨i m~PK k~b¨ n‡j Zvi gvb KZ?
2. x4 Gi mij gvb †KvbwU?
1 K0 L1 M Amxg  AmsÁvwqZ
K x15 Lx x
15
N1 8. a  1 n‡j ax = am n‡e, hw` Ges †Kej hw` wb‡Pi †KvbwU?
3. al = b, bm = c, cn = a n‡j, lmn Gi gvb KZ? K a=x L a=m  x=m N x=±m
l wb‡Pi Z‡_¨i Av‡jv‡K 9 I 10 bs cÖ‡kœi DËi `vI :
K abc L l N −l
abc 1 1 1
4. ax = b, by = c Ges cz = a n‡j, xyz = KZ? + + ......... GKwU Amxg aviv|
z + 1 (z + 1)2 (z + 1)3
K −1 L0 1 N2
beg-`kg †kÖwY : D”PZi MwYZ  356
9. wb‡Pi †Kvb k‡Z© avivwUi AmxgZK mgwó _vK‡e? K z < − 2 Ges z < 0 L z < − 2 Ges z > 0
K |r| < − 1  |r| < 1 M |r| > 1 N |r| > − 1  z < − 2 Ges z > 0 N z > − 2 Ges z < 0
10. z-Gi †Kvb gv‡bi Rb¨ avivwUi AmxgZK mgwó wbY©q Kiv hvq?

AwZwi³ enywbe©vPwb cÖ‡kœvËi


1
91 : g~j` I Ag~j` m~PK a L0 M N a−1
a
21. a Ges n n‡j, a n+1
= KZ? (mnR)
mvaviY enywbe©vPwb cÖ‡kœvËi an
n
K a +a L a −a
n n
 a .a N
11. mKj g~j` I Ag~j` msL¨vi †mU †KvbwU? (mnR) a
K  Mℤ NQ 22. a Ges m, nIN n‡j, a .an = KZ? m
(mnR)
12. ¯^vfvweK msL¨vi †mU wb‡`©k K‡i †KvbwU? (mnR)
 am + n L a-(m + n) M am−n
am
N n
KN LR MQ NZ a
e¨vL¨v : mKj ¯^vfvweK msL¨vi †mU N| mKj ev¯Íe msL¨vi 23. †KvbwU m~P‡Ki †gŠwjK m~Î? (mnR)
†mU R| mKj gyj` msL¨vi †mU, Q| K a1 = a  am + n = am.an
13. ( 3) m~PKxq ivwki wfwË KZ?
7 (mnR) o
M a =1 N (ab)n = an.an
7 24. hw` a, bN Ges nN nq Z‡e (a. b)n = KZ? (mnR)
K7 L 7 3 N 3 1
14. a  0 Ges n abvZ¥K c~Y© msL¨v n‡j an Kx wb‡`©k K‡i? (ga¨g)
n
 a .b n
L an. n n
M a +b n
N a −b
n n
b
K a †K n evi †hvM L a †K n evi we‡qvM 25. aR Ges m, nN n‡j, (am)n = KZ? (mnR)
 a †K n evi ¸Y N a †K n evi fvM a n

enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi


 amn L am−n M am + an N () m
26. nN, n > 1 Ges aR n‡j, x †K a Gi nZg g~j ejv n‡e hw`Ñ (mnR)
K ax = n nq L nn = 1 nq
15. ( 23) 4
Gi †ÿ‡ÎÑ
 x = n nq
n
N an = 1 nq

i. wfwË 3
2
ii. gvb
16 27. 2 Ges − 2 DfqB 16 Gi KZZg g~j? (mnR)
181
K 32 Zg g~j L 16 Zg g~j M 4 Zg g~j  4 Zg g~j
iii. m~PK 4
28. −27 Gi Nbg~j wb‡Pi †KvbwU? (mnR)
wb‡Pi †KvbwU mwVK? (mnR) K9 L3  −3 N −9
K i I ii  i I iii M ii I iii N i, ii I iii 29. 0 Gi nZg g~j KZ? (mnR)
16. ev¯Íe msL¨vi †ÿ‡ÎÑ 1
i. mKj c~Y© msL¨vi †mU
Kn 0 − N −1
M
2
ii. Q mKj g~j` msL¨vi †mU 30. cÖ‡Z¨K abvZ¥K ev¯Íe msL¨v a Gi GKwU Abb¨ abvZ¥K n
iii. mKj ev¯Íe msLvi †mU Zg g~j i‡q‡Q| G‡K wb‡Pi †Kvb cÖZxKwU Øviv cÖKvk Kiv
wb‡Pi †KvbwU mwVK? (mnR) nq? (mnR)
K i I ii L i I iii  ii I iii N ii I iii n a
 a L n M an N an
17. †mU cÖKv‡ki ixwZ AbyhvqxÑ
31. a FYvZ¥K ev¯Íe msL¨v Ges n we‡Rvo ¯^vfvweK msL¨v n‡j,
i. Z n‡jv c~Y© msL¨vi †mU
a Gi GKwU Abb¨ FYvZ¥K nZg g~j i‡q‡Q| G‡K Kx cÖZxK
ii. R n‡jv ev¯Íe msL¨vi †mU
iii. Q n‡jv g~j` msL¨vi †mU Øviv cÖKvk Kiv nq? (mnR)
wb‡Pi †KvbwU mwVK? (ga¨g) n a n n
K a L n M a − a
 i I ii L i I iii M ii I iii N i, ii I iii
enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi
92 : m~PK m¤úwK©Z m~Î 32. a, b > o n‡jÑ
mvaviY enywbe©vPwb cÖ‡kœvËi i. ax = 1 Ges x  0 n‡j a = 1
18. a cÖZxKwU‡Z a †K Kx ejv nq?
m
(mnR) ii. ax = ay Ges a  1 n‡j x = y
 wfwË L m~PK M kw³ N AbycvZ iii. ax = bx Ges x  0 n‡j x = a
19. mKj ¯^vfvweK msL¨v ev abvZ¥K c~Y© msL¨vi †mU wb‡Pi wb‡Pi †KvbwU mwVK? (KwVb)
†KvbwU? (mnR)  i I ii L i I iii M ii I iii N i, ii I iii
K R LZ MQ N 33. ax = by = cz n‡jÑ
20. a n‡j, a1 = KZ? (mnR) y
x
i. a = b
beg-`kg †kÖwY : D”PZi MwYZ  357
z m p
ii. b = c
y 45. hw` a > 0 Ges n = q nq †hLv‡b m, pZ Ges n, qN, n
y
z > 1, q > 1 Z‡e wb‡Pi †KvbwU mwVK? (KwVb)
iii. c = b
wb‡Pi †KvbwU mwVK? (ga¨g) K
m
an =
n
am 
n
am =
q
ap
K i I ii L i I iii M ii I iii  i, ii I iii m n

34. i. a †K a Gi m NvZ ev kw³ e‡j


m
M ( n a) = ( q a) N
n
am =
m
a
ii. am †K a NvZ m cov nq 46. wb‡Pi †KvbwU mwVK? (KwVb)
iii. n GKwU ev¯Íe msL¨v 3
5 = 11.665 L 4=2
wb‡Pi †KvbwU mwVK? (mnR)
3 3
 i I ii L i I iii M ii I iii N i, ii I iii M5 = 12.089 N 27 = − 3
35. i. mKj ev¯Íe msL¨vi †mU 47. a > o n‡j, mKj x R Gi Rb¨ wb‡Pi †KvbwU mwVK? (mnR)
ii. mKj g~j` msL¨vi †mU Q K ax < o  ax > o M ax  o N ax = o

iii. mKj c~Y© msL¨vi †mU Z


48. hw` x < y nq Zvn‡j a > 1 Gi Rb¨ wb‡Pi †KvbwU mwVK?
(ga¨g)
wb‡Pi †KvbwU mwVK? (mnR)
 ax < ay L ax > ay M ax = ay N axy = ay
K i I ii L i I iii M ii I iii  i, ii I iii
49. hw` x < y nq, Zvn‡j o < a < 1 Gi Rb¨ wb‡Pi †KvbwU mZ¨?
36. a  R Ges a  0 n‡j Ñ (KwVb)
i. a−n. an = 1  a >a x y
L a <a x y
M a a
x y
N a a
x y
ii. a0 = 0 1 1 1
1
iii. a−n = n 50. hw` a = b = c Ges abc = 1 nq Zvn‡j x + y + z = KZ? (KwVb)
x y z
a
K −3 L −2 M1 0
wb‡Pi †KvbwU mwVK? (mnR) 51. a > 0 n‡j †KvbwU mwVK? (mnR)
K i I ii  i I iii M ii I iii N i, ii I iii
n n n n
 a>0 L a<0 M a0 N a0
Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi 52. 3 Zg g~j‡K Kx ejv nq? (mnR)
ax= = Ges = ac nq|
by cz b2 K eM© L eM©g~j  Nbg~j N wØNvZ
Dc‡ii Z‡_¨i Av‡jv‡K 37Ñ39 bs cÖ‡kœi DËi `vI : enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi
37. a = KZ? (ga¨g)
x y
53. mKj a  Gi Rb¨
K a=y L a= by M a= by  a= bx i. a1 = 0
38. c = KZ? (ga¨g) ii. a1 = a
y z x n msL¨K
 c= bz L c= by M c= by N c=b
yz
iii. an = a.a.a.....a [n , n>1]
39. b2 = ac n‡j b2 = wb‡Pi †KvbwU? (KwVb) wb‡Pi †KvbwU mwVK? (mnR)
y x y y y xy K i I ii L i I iii  ii I iii N i, ii I iii
+ +
K b2 = bx L b2 = by z  b2 = b x z N b2 = byz 54. i. a Gi ciggvb |a|
ii. a < 0 n‡j, |a| = −a
93 : g~j Gi e¨vL¨v iii. a < 0 n‡j, |a| = a
mvaviY enywbe©vPwb cÖ‡kœvËi wb‡Pi †KvbwU mwVK? (ga¨g)
 i I ii L i I iii M ii I iii N i, ii I iii
40. a > o n‡j, wb‡Pi †Kvb m¤úK©wU mwVK †hLv‡b a ? (ga¨g)
Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi
a a n n
K n>0 L n<0  a>0 N a0 1 1 1
n ax = by = cz = k Ges abc = 1
41. a < o Ges n , n>1, n we‡Rvo n‡j, a KZ ? (ga¨g)
Dc‡ii Z‡_¨i Av‡jv‡K 55Ñ 57bs cÖ‡kœi DËi `vI :
n n n n
 − |a| L |a| M  |a| N a 55. wb‡Pi †KvbwU mwVK? (mnR)
42. a > o Ges a  1 n‡j, ax = ay n‡e hw` I †Kej hw`Ñ (ga¨g) x 1 y
y z x
K n  y nq  x = y nq M n > y nq N xy = o nq  a=b L c=k M a=b N abc = k
43. a > o, b > o Ges x  o n‡j, a = b n‡e hw` I †Kej 56. abc wb‡Pi †KvbwUi mgvb?
x x
1
(ga¨g)
2
hw`Ñ (ga¨g)
K ab = c2 L k+3  kx + y + z Nk
x
+y+
z
 a = b nq L ab = o nq M a − b < 0 nq N a  b nq 57. x + y + z = KZ? (mnR)
44. wb‡Pi †KvbwU mwVK? (ga¨g) 2 1
K1 0 M k +1 N
K 4 = −2  4=2 M 27 = −3 N 36 = − 6 k
beg-`kg †kÖwY : D”PZi MwYZ  358
a < 0 Ges n  , n > 1 p

71.  n = KZ? †hLv‡b, m, p Ges n


m
Dc‡ii Z‡_¨i Av‡jv‡K 58 I 59bs cÖ‡kœi DËi `vI| (mnR)
a
58. n we‡Rvo msL¨v n‡j g~jwU †Kgb n‡e? (mnR) mp
n
n
np
mp
a
m
n
+p
K abvZ¥K  FYvZ¥K M eM©g~j N g~j` a La Ma Na
59. n †Rvo msL¨v n‡j a Gi n Zg g~j KqwU? (ga¨g) 12
1 L 16 M 26 N 72. a8 a6 a4 Gi mijgvb KZ? (ga¨g)
K a12 L a4 a N1
94 : g~j` fMœvsk m~PK 12
12 4
2 12
e¨vL¨v : a
8
a6 a 4 = a
8
a6. a = a
8
a6. a2
mvaviY enywbe©vPwb cÖ‡kœvËi 12
8 12 8 4 12
12
12 = 12
= a a8 = a .a = a a =a
a 1
a b 73. a < o Ges n , n >1 Ges we‡Rvo n‡j an = KZ? (ga¨g)
60. hw` a = b nq Zvn‡j
b a
() b
Gi gvb KZ? (KwVb) 1
n
−1
n
 −|a| M −|−a|
n n
a a a L a N |a|
−1 −1 +1
a b Lb b Mb b N1 74. 92m = 3x + 1 n‡j x = KZ? (ga¨g)
61. a = p, a = q Ges a = (p q ) n‡j xyz Gi gvb KZ? (ga¨g)
x y 2 y x z
2 1 2
K  M −3 N−
1 3 3 3
K0 L 1 N2
2 n
p
q
62. a = KZ? (mnR)
75. (ba) Gi gvb wb‡Pi †KvbwU (mnR)
an a an
K L  N1
q 1 a 1 b bx bn
q 2 p p
 ap L a M aq N a 76. (am)nGi gvb wb‡Pi †KvbwU? (ga¨g)
1 1 K am L amn M0 1
63. hw` a = b = c Ges b = ac nq Z‡e wb‡Pi †KvbwU
x y z 2
+
x z
3
Gi gvb? (KwVb) 77. − 27 Gi gvb wb‡Pi †KvbwU? (mnR)
2 2 y z K9 L3  −3 N −9
K  M N
z y z x a
a
64.
3
(a3b5)3 = KZ? (mnR)
78. hw` ab = ba nq Zvn‡j () b
b
Gi gvb wb‡Pi †KvbwU? (KwVb)
a
K a9b5 L a8b3  a3b5 N a5b3 a
aa aab ab −1
3
3 5 3
1 K b L a M a  ab
e¨vL¨v : (a a ) = {(a3b5)3}3 b
bb bb
1
= {(a3)3 (b5)3}3 a
a
=
1
(a9b15) 3
1 1
79. ab = ba n‡q Z‡e () b
b
KZ?
9 15 a a a b
= a 3.b 3 −1 −1 +1 −1
= a3b5  ab L bb M ab N aa
x 3
65. hw` (16)x = (64)y n‡j y = KZ? (KwVb) 80. −8 Gi gvb KZ?
2 4 3 3 3
K L  N0 K 8 L 8 − 8 N− 83
3 3 2
x x x
1
x
1
y x 81. x = (x x) n‡j, x Gi gvb KZ?
66. (16) = (64) n‡j y = KZ? (KwVb) 2 3 9 27
K L  N
2 4 3 3 2 4 8
 L M N0 x x
3 3 2 e¨vL¨v : xx = (x x)
x

a a x x

1 3
a b b 1 ev, (xx)
x
= x.x2 ( ) = (x ) 2
67. ( ) =a
b
Ges a = 3b n‡j b = KZ? (mnR)
ev, (xx)= (xx) 2
x 3

K1  3 M4 N9 3
ev, x = 2
68. ( 3)5 m~PKxq ivwki wbavb ev wfwË KZ? (ga¨g)
9
5 ∴x=
K5 L 3 M 3 4
2 1 1 2 1 1 2
3 −1 −1
69. {1 − (1 − x ) } = KZ? (KwVb) 82. (a − b ) (a + a . b
3 3 3 3 3+b3 ) Gi gvb †KvbwU?
1 1 1
1 1 1 2−x 3
Ka+b  a−b M a3 − b 3 N (a−b) 3
K 3+1  1− 3 M N
x x 1 + x3 1 + x2 1 1 2 1 1 2

e¨vL¨v : (a3 − b 3) (a3 + a 3. b 3 + b 3 )


70. -8 Gi Nbg~j KZ? (ga¨g) 1 1 1 2
1 1 1 2

 −2 L −1 M2 N4 = ( 3
a −b
3
) {( ) a
3 3
+a .b +
3
( )}b
3
beg-`kg †kÖwY : D”PZi MwYZ  359
3 3
1 1
() ()3 3
3
−8 =  2
= a − b
=a−b iii.
83. (a2b3)5 Gi gvb wb‡Pi †KvbwU? wb‡Pi †KvbwU mwVK? (ga¨g)
 a10.b15 L a25b125 M (ab)30 N a3b2  i I ii L i I iii M ii I iii N i, ii I iii
e¨vL¨v : a, b  R GwU nN n‡j (a, b)n = an.bn
 (a2b3)5 = (a2)5. (b3)5
88. i. hw` ax = 1 nq, †hLv‡b a > 0 Ges a  1 Zvn‡j x = 0
= a2  5.b3  5 ii. hw` ax = 1 nq, †hLv‡b a > 0 x  0, Zvn‡j a = 1
= a10.b15
a b iii. hw` ax = ay nq, †hLv‡b a > 0 Ges a  1, Zvn‡j x = y
a a
84. ( ) ( ) = KZ?
b

b wb‡Pi †KvbwU mwVK?
K i I ii L i I iii
ab a+b a a −b a+b
K (ba) (2ba) L M
b
 (ba) M ii I iii  i, ii I iii
Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi
a b
a a
e¨vL¨v : ( ) ( )
b b
a
=( )
a−b
GKwU m~PKxq mgxKiY Ges 2x = y
4x − 3.2x + 2 + 25 = 0
b
Dc‡ii Z‡_¨i Av‡jv‡K 89 Ñ 91 bs cÖ‡kœi DËi `vI :
enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi 89. y2 − 12y = KZ? (KwVb)
n  −32 L −36
85. i. a (1) = a1 ; †hLv‡b a > o, n
n
n
n
M −48
90. y-Gi gvb KZ?
N − 52
(ga¨g)
b b
ii. ( ) = ; †hLv‡b a, b , b> 0 Ges n
n K 3, 2 L 1, 4  4, 8 N −2, 0
a a
n am 91. x = KZ? (ga¨g)
iii. (am) = ; †hLv‡b a Ges n 3
an  2, 3 L 1, 9 M 3, 4 N −2, −
wb‡Pi †KvbwU mwVK? (ga¨g) 2
x x
 i I ii L i I iii M ii I iii N i, ii I iii x = (x x)x
86. i. 2 Zg g~j‡K eM©g~j e‡j Dc‡ii Z‡_¨i Av‡jv‡K 92 I 93bs cÖ‡kœi DËi `vI :
ii. −27 Gi Nbg~j 3 92. x Gi gvb KZ? (ga¨g)
iii. 0 Gi n Zg g~j 0 2 3 2 5
K  M− N
wb‡Pi †KvbwU mwVK? (ga¨g) 3 2 3 2
K i I ii  i I iii M ii I iii N i, ii I iii 93. x Gi gvb wb‡Pi †KvbwU? (KwVb)
87. i. a2 = a hLb a > 0 K−
2
L
3

9
N
29
3 2 4 8
ii. a2 = −a hLb a < 0

wbe©vwPZ enywbe©vPwb cÖ‡kœvËi


3 1
94. hw` ( 3)x + 5 = ( 3)2x + 5 Gi gvb KZ? 99. (2 − x) 3 2 n‡j x Gi gvb KZ?
5 −5 K 6 −6
K 25  5 M N
7 4 M 0 N−7
y y 100. cÖ‡Z¨K abvZ¥K ev¯Íe msL¨v a Gi GKwU Abb¨ abvZ¥K x
95. y = (y y )y nq n‡e y Gi gvb wb‡Pi †KvbwU? Zg g~j i‡q‡Q| G‡K wb‡Pi †Kvb cÖZxK Øviv cÖKvk Kiv
3 4 7 9
K
2
L
9
M
4

4
hvq?
x m x n x a
96. () ()
y

y
m
Gi gvb †KvbwU? 
M ax
a L
N ax
x

m+n 101. a R Gi x  N n‡j a x + 1 = KZ?


K
(xy) n

m−n

() x
y
n−m
K ax + a L ax − a
ax
M
(xy) N
() x
y
 ax. a

24
N
a
x x
97. x = (x x) x n‡j, x Gi gvb KZ? 102. a8 a6 a4 Gi mij gvb KZ?
7 8 9 1
K 4 L M 
2 3 4
K a12 L a12
98. 3mx −1 = 3amx − 2 ; a > 0, a  3 I m  0 n‡j, x Gi gvb
KZ?  a N1

m 2 103. a  R , a  0 n‡j,
K 
2 m
i. a = 1
M 2m N 2m
beg-`kg †kÖwY : D”PZi MwYZ  360
1 M i I iii N i, ii I iii
n
ii. a−n
=a
n mn
hw` x = a nq Z‡e
n

iii. (am) = a
Dc‡ii Z‡_¨i Av‡jv‡K 105 I 106 bs cÖ‡kœi DËi `vI :
wb‡Pi †KvbwU mwVK?
K i I ii L ii I iii 105. n = 5 nq n‡j, wb‡Pi †KvbwU mwVK?
 i I iii N i, ii I iii K x = a5 L x= a
104. am  an = am + n n‡j, wb‡Pi †Kvb k‡Z© GwU mwVK? 5 n
 x= a N x=a
i. a  R. a = 0
106. DÏxcKwU wb‡Pi †Kvb k‡Z© mwVK n‡e?
ii. m, n  N, m > n
K a  R, n R  a  R, n  N
iii. a  R, m, n  N
M n  N, n  1 N a  R, n < 1
wb‡Pi †KvbwU mwVK?
K i I ii  ii I iii

¸iæZ¡c~Y© m„Rbkxj cÖkœ I mgvavb


cÖkœ-1  ax = by = cz, †hLv‡b a  b  c. z z
p p GLb, c2 = ab = cx. cy
K. hw` pp = (p p) nq, Z‡e p Gi gvb wbY©q z z
Ki| 2 +y
1 1 2 ev, c2 = cx .
L. hw` ab = c2 nq, Z‡e cÖgvY Ki †h, x + y = z 4 z z
ev, 2 = x + y
1 1 1 3
M. abc = 1 n‡j, cÖgvY Ki †h, x3 + y3 + z3 = xyz 4 1 1
 1bs cª‡kœi mgvavb  ( )
ev, z x + y = 2
1 1 2
p p p  + = (cÖgvwYZ)
K. kZ©g‡Z, p = (p p) x y z
1 M. †`Iqv Av‡Q, ax = by = cz
ev, p ( ) = (p )
1+ 1 p
p 2 1+
2 awi ax = by = cz = k
1
3 3
ev, p
p2
=p
2p  ax = k ev, a = kx
1
3
ev,
32
p = p ax = k ev, b = ky
2 1
3
p 2 cz = k ev, c = kz
3
ev, p = 2 GLb, abc = 1
3 1 1 1
−1 3
ev, p
2
=2 ev, kx, ky, kz = k
1 1 1
1 + +
ev, p =
2 3 ev, kx y z
= k
2 1 1 1
9 ev, x + y + z = 0
 p = (Ans.)
4
1 1 1 3
L. †h‡nZz ax = cz
z
(
ev, x + y + z = 0 )
1 1 1 3
ev, a = c x ev, x3 + y3 + z3 − xyz = 0
Avevi, by = cz 1 1 1 3
z  3+ 3+ 3=
x y z xyz
(cÖgvwYZ)
ev, b = cy

A byk xj b g ~j K K v‡R i A v‡j v‡K m„R b kxj cÖk œ I mg vavb


œ 2  a  R Ges m, n  N n‡j, (am)n = amn
cÖk-
beg-`kg †kÖwY : D”PZi MwYZ  361
K. n = 1 Gi Rb¨ evK¨wUi mZ¨Zv hvPvB Ki| 2 myZivs m, n  N Gi Rb¨ evK¨wU mZ¨|
L. MvwYwZK Av‡ivn c×wZ‡Z †`LvI †h, (am)n = amn 4  n = 1 Gi Rb¨ (i) mZ¨
M. a  0 Ges m  N I n  Z n‡j, †`LvI †h, (am)n = amn 4 GLb awi, n = k Gi Rb¨ (i) mZ¨|
A_©vr am. ak = am + k ......... (ii)
 2bs cª‡kœi mgvavb  Zvn‡j, am.ak + 1 = am(ak . a) [ m~Î 1]
= (am. ak) a [¸‡Yi mn‡hvRb]
K. mN †K wbw`©ó K‡i Ges n †K PjK a‡i †Lvjv evK¨
= am + k.a [Av‡ivn Kíbv]
(am)n = ........... (i) we‡ePbv Kwi|
amn = am+ k + 1 [1bs m~Î]
(i) G n = 1 ewm‡q †`Lv hvq, A_©vr n = k + 1, Gi Rb¨ (i) mZ¨|
evgcÿ = (am)l = am myZivs MvwYwZK Av‡ivn c×wZ Abyhvqx mKj n N Gi Rb¨
Wvbcÿ = am . 1 = am (i) mZ¨|
 †h‡Kv‡bv m, n  N Gi Rb¨ am. an = am+n
 n = 1 Gi Rb¨ (i) mZ¨|
L. n = 1 Gi Rb¨ (i) mZ¨| [ÔKÕ n‡Z cvB]
(†`Lv‡bv n‡jv)
awi, n = k Gi Rb¨ (i) mZ¨ M. (i) m > 0 Ges n < 0
A_©vr (am)k = amk........................(ii) awi, n = −k †hLv‡b k  N
GLb, (am)k +1 = (am)k . (am) [ an+ 1 = an. a] Ges m  N
= amk.am [(ii) bs n‡Z] am. an = am.a−k [cÖwZ¯’vcb]
1 1
= amk+ m = am(k +1) = am. k [  a −n = n ]
a a
 n = k + 1 Gi Rb¨I (i) mZ¨|
am
myZivs MvwYwZK Av‡ivn c×wZ Abymv‡i mKj n  N Gi = k = am−k
a
Rb¨ (i) mZ¨| (†`Lv‡bv n‡jv) 1 1
M. ÔLÕ †_‡K cvB, (am)n = amn ................ (i) wKš‘, ak −m = a − (k − m) = am −k [ a−n = an ]
GLv‡b, a  0 Ges m  N I n Z  mKj †ÿ‡ÎB am. an = am − k = am + ( −k)
cÖ_‡g g‡b Kwi, n > 0 G‡ÿ‡Î L †_‡K (i) Gi mZ¨Zv = am + n [gvb ewm‡q]
¯^xKvi K‡i †bIqv n‡q‡Q| (mZ¨Zv hvPvB Kiv n‡jv)
GLb g‡b Kwi, n = 0 G‡ÿ‡Î (am)n = (am) = a= 1 Ges ii) m < 0 Ges n < 0
amn = a0 = 1 awi, m = − p, n = − q †hLv‡b p, q  N
 (i) bs mZ¨| am. an = a −p. a −q
Avevi g‡b Kwi, n < 0 Ges n = − k †hLv‡b k N 1 1 1
1 1 = p q [ a −n = n ]
a a a
G‡ÿ‡Î (am)n = (am)−k = (am)k = amk = a− mk = am(−k) = amn
1
 a  0 Ges m  N I n  Z Gi Rb¨ (am)n = amn (†`Lv‡bv n‡jv) = p+q [ am  an = am + n]
a
œ 3  a  0 Ges m, n  Z Gi Rb¨ am. an = am + n
cÖk- =a
−(p + q)
=a
−p−q
=a
− p + (− q)

K. n = 1 Gi Rb¨ evK¨wUi mZ¨Zv hvPvB Ki| 2 =a m + n [ gvb ewm‡q ] (mZ¨Zv hvPvB Kiv n‡jv)
L. MvwYwZK Av‡ivn c×wZ‡Z †`LvI †h, m, nN Gi œ 4  KwZcq m~PK mgwš^Z ivwk ay 1− p, by 1 − q, cy 1 − r Ges
cÖk-
Rb¨ evK¨wU mZ¨| 4 ay 1 −p = by1−q = cy 1 − r = x|
M. (i) m > 0 Ges n < 0 (ii) m < 0 Ges n < 0 Gi
K. a, b I c Gi gvb x, y Gi gva¨‡g cÖKvk Ki| 2
Rb¨ evK¨wUi mZ¨Zv hvPvB Ki| 4
L. aq − r  b r − p  c p − q Gi gvb wbY©q Ki| 4
 3bs cª‡kœi mgvavb  pa a2 + ab + b2 pb b2 + bc + c2
K. n =1 n‡j,
M. †`LvI †h, pb ()  ()
pc
evgcÿ = am.an = am.al = am.a = am +1 pc c2 + ca + a2

Wvbcÿ = am + n = am + 1 ()
 a
p
= aq − r  b r − p  cp − q 4
myZivs n = 1 Gi Rb¨ evK¨wU mZ¨|  4bs cª‡kœi mgvavb 
L. ÔK' n‡Z m = n = 1 Gi Rb¨ evK¨wU mZ¨|
myZivs m = n = k Gi Rb¨ mZ¨ n‡e K. †`Iqv Av‡Q, ay1 − p = by 1 − q = cy1− r = x
 ay 1 −p = x
 ak.ak = ak + k x
= a 2k ............. (i) ev, a = y1 −p
m = n = k + 1 Gi Rb¨ evK¨wU mZ¨ n‡e hw` I †Kej hw`
 a = xyp −1
ak + 1. ak + 1 = ak + 1 + k + 1
= a2k + 2 Avevi, by1 − q = x
= a2(k+1) ......................(ii) x
ev, b = y 1 − q = xyq −1
(i) I (ii) n‡Z †`Lv hvq k Gi Rb¨ evK¨wU mZ¨ n‡j k + 1
Gi Rb¨ evK¨wU mZ¨| Ges cy1 − r = x
beg-`kg †kÖwY : D”PZi MwYZ  362
x 12
ev, c = y1 − r = xyr −1 = (a8) a6 a4  [1 − 1 {1 − (1 −
x3)−1}−1]−1
 a = xyp −1, b = xyq−1, c = xyr −1
= a  [1 − 1 {1 − (1 − x3)−1}−1]−1
L. ÔKÕ †_‡K cvB, a = xyp − 1, b = xyq − 1 Ges c = xyr − 1 −1
1 −1
= a  1 − 1 1 −
 aq − r.br − p.cp − q = (xyp − 1)q − r.(xyq−1)r − p.(xyr − 1)p − q 

= xq − ry(p − 1)(q − r).xr − py(q − 1) (r − p).xp − qy(r −1)(p − q)
  1−x 3
−1
− x3 − 1−1
= a  1 − 1 
= xq − r + r − p + p − q.y pq − pr − q + r + qr − pq − r + p + pr − qr − p + q  1

= x0.y0   1−x   3
−1
= 1  1 = 1 (Ans.)  − x3 
= a  1 − 1  
M. ÔLÕ n‡Z cvB, Wvbcÿ = aq−r  br − p  cp − q = 1  1 − x3
2 2 2 2 2 2 −1
1 − x3−1
= a  1 − 
a + ab + b b + bc + c c + ca + a
pa pb pc
evgcÿ = ()
p b 
p ()
c 
pa ()   −x   3
−1 −1
p  p − a) (c + ca + a ) 1 − x3 x3 +1 − x3
2 2 2 2 2 2

= a  1 + =a
(a−b) (a + ab + b ) (b−c) (b + bc + c ) (c
=p
=p a3
− b 3
p b 3
− c3
p c3
− a3
 x 
3
 x3 
3 3 −1
= pa − b + b −c + c − a
3 3 3 3
1
= p = 1 = Wvbcÿ
0 =a [ ] = ax = Wvbcÿ
x3
3

 1g ivwg  2q ivwk = ax3 (†`Lv‡bv n‡jv)


2 2 2 2 2 2
pa a + ab + b pb b + bc + c pc c + ca + a
 () pb pc
 () 
pa () M. GLv‡b, 1g ivwk  2q ivwk  [x − {x−1 + (a−1 − x)−1}−1]
= aq−r  br − p  cp − q (†`Lv‡bv n‡jv) −1 −1
= ax3  x −  +
1 1  
œ 5
cÖk-
12
(a8) a6 a4, [1 − 1 {1 − (1 − x3)−1}]−1 `yBwU ivwk|
 x a − x   ( ) [ÔLÕ †_‡K]
1 − ax−1−1
= ax3  x −  + 
1
K. cÖ_g ivwki mij gvb KZ? 2  x  a   
L. †`LvI †h, 1g ivwk  2q ivwk = ax3 4 a −1
= ax3  x −  +
1
M. 1 ivwk  2q ivwk  [x − {x−1 + (a−1 − x)−1}−1]  x 1 − ax 
1 − ax + ax−1
Gi gvb wbY©q Ki| 4 = ax3  x − 
  x (1 − ax)  
 5bs cª‡kœi mgvavb 
 1 −1
= ax3  x − 
12 12 12  x − ax2 
K. (a8) a6 a4 = (a8) a6.a2 = (a8) a8
= ax3  [x −{x − ax2}]
= ax3  [x − x + ax2]
12 12 12
= (a8) (a4)2 = a8.a4 = a8 + 4
12
1 = ax3  ax2
12 12
= a12 = (a ) = a ax3
wb‡Y©q mij gvb a = 2 = x (Ans.)
ax
12
L. ÔKÕ †_‡K cvB, (a8) a6 a4 = a
Zvn‡j evgcÿ = 1g ivwk  2q ivwk

AwZwi³ m„R bkxj cÖkœ I mgvavb


1 1 1 1 1 1
œ 6  xb + x−c +1, xc + x −a + 1 Ges xa + x−b + 1 wZbwU
cÖk- = xb + x−c + 1 + xc +x−a + 1 + xa + x−b + 1
m~PKxq ivwk| =
xc
+
1
+
1
1 + xc + xb+c 1 1
K. Z…Zxq ivwkwUi mij Ki| 2 xc + a
+ 1 x b +1
xa x
L. ivwk wZbwUi †hvMdj wbY©q Ki| 4 x c 1 1
M. †`LvI †h, (a + b + c) = 0 n‡j ivwk wZbwUi †hvMdj = + +
1 + xc + xb+c xa.xc + 1 + xa xa.xb + 1 + xb
1. 4 xa xb
 6bs cª‡kœi mgvavb  xc xa xb
=1 + xc + xb+c + 1 + xa + xa + c + 1 + xb + x a + b (Ans.)
1 1 1 xb
K. xa + x−b + 1 = 1
= a b
x .x + 1 + xb = 1 + xb + x a + b (Ans.) M. †h‡nZz, a + b + c = 0
xa b + 1 ev, b + c = − a
x xb
L. ivwk wZbwUi †hvMdj  ivwk wZbwUi †hvMdj
beg-`kg †kÖwY : D”PZi MwYZ  363
1 1 1
= xb + x−c + 1 + xc +x−a + 1 + xa + x−b + 1  MvwYwZK Av‡ivn wewa Abymv‡i mKj n Gi Rb¨ (a.b)n
xc 1 1 = an.bn (†`Lv‡bv n‡jv)
= + +
1 + xc + xb+c 1 1 n
xc +
a

x c
xa
1
+ 1 x b +1
x
1
M. GLv‡b, a ( ) = a1 ............ (i)
1
n

= + + 1
1 + xc + xb+c xa.xc + 1 + xa xa.xb + 1 + xb
xa xb cÖ_g avc : n = 1 Gi Rb¨ (i) Gi evgcÿ = a ( ) = 1a
1

xc xa xb 1 1
=1 + xc + xb+c + 1 + xa + xa + c + 1 + xb + x a + b Wvbcÿ = =
a1 a
xc 1 xb  n = 1 Gi Rb¨ (i) evK¨wU mZ¨|
= + +
1 + xc + xb+c 1 + xc + x b+ c 1+ xb + x− c
wØZxq avc : awi, n = k Gi Rb¨ (i) evK¨wU mZ¨|
[∵ a + b + c = 0, ∵ a + b = − c] k

=
x c
+
1
1 + x c + xb + c 1 + x c + xb + c
+
xb
1
( ) = a1
A_©vr, a
1
k

1 + xb + c k+1 k
x 1 1 .1
=
xc
+
1
+
xb+c
1 + xc + xb +c 1 + xc + x b+c 1 + xc + xb+c
GLb, n = k + 1 n‡j, a () =
a ()
a
1 .1 1 1
1 + xc +xb +c = k = k = k+1
= a a a .a a
1 +xc + xb+c k+1
=1
 a + b + c = 0 n‡j cÖ`Ë ivwk wZbwUi †hvMdj 1. (†`Lv‡bv n‡jv)  (1a) =
1
ak+1
œ 7  a, b  N Ges an, n N n‡j MvwYwZK Av‡ivn c×wZ‡Z
cÖk-  n = k + 1 Gi
Rb¨ (i) evK¨wU mZ¨|
†`LvI †h,  MvwYwZK Av‡ivn c×wZ Abymv‡i mKj n Gi Rb¨
m n
K. (a ) = a mn
2 n

L. (a.b)n = anbn
n
4 (1) = a1
myZivs a n (†`Lv‡bv n‡jv)
1 1 1
M. (1a) = a1 †hLv‡b, a > 0
n œ 8
4 cÖk- + +
1 + a−mbn+a−mcp 1 + b−ncp + b−nam 1 + c−pam + c−pbn
 7bs cª‡kœi mgvavb  K. cÖ`Ë ivwki cÖ_g As‡ki mijxKiY Ki| 2
m n
K. GLv‡b, (a ) = amn L. cÖ`Ë ivwki mij gvb †ei Ki| 4
b b+c c+a
cÖ_g avc : (i) bs G n = 1 ewm‡q cvB, M. †`LvI †h, cÖ`Ë ivwki mij gvb  c
x
  a
xc
evgcÿ = (am)1 = am x  x 
Wvbcÿ = am.1 = am a a+b
 xb Gi mij gv‡bi mgvb| 4
 n = 1 Gi Rb¨ (i) bs evK¨wU mZ¨| x 
wØZxq avc : awi, n = k Gi Rb¨ (i)bs evK¨wU mZ¨|  8bs cª‡kœi mgvavb 
k
 (am) = amk 1
k+1 k K. cÖ`Ë ivwki cÖ_g Ask = 1 + a−mbn + a−mcp
GLb, (am) = (am) am
am(k +1) = amk + m = am(k + 1) am
=
 n = k + 1 Gi Rb¨ (i) bs evK¨wU
mZ¨|
m
a (1 + a−mbn + a−mcp)
m
a
 MvwYwZK Av‡ivn c×wZ Abymv‡i mKj n Gi Rb¨ =
am + am.a−mbn + am.a−m.cp
(am)n = amn (†`Lv‡bv n‡jv) am
= m (Ans.)
a + bn + cp
L. GLv‡b, (a.b)n = an.bn .................. (i)
L. ÔK' n‡Z cvB,
cÖ_g avc : n = 1 n‡j (i) ev‡K¨i evgcÿ = (a.b)1 = a.b
am
Wvbcÿ = a1.b1 = a.b cÖ`Ë ivwki cÖ_g As‡ki mij gvb = am + bn + cp
 n = 1 Gi Rb¨ (i) evK¨wU mZ¨| bn
Abyiƒcfv‡e wØZxq As‡ki mij gvb = am + bn + cp
wØZxq avc : awi, n = k Gi Rb¨ (i) evK¨wU mZ¨|
A_©vr, (a.b)k = ak.bk .................... (ii) cp
Ges Z…Zxq As‡ki mij gvb = am + bn + cp
GLb, (a.b)k + 1 = (a.b)k.(a.b)1
cÖ`Ë ivwk,
= ak.bk.a1.b1 1 1 1
= ak + 1.bk + 1 + +
1+ a−mbn + a−mcp 1+ b−ncp + b−nam 1+c−pam + c−pbn
 n = k + 1 Gi Rb¨ (i) evK¨wU mZ¨|
beg-`kg †kÖwY : D”PZi MwYZ  364
am bn cp 1
+y+z
1 1
= p+ m p+ m x
a + b + c a + b + c a + bn + cp
m n n
ev, k = k0
am + bn + cp 1 1 1
= m n p = 1 (Ans.)  + + =0
x y z
(cÖgvwYZ)
a +b +c
1 1 1
M. ÔLÕ n‡Z cvB cÖ`Ë ivwki mij gvb 1. Avevi, x + y + z = 0
b b+c c+a a+b 1 1 1
GLb, xc
x
  a
xc
 xb
xa ev, x + y = − z
  x    3 3
1 1 1
= (xb −
2
c b+c
2
)
2
 (xc − a)c + a  (xa − b)a + b
2 2 2
( ) ( )
ev, x + y z
[Nb K‡i]
= −
= xb − c  xc − a  xa − b 1 1 1 1 1 1 1
2 2
= x b −c + c − a + a − b
2 2 2 2
x y ( )
ev, 3 + 3 + 3 . x . y x + y = − 3
z
= x0 = 1 hv cÖ`Ë ivwki mij gv‡bi mgvb|(†`Lv‡bv n‡jv) 1 1 1 1 1
œ 9  ax = by = cz; †hLv‡b a  b  c.
cÖk-
( )
ev, 3 + 3 + 3 . xy − z = − 3
x y z
1 1 1 1
y y ev, x3 + y3 − 3 . xyz + z3 = 0
y z z−1
K. b = z Ges c = y n‡j †`LvI †h, ( ) =y
z
2 1 1 1
x y z
3
 3 + 3 + 3 = xyz (†`Lv‡bv n‡jv)
L. a, b Ges c ci¯úi wZbwU abvZ¥K ALÊ msL¨v n‡j
1 1 2 3 3 3
cÖgvY Ki †h, x + y = z œ 10  x a + y b + z c = 0 Ges a2 = bc.
4 cÖk-
1 1 1 3 3
M. abc = 1 n‡j †`LvI †h, x + y + z = 0 Ges y a− c
K. a  0 Ges x + y + z = 0 n‡j †`LvI †h, z = 2
3 3
1 1 1
+ + =
3
4 b− a
x3 y3 z3 xyz L. †`LvI †h, ax3 + by3 + cz3 = 3axyz 4
 9bs cª‡kœi mgvavb  1
3

1
3
M. a = 2 + 2 Ges xyz = 1 n‡j †`LvI †h,
K. b = z Ges c = y n‡j
6(by3 + cz3) = (2a3 − 5)(3 − x3) 4
cÖ`Ë kZ©g‡Z, zy = yz .............. (i)
y
y y y y  10bs cª‡kœi mgvavb 
z z z z
Zvn‡j, z (y) = (y) = (y)z
y
z
1
y z
=
y
1
z z
=
y
y1
3
K. †`Iqv Av‡Q, x a + y b + z c = 0 ........ (i)
3 3

(z) (z ) (y ) Ges x + y + z = 0 ........... (ii)


y y
−1 (ii) bs mgxKiY †_‡K cvB, x = − (y + z)
 z = (y) z
(†`Lv‡bv n‡jv)
yz
(i) bs mgxKi‡Y x Gi gvb ewm‡q cvB,
L. †`Iqv Av‡Q, a = by = cz
x
3 3 3
− (y + z) a + y b + z c = 0
g‡b Kwi, ax = by = cz = k
3 3 3 3
1 ev, − y a − z a + y b + z c = 0
Zvn‡j, x
a = k ...................... (i) 3 3 3 3
1 ev, y b − y a = z a − z c
y
b = k ...................... (ii) 3 3 3 3
1 ev, y( b − a) = z( a − c)
z
c = k ...................... (iii) 3 3
y a− c
GLb †h‡nZz a, b Ges c wZbwU abvZ¥K ALÊ msL¨v z= (†`Lv‡bv n‡jv)
3 3
 b2 = ac b− a
1 1 1
2
L. †`Iqv Av‡Q,
ev, (k ) =k . k
y x z
3 3 3
2 1 1 x a+y b+z c=0
y x +z
ev, k = k 3 3 3
2 1 1
ev, (x a + y b) = −z c .................... (i)
ev, y = x + z 3 3 3 3 3
ev, (x a + y b) = (−z c) [Nb K‡i]
1 1 2
 + = (cÖgvwYZ) 3 3 3
x z y ev, x3a + y3b + 3xy ab (x a + y b) = −z3c
M. cÖ`Ë kZ©, abc = 1 ev, x3a + y3b + z3c + 3xy ab (−z c) = 0 [(i) †_‡K]
3 3
1 1 1
x y z 3
ev, k .k .k = 1 ev, x3a + y3b + z3c + 3xyz (− abc) = 0
beg-`kg †kÖwY : D”PZi MwYZ  365
3 ev, x3 = 2a + 3x.c
ev, ax3 + by3 + cz3 − 3xyz a.a2 = 0
 x3 − 3cx − 2a = 0 (†`Lv‡bv n‡jv)
3
ev, ax3 + by3 + cz3 − 3xyz a3
a
3
2 b
2
3  a
1
32 b
1
23
 ax + by + cz = 3axyz (†`Lv‡bv n‡jv)
3 3 3 M. evgcÿ = b () () () +
a
=
 b
 +
  a ( ) 
1 1
M. †`Iqv Av‡Q,
=  3 +  2 
 a 2  b 3
3 2

1

1 b  a 
3 3 1 1
a=2 +2 ................ (i)
=  2 +  3 [ a2 = b3]
 a 2  b 3
3 2
1 1

3
ev, a3 = (2 + 2 ) 3 3
[Nb K‡i] a  b 
1 1 1 1
1 1 1 1 1 1 −
− − − −2 2
3 3 3 3
ev, a3 = (2 ) + (2 ) + 3.2 .2 (2 + 2 ) 3 3 3 3 = (a3 ) + (b2 − 3)3 = a2 + b 3

1
ev, a3 = 2 + 2−1 + 3.20.a [(i) †_‡K] =a +
2 1
1 = a+
1
= Wvbcÿ
1 3
ev, a = 2 + 2 + 3a
3 3 b
b
ev, 2a3 = 4 + 1 + 6a  evgcÿ = Wvbcÿ (cÖgvwYZ)
ev, 2a3 = 5 + 6a œ 12  GKwU m~PKxq ivwk we‡ePbv Ki,
cÖk-
ev, 6a = 2a3 − 5
 3 3  3 3 3 3
1 1 2 1 1 2
2a3 − 5
a= 6
a − b  a + a . b + b ; a, b > 0
K. ivwkwUi mv‡_ b †hvM K‡i mijxKiY Ki| 2
ÔLÕ bs †_‡K cvB, 2
3
ax3 + by3 + cz3 = 3axyz L. ÔKÕ †_‡K cÖvß mijgvbwUi eM© mgvb −2 + 3 +
ev, ax3 + by3 + cz3 = 3a.1 [ xyz = 1] −
2
3
ev, by + cz = 3a − ax
3 3 3 3 n‡j †`LvI †h, 3a3 + 9a − 8 = 0 4
2 1
ev, by3 + cz3 = a (3 − x3) 3 3
2a − 5 2a − 5
M. ÔKÕ †_‡K cÖvß mijgvbwU 1 + 3 + 3 Gi mgvb
ev, by3 + cz3 = 6 (3 − x3)  a = 6 
3 3
n‡j †`LvI †h, a3 − 3a2 − 6a − 4 = 0 4
 6(by3 + cz3) = (2a3 − 5)(3 − x3) (†`Lv‡bv n‡jv)  12bs cª‡kœi mgvavb 
1 1 K. cÖ`Ë ivwkwUi mv‡_ b †hvM Ki‡j `uvovq,
œ 11  a > 0 Ges a  0, x = (a + b) + (a − b) Ges a2 = b3
cÖk- 3 3
1 1 2 1 1 2
3 3 3 3 3 3
K. †`LvI †h, a0 = 1 2 (a − b ) (a + a .b + b ) + b
1 1 1 1 1 1
L. hw` a2 − b2 = c3 nq, Z‡e †`LvI †h, x3 − 3cx − 2a = 0 4 3 3 3 3 3 3
= (a − b ) {(a )2 + a .b + (b )2} + b
3 2 1 1
a 2 b 3 1
M. cÖgvY Ki †h, () () b
+
a
= a+
3
b
4
=a−b+b
3
= (a )3 − (b )3 + b
3

 11bs cª‡kœi mgvavb  = a (Ans.)


L. ÔKÕ †_‡K cÖvß gvb a
1−1
K. a = a
0
2 −2
3 3
1 −1
= a .a [m~P‡Ki †gŠwjK m~Î a m + n m
= a .a n
]  a = −2 + 3 + 3
2

 2  
1 1 2
1 a − 1 −1
= a. = = 1 ev, a2 = 3  + 3  − 2.33.3
3 3 3
a a
 a =1 (†`Lv‡bv n‡jv)
0
 3 − 32
1 1

ev, a = 3 − 3 
2
L. †`Iqv Av‡Q, 1 1
1 1 −
3 3 ev, a = 33 − 3 3
[eM©g~j K‡i]
x = (a + b) + (a − b) ............... (i)
 
1 1 3
1 1 −
ev, a3 = 3 − 3 
3 3
ev, x3 = {(a + b)3 + (a − b)3}3 [Nb K‡i] [Nb K‡i]
   − 33 3 3
− 3
1 1 1 1 1 3 1 −1 1 1 1

ev, a = 3    − 3.3 .3 3 − 3 
3 3
3
ev, x = (a + b) + (a − b) + 3(a + b) (a − b) {(a + b) + (a − b) }
3 3 3 3 3
− 3
1 1 −1
1
ev, x = 2a + 3(a − b ) .x [(i) †_‡K]
3 2 2 3 ev, a = 3 − 3 − 3.a [ a = 33 − 3
3 3
]
1
3 3
ev, 3a3 = 9 − 1 − 9a
ev, x3 = 2a + 3x(c ) [ a2 − b2 = c3]
 3a3 + 9a − 8 = 0 (†`Lv‡bv n‡jv)
beg-`kg †kÖwY : D”PZi MwYZ  366
M. ÔKÕ †_‡K cÖvß gvb a ev, y − 2 = 1 + 2.1 y −9 + y −9
2 1
3 3 ev, y −2 −y + 9 −1 = 2 y −9
a=1+3 +3
ev, 6 = 2 y −9
 3 33
2 1

ev, (a − 1) = 3 + 3  [cÿvšÍi Kivi ci Nb K‡i]


3 ev, y −9 = 3
 33  33 32 31  3 3
2 1 2 1 ev, ( y −9 )2 = 9
ev, a −1−3a + 3a = 3  + 3  + 3.3 .3 .3 + 3 
3 2
ev, y −9 = 9
2 1  y = 18
ev, a3 − 3a2 + 3a − 1 = 32 + 31 + 3.31.(a − 1) [ a − 1 = 33 + 33] ev, 2x2 + 5x = 18 [y Gi gvb ewm‡q]
ev, a3 − 3a2 + 3a − 1 = 9 + 3 + 9a − 9 ev, 2x2 + 5x −18 = 0
 a3 − 3a2 − 6a − 4 = 0 (†`Lv‡bv n‡jv) ev, 2x2 + 9x − 4x − 18 = 0
4x + 7 2x + 7 ev, x(2x + 9) −2(2x + 9) = 0
œ 13 
cÖk- ( 4) 5
= ( 11
64 ) Ges 2x2 + 5x −2 − ev, (2x + 9) (x −2) = 0
2x2 + 5x −9 =1, `yBwU mgxKiY ev, 2x = − 9 A_ev x − 2 = 0
−9
K. 1g mgxKiYwU‡K am = an AvKv‡ii cÖKvk Ki| 2 ev, x = 2 ev, x = 2
L. 2q mgxKiYwU mgvavb Ki| 4 −9
M. mgxKiY؇qi †Kv‡bv mvaviY g~j Av‡Q wKbv Zv wb‡Y©q mgvavb x = 2 , 2
wba©viY Ki| 4 4x + 7 6x + 21

 13bs cª‡kœi mgvavb  M. ÔKÕ n‡Z cvB, 4 5


= 4 11
4x + 7 6x + 21
4x + 7 2x + 7 ev, 5 = 11
K. ( 4)
5
= ( 11
)
64
ev, 44x + 77 = 30x + 105
1 2x + 7

ev, (4 )
1 4x + 7
5 = {(64) } 11 ev, 44x − 30x = 105 − 77
ev, 14x = 28
4x + 7 6x + 21
ev, 4 5
=4 11
x=
28
 am = an AvKv‡i †`Lv‡bv n‡jv| 14
=2
L. 2x2 + 5x −2 − 2x2 + 5x −9 =1 wb‡Y©q mgvavb x = 2
ev, y −2 − y −9 = 1 [2x2 + 5x = y a‡i]  mgxKiY؇qi g‡a¨ GKwU mvaviY g~j Av‡Q Ges Zv n‡”Q x
ev, y −2 = 1 + y −9 =2
ev, ( y −2 )2 = (1 + y −9 )2 [eM© K‡i]

wbe©vwPZ m„Rbkxj cÖkœ I mgvavb


œ 14 
cÖk- awi, xa = bb = zc = k
K. hw` ax = b, by = c Ges cz = 1 nq, Z‡e xyz =  xa = k
1
KZ? 2 x = ka ...............(1)
L. hw` xx = yb = zc Ges xyz = 1 nq, Z‡e ab+bc+ca yb = k
= KZ? 4 1

x ev, y = kb ...............(2)
M. hw` 9x = (27)y nq, Zvn‡j y
Gi gvb KZ? 4 zc = k
1
 14bs cª‡kœi mgvavb  ev, z = kc ...............(3)
K. †`Iqv Av‡Q, ax = b ........................(1) (1)  (2)  (3) n‡Z cvB
by = b ........................(2) 1 1 1
cz = 1 .........................(3) xyz = ka. kb. kc
(i) n‡Z cvB, ax = b 1 + 1 +1

ev, (ax)y = (b)y ev, 1 = ka b c


ab + bc + ca
ev, (ax)y = (b)y ev, k = k abc
ev, axy = c [(2) n‡Z] ab + bc + ca
ev, axy = cz ev, 0 = abc
ev, axyz = a  ab + bc + ca = 0
 xyz = 0 M. †`Iqv Av‡Q, 9x = (27)y
L. †`Iqv Av‡Q, xa = yb = zc Ges xyz = 1 ev, (32)x = (33)y
beg-`kg †kÖwY : D”PZi MwYZ  367
ev, 32x = 33y x=2
ev, 2x = 3y hLb, x = 2
x 3 ZLb y2 = 22
 =
y 2 ev, y2 = 4
a2−b2
a y=2
 1 a+b
Avevi, hLb, x = −2
œ 15  GKwU m~PKxq ivwk we‡ePbv Kwi,
cÖk-
 a
 x () a−b 
 ZLb, y−2 = (−2)2
K. ivwkwU‡K mijxKiY Ki| 2 1 1
1 1 ev, y2 = 4 [a−m = am]

L. cÖ`Ë ivwkwU 23 + 2 3 n‡j Z‡e †`LvI †h, 2x3 − 1
6x = 58. 4 ev, y2 = 4
1 1 1
M. cÖ`Ë ivwkwU (a + b)3 + (a − b)3 Ges a2 − b2 = c3 y=
2
Z‡e †`LvI †h, 2x − 6cx = 4a Ges a I c Gi
3

†Kvb gv‡bi Rb¨ L I M †_‡K cÖvß mgxKiY GKB


1
wb‡Y©q mgvavb (x, y) = (2, 2), (2, − 2), −2 2 ( ) (−2 −21)
mgxKiY wb‡`©k K‡i| 4 M. †`Iqv Av‡Q, wØZxq mgxKiY †RvU,
 15bs cª‡kœi mgvavb  yx = 4 ...................... (iii)
a
y2 = 2x .................... (iv)
 1 a2−b2 (iv) bs n‡Z cvB,
a+b
K. DÏxc‡K cÖ`Ë ivwkwU n‡jv, ()
 a
 x
a−b 

a
y2 = 2x
ev, (y2)x = (2x)x [Dfqc‡ÿi NvZ x G DbœxZ K‡i]
 1  (a−b) (a+b)a+b ev, y2x = 2x
2
 a (a−b) 
= x  ev, (yx)2 = 2x
2
1 a
a  (a+b)  a+b ev, (4)2 = 2x [(iii) bs n‡Z yx Gi gvb ewm‡q]
2
=x
ev, 16 = 2x
2
= x (Ans.)
1 −1 ev, 2x = 24
2

L. cÖ`Ë ivwkwU, x = 23 + 2 3 ; †`Lv‡Z n‡e †h, 2x3 − 6x = 5 ev, x2 = 4 [am = an n‡j m = n]


Abykxjbx 9.1 Gi 7(M) cÖ‡kœvËi `ªóe¨| x=2
1 1 (iii) bs G x Gi gvb ewm‡q cvB,
M. cÖ`Ë ivwk, x = (a + b)3 + (a − b)3 Ges a2 − b2 = c3, †`Lv‡Z hLb, x = 2, ZLb y2 = 4
n‡e †h, 2x3 − 6cx = 4a y=2
Gici : Abykxjbx 9.1 Gi 7(L) cÖ‡kœvËi `ªóe¨| Avevi hLb, x = −2 ZLb
ÔLÕ n‡Z cÖvß mgxKiY 2x3 − 6x = 5 I 2x3 − 6cx = 4a mgxKiY y−2 = 4
5 1
GKB n‡e hw` c = 1 Ges 4a = 5 ev, a = 4 nq| (Ans). ev, y2 = 4
1
yx = x2 yx = 4 ev, y2 = 4
} }
œ 16  x2x = y4 Ges y2 = 2x , y  1 `yBwU `yB PjKwewkó
cÖk-
1
m~PKxq mgxKiY| y=
2
K. m~PK mgxKiY Kv‡K e‡j? 2 1 1
L. cÖ_g mgxKiY †Rv‡Ui mgvavb wbY©q Ki| 4
wb‡Y©q mgvavb (x, y) = (2, 2), (2, −2), −2 2 −2 −2 ( )( )
M. †`LvI †h, wØZxq mgxKiY †Rv‡Ui mgvavb cÖ_g myZivs, wØZxq mgxKiY †Rv‡Ui mgvavb cÖ_g mgxKiY †Rv‡Ui
mgxKiY †Rv‡Ui mgvav‡bi mgvb| 4 mgvav‡bi mgvb| (†`Lv‡bv n‡jv)
 16bs cª‡kœi mgvavb  1

1 2

2

cÖkœ-17  a = 23 + 2 3 Ges b2 + 2 = 33 + 3 3, b  0.
K. m~PK mgxKiY : m~PK I wfwË m¤^wjZ mgxKiY‡K m~PK 1

1

yx = 4 K. wØZxq mgxKiY †_‡K †`LvI †h, b = 33 − 3 3. 2


mgxKiY e‡j| †hgb : y2 = 2x , y  1 } L. cÖgvY Ki †h, 3b3 + 9b = 8 4
L. †`Iqv Av‡Q, cÖ_g mgxKiY †RvU, M. cÖ_g mgxKiY †_‡K †`LvI †h, 2a3 − 6a = 5. 4
yx = x2 .................... (i)
x2x = y4 ................... (ii)  17bs cª‡kœi mgvavb 
(ii) bs n‡Z cvB, 2

2

x2x = y4 K. wØZxq mgxKiY, b2 + 2 = 33 + 3 3.


ev, (x2)x = y4 2

2

ev, (yx)x = y4 [(i) bs n‡Z x2 Gi gvb ewm‡q] ev, b2 = 33 + 3 3 − 2


1 2 −1 2 1 1
ev, yx2 = y4 = 3( ) + (3 ) − 2.3 . 3
3 3 3

3

ev, x2 = 4 [ am = an n‡j m = n]
beg-`kg †kÖwY : D”PZi MwYZ  368
1

1
= xq − r − 1 + r − p −1 + p − q − 1. y(p − 1) (q − r − 1) + (q − 1) (r − p − 1) + (r − 1) (p − q − 1)
(
= 3 −3
3
)
3
= x−3.ypq − pr − p − q + r + 1 + qr − pq − q − r + p + 1 + pr − qr − r − p + q + 1
1

1
= x−3.y3−(p + q + r) [ p + q + r = 3]
b=3 −3
3 3
(†`Lv‡bv n‡jv) = x−3.y3 − 3 = x−3.y0
1

1 = x−3 = Wvbcÿ (†`Lv‡bv n‡jv)
L. ÔKÕ n‡Z cvB, b = 33 − 3 3 [ b  0 †h‡nZz abvZ¥K gvb wb‡q] M. †`Iqv Av‡Q, p + q + r = 3
1 1 pq + qr + rp = 3
= (3 − 3 )
3 − 3
ev, b3
3
[Dfqcÿ‡K Nb K‡i] a−2 b−2 c−2
1 3 1 3 1 1 1 1
cÖ`Ë ivwk = ap + 1 bq + 1 cr + 1
ev, b3 = 3 ( ) − (3 ) − 3.3 .3 (3 −3 )
3

3 3

3 3

3

=
(xyp − 1)−2  (xyq − 1)−2  (xyr − 1)−2
(xyp − 1)p + 1  (xyq − 1) q + 1  (xyr − 1)r + 1
[ (a − b)3 = a3 − b3 − 3ab (a − b)]
x−2.y−2p + 2.x−2. y−2q + 2.x−2.y−2r + 2
ev, b3 = 3−3−1 − 3.30.b [(a − b)3 = a3 − b3 − 3ab (a − b)] = p + 1 p2 − 1 q + 1 q2 − 1 r + 1 r2 − 1
x .y x y x .y
2 2
1 = x−2 − 2 −2 − p − 1 − q − 1 − r − 1y−2p + 2 − 2q + 2 − 2r + 2 − p + 1 − q + 1 − r + 1
2
ev, b3 = 3 − 3 − 3b 2 + q2 + r2)
=x −9 − (p + q + r) y 9 − 2(p + q + r) − (p
2
ev, b3 + 3b = 3
8 = x−9−3  y9 − 2.3 − {(p + q + r) − 2(pq + qr + rp)} [ p + q + r = 3]
[ p + q + r = 3 Ges pq + r + rp = 3]
2 − 2.3}
=x y
−12 9 − 6 − {(3)

 3b3 + 9b = 8 (cÖgvwYZ) = x−12 . y3 − (9 − 6)


1

1 = x−12.y0
M. †`Iqv Av‡Q, a = 23 + 2 3 = x−12
a−2.b−2.c−2
 p + 1 q + 1 r + 1 = x−12 (Ans.)
1 1 3
ev, a3 = (23 + 2 3)

[Dfqcÿ‡K Nb K‡i] a .b .c
1 3 1 3 1 1 1 1 a a2 + ab + b2 b b2 + bc + c2 pc c2 + ca + a2
ev, a3 = (2 ) + (2 ) + 3.2 .2 (2 + 2 )
− − −
3 3 3 3 3 3
cÖkœ-19  (pp ) b , (pp ) c pa ()
[ (x + y)3 = x3 + y3 + 3xy (x + y)] 2 x −y 2 y −z 2 z −x
p(x + y)  p(y + z)  p(z +x) 
ev, a3 = 21 + 2−1 + 320a  xy  ,  yz  ,  zx 
 p   p   p 
1 1 1 1

[ 2 .2 3

3
= 23
1

1
3
= 20

Ges 23 + 2 3 = a ] K. 1g I 4_© ivwki gvb wbY©q Ki| 2
pa a2 + ab + b2 pb b2 + bc + c2 pc c2 + ca + a2
ev, a3 = 2 + 2 + 3a
1 L. () pb
 c
p
() (p ) a

4 + 1 + 6a Gi gvb wbY©q Ki| 4


ev, a3 = x −y y −z z −x
2  (x + y) 2   (y + z) 2
  (z +x) 2 
p p p
ev, 2a3 = 4 + 1 + 6a M. †`LvI †h,  pxy  .  pyz  .  pzx  = 1 4
 2a3 − 6a = 5 (†`Lv‡bv n‡jv)
 19bs cª‡kœi mgvavb 
œ 18  a = xyp − 1, b = xyq − 1 Ges c = xyr − 1 nq, Zvn‡jÑ
cÖk-
K. †`Iqv Av‡Q,
3
K. p + q + r = 3 n‡j †`LvI †h, abc = x 2 a a2 + ab + b2
L. †`LvI †h, aq − r − 1. br − p − 1.cp − q − 1 = x−3 hLb p + q + r = 3 4
1g ivwk = pb (p )
a−2b−2c−2
M. p + q + r = 3, pq + qr + rp = 3 n‡j ap + 1 bq + 1cr + 1
2 + ab + b2
= (pa − b)a
2 2)
Gi gvb wbY©q Ki| 4 = p(a − b) (a + ab + b
 18bs cª‡kœi mgvavb 
3 3
= Pa −b (Ans.)
p  (x + y)2 x − y px + 2xy + y 
2 2 x−y
K. †`Iqv Av‡Q, a = xyp−1, b = xyq − 1 Ges 4_© ivwk =  pxy  = 
 pxy 
Ges c = xyr − 1 2 + 2xy − xy + y2) (x −y)
 abc = xyp −1. xyq − 1. xyr − 1 = p(x
= x 1 + 1 + 1. y P + q + r − 1 − 1 − 1
2 + xy + y2) (x − y)
= p (x
= x3.y(p + q + r) − 3 = px
3 − y3 (Ans.)
= x3. y3 − 3 [p + q + r = 3]
pa a2 + ab + b2 pb b2 + bc + c2 2
pc c + ca + a
2
= x3.y0
= x3.1
L. () pb
 () pc
 ()
p a

= x3 = (pa − b)(a + ab + b )
2 2
 (p b − c)(b + bc + c ) 
2 2
(pc − a)(c
2
+ ca + a2)

ev, abc = x3 = p(a − b) (a + ab + b ) p(b − c) (b


2 2 2
+ bc + c2) p(c − a) (c + ca + a )
2 2

3 3 − b3 3 − c3 3 − a3
 abc = x (†`Lv‡bv n‡jv) = pa  pb  pc
L. evgcÿ = aq − r − 1. br − p − 1.cp − q − 1
3 3 3 3 3 3
= pa − b + b −c +c −a

= (xyp − 1)q − r − 1. (xyq − 1)r − p − 1. (xyr−1)p−q−1 = p0


= xq − r − 1. y(p − 1) (q − r − 1). xr − p − 1. y(q − 1)(r − p − 1). xp − q − 1. y(r − 1) (p − q − 1) = 1 (Ans.)
beg-`kg †kÖwY : D”PZi MwYZ  369
p  (x + y)2 x − y 1 1 1
M. ÔKÕ n‡Z cvB,  pxy  = px
3 − y3 ev, x + y + z = 0

p  (y + z)2 y−z 3 3
ev, x−1 + y−1 + z−1 = 0 (†`Lv‡bv n‡q‡Q)
Abyiƒcfv‡e,  pyz  = py −z
1 1 1
Avevi, x + y + z = 0
2 z−x
p(z + x)  1 1 1
Ges  pzx  = pz3 − x3 ev, x + y = −z

(1) (1) + 31x1y (1x + 1y) = −1z


3 3
2 x−y 2 y−z 2 z−x
p(x + y)  p(y + z)  p(z + x)  ev, x + y [Nb K‡i]
  xy    yz    zx  3
 p   p   p 
−1
ev, x3 + y3 + 3xy  z  = − z3
1 1 1 1 1 1 1
= px
3 − y3
 py
3 − z3
 pz
3 − x3 [ + = − ]
x y z
= px − y + y − z + z − x = p0 = 1 1 1 1 3
3 3 3 3 3 3
ev, x3 + y3 + z3 = xyz
p(x + y)  p(y + z)  p(z + x) 
2 x−y 2 y−z 2 y−z
A_©vr  pxy   pyz   pzx  = 1 (†`Lv‡bv n‡jv)  x−3 + y−3 + z−3 = 3(xyz)−1 (†`Lv‡bv n‡jv)
œ 20  hw` = = †hgb a  b  c Ges
cÖk- ax by c2, n‡j, cÖkœ-21  ax = bx = cz, †hLv‡b, a, b I c abvZ¥K I ci¯úi
92R = 3R + 1 [[

K. R Gi gvb wbY©q Ki| 2 Amgvb Ges x, y, z  N.


a 32 b 23 1 K. 92x = 3x + 1 n‡j x Gi gvb KZ? 2
L. x = 2 Ges y = 3 nq Z‡e †`LvI †h, b + a = a +
3
4 () ()
L. b2 = ac n‡j, cÖgvY Ki †h, x−1 + z−1 = 2y−1
b
4
1 1 1 1 1 1 3
M. abc = 1 n‡j †`LvI †h, x−1 + y−1 + z−1 = 0 Ges M. abc = 1 n‡j, †`LvI †h, x + y + z = 0 Ges x3 + y3 + z3 = xyz 4
x−3 + y−3 + z−3 = (3xyz)−1 4  21bs cª‡kœi mgvavb 
 20bs cª‡kœi mgvavb  K. †`Iqv Av‡Q, 92x = 3x + 1
K. GLv‡b, = 92R 3R + 1 ev, (32)2x = 3x + 1
ev, (32)2R = 3R + 1 ev, 34x = 3x + 1
ev, 34R = 3R + 1 ev, 4x = x + 1
ev, 4R = R + 1 ev, 4x − x = 1
ev, 3R = 1 ev, 3x = 1
1
1 x= (Ans.)
 R = (Ans.) 3
3
L. Aby-9 Gi D`vniY 11 bs `ªóe¨| c„ôv-184|
L. †`Iqv Av‡Q, ax = by = cx M. awi, ax = by = cz = k
GLv‡b, x = 2, y = 3 n‡j cvB, a2 = b3 GLv‡b, ax = k
 a = b3/2, b = a2/3 1 1 1
 a = kx Abyiƒcfv‡e, b = ky Ges c = kz
a 3
( ) ( ) = (aa ) + bb 
2 3 2
b
evgcÿ = b 2 + a 3
2/3
2
3
3
[gvb ewm‡q] 1
 abc = kx  ky  kz
1 1

2 1 1 1
+ +
1
3 2 ev, 1 = kx y z [ abc = 1]
= a ( ) + (b ) = a + 1
3
2 1
3
3 1
2
1
1 1 1
+ +
ev, k0 = kx y z
b3 1 1 1
1  + + = 0 (†`Lv‡bv n‡q‡Q)
x y z
= a+ = Wvbcÿ 1 1 1
3
b GLb, x + y + z
3 2
a b 1 1 1 1
 b () ()= 2
+
a
3
a+ (†`Lv‡bv n‡jv) ev, x + y = −z
3
b −1 3
ev, x + y =  z  [Nb K‡i]
1 1 3
M. †`Iqv Av‡Q, ax = by = cz †hLv‡b, a  b  c ( )
awi, ax = by = cz = k 1 1 11 1 1 1
 ax = k by = k cz = k
ev, x3 + y3 + 3.x y x + y = −z3 [(i) ( ) e¨envi K‡i]
1 1 1 1 1 1 1
a=k x
b=k y
c=k z ev, x3 + y3 − 3xyz = −z3
GLb, abc = 1 1 1 1 3
1 1 1  3+ 3+ 3=
x y z xyz
(†`Lv‡bv n‡jv)
ev, kx  ky  kz = 1 [gvb ewm‡q]
1 1 1
+ +
ev, kx y z
= k0
................................................................................ cÖ_g Aa¨vq  A_©bxwZ cwiPq..................................................................................370

m„R bkxj cÖkœe¨vsK DËimn


1

1 2 −2 L. x I y -Gi gvb †ei Ki| 4
œ 22  a = 23 + 2 3 Ges b2 + 2 = 33 + 3 3 , b > 0
cÖk- −
1
+
1
−1 2 3 x
1 M. 4a − 3a = 3 2 −22a−1 n‡j,
a †`LvI †h, a = x A_ev a = 2 4
K. wØZxq mgxKiY †_‡K †`LvI †h, b = 33 2
−33,b>0
L. cÖgvb Ki †h, 3b2 + 9b = 8 4 DËi : L. (x, y) = (3, 8), (2, 4)
M. cÖ_g mgxKiY †_‡K †`LvI †h, 2a3 − 6a = 5 4 1

1 2

2
œ 23  (i) 3x − 9y (ii) 5x+y+1 = 25xy (iii) 8yx − y2x = 16, 2x = y2
cÖk- 2
œ 27  a = 23 + 2 3 Ges a + 2 + 33 = 3 3, b > 0
cÖk-
K. (i) n‡Z x †K y Gi gva¨‡g †`LvI| 2 1 1
L. (i) I (i) n‡Z (x, y) wbY©q Ki| 4 K. wØZxq kZ© †_‡K †`LvI †h, b = 33 − 3− 3 2
M. (iii) bs †K mgvavb K‡i wØPjK wØNvZ wKbv Zv eywS‡q `vI| 4
DËi : K. x = 2y ; L. cÖgvY Ki †h, 3b + 9b = 8
3 4
M. cÖ _ g kZ© †_‡K †`LvI †h, 2a3 − 6a = 5 4
L. (2, 1), −1 2 4
(−1
; ) m n
œ 28  a .a = (a ) Ges m, n  0
cÖk- m n
− 2
(
M. 2  2
2
) , − 2 2 ( , wØPjK wØNvZ| ) K. †`LvI †h, m + n − mn = 0 2
1 1 2 1 1 2 L. cÖ gvY Ki †h, m(n − 2) + n(m − 2) = 0 4
cÖk- (
œ 24  x − y
3 3
)(
3
x +x y +y
3 3 3
)
: x.y > 0 GKwU m~PKxq M. †`LvI †h, m(n − 2) + n(m − 2) = 0 mgxKiYwU wm× n‡e
ivwk| Gi mvnv‡h¨ wb‡Pi mgm¨v¸‡jvi mgvavb Ki| hw` I †Kej hw` m = n = 2 nq| 4
K. ivwkwUi mv‡_ y †hvM Ki‡j mij dj KZ n‡e? 2
2 −2 œ 29  a = b , a = b, b = c Ges c = a
cÖk- b a p q r

L. ÔKÕ n‡Z cÖvß mij gvbwUi eM© mgvb 3 − 3 − 2 n‡j 3 3 a a


−1
†`LvI †h, 3x3 + 9x = 8 4 K. ab = ba n‡j †`LvI †h, a b = ab 2 ()
2 1 b
M. ÔKÕ n‡Z cÖvß mij gvbwU 1 + 33 + 33 n‡j †`LvI †h, x3 − 3x2 − 6x = 4. 4 L. cÖgvY Ki †h, pqr = 1 4
DËi : K. m„Rbkxj cÖkœ 14 Gi Abyiƒc| M. ax = p, ay = q Ges az = (pyqx)z nq Z‡e xyz = 1 cÖgvY Ki| 4
œ 25  a = xyp−1; b = xyq−1; c = xyr −1
cÖk- 2

2
œ 30  a = xyp−1, b = xyq−1, c = xyr − 1 Ges z2 + 2 = 33 + 3 3
cÖk-
K. p + q + r = 3 n‡j abc = KZ? 2 †hLv‡b, z  0|
L. †`LvI †h, aq−r.br−p.cp−q = 1 4 K. p + q + r = 3 n‡j abc = KZ? 2
M. p + q + r = 3, pq + qr + rp = 3 n‡j, a .b .c = KZ? 4 L. †`LvI †h, aq − r. br − p. cp − q = 1.
p+1 q+1 r+1
4
DËi : K. abc = x3; L. x6 M. cÖgvY Ki †h, 3z + 9z − 8 = 0
3 4
x x
œ 26  y = 2 Ges 4 − 3.2
cÖk-
x +2 5
+ 2 = 0 n‡j DËi : K. x 3

K. cÖgvY Ki y2 − 12y + 32 = 0 2

A b yk xj b x 9 .2
cvV m¤úwK©Z MyiæZ¡c~Y© welqvw`
 jMvwi`g : Logos Ges arithmas bvgK `ywU wMÖK kã n‡Z jMvwi`g kãwUi DrcwË| Logos A_© Av‡jvPbv Ges arithmas A_© msL¨v
A_©vr, we‡kl msL¨v wb‡q Av‡jvPbv|
msÁv : hw` ax = b nq, †hLv‡b a > 0 Ges a  1, Z‡e x †K ejv nq b Gi a wfwËK jMvwi`g, A_©vr, x = logab
AZGe, ax = b  x = logab
wecixZµ‡g, hw` x = logab  ax = b n‡e|
G‡ÿ‡Î b msL¨vwU‡K wfwË a Gi mv‡c‡ÿ x Gi cÖwZjM (anti-log arithm) e‡j Ges Avgiv wjwL b = anti loga x
hw` loga = n nq, Z‡e a †K n Gi cÖwZjM ejv nq A_©vr, loga = n n‡j a = anti log n.
 jMvwi`‡gi m~Îvewj
1. logaa = 1 Ges loga1 = 0 2. loga(M  N) = logaM + logaN 5. logaM = logbM  logab
3. loga(M)N = N loga M 4. loga N = logaM − logaN (M)
 ciggvb : GKwU ivwk abvZ¥K A_ev FYvZ¥K hvB †nvK bv †Kb abvZ¥K wPýhy³ gvb‡K H ivwki ciggvb ejv nq| †hgb : †h
†Kv‡bv ev¯Íe msL¨v x Gi gvb k~b¨, abvZ¥K ev FYvZ¥K wKš‘ x Gi ciggvb memgqB k~b¨ ev abvZ¥K| x Gi ciggvb‡K |x|Øviv
cÖKvk Kiv nq| ciggvb wbgœwjwLZfv‡e msÁvwqZ Kiv hvq|
beg-`kg †kÖwY : D”PZi MwYZ  371
x hLb x > 0

| x | =  0 hLb x = 0
−x hLb x < 0
†hgb: |0| = 0, |3| = 3, |−3| = −(−3) = 3
ciggvb dvskb : hw` xR nq, Z‡e
x hLb x > 0
= −x hLb x < 0

y = (x) = |x| †K ciggvb dvskb ejv nq|
 †Wv‡gb = R Ges †iÄ R = [0, ]
dvsk‡bi †Wv‡gb I †iÄ wbY©q :
†h‡nZz cÖ‡Z¨K dvskb GKwU Aš^q| myZivs dvsk‡bi †Wv‡gb Ges †iÄ ej‡Z Aš^‡qi †Wv‡gb Ges †ićKB †evSv‡e|
AZGe y = (x) dvsk‡bi (x,y) µ‡gv‡Rvo¸‡jvi x Gi Gi gb‡K †Wv‡gb Ges y Gi gvb‡K †iÄ e‡j|
weKí c×wZ‡Z dvsk‡bi †iÄ wbY©q :
mvaviYfv‡e †Wv‡gb wbY©q AwaKZi mnR| †Kv‡bv dvsk‡bi †Wv‡gb I †iÄ h_vµ‡g wecixZ dvsk‡bi †iÄ I †Wv‡gb|
A_©vr, g~j dvsk‡bi †Wv‡gb = wecixZ dvsk‡bi †iÄ
Avevi, g~j dvsk‡bi †iÄ = wecixZ dvsk‡bi †Wv‡gb|

Abykxjbxi cÖkœ I mgvavb


evgcÿ = logkbn + logkcn + logkan
a an bn cn
 1 a − b a − b      
2 2

  a + b 
= logk n n n
n n n
a b c
1. xa  Gi mijgvb †KvbwU? b c a 
K0 L1 Ma x = logk1 = 0 = Wvbcÿ (†`Lv‡bv n‡jv)
2. hw` a, b, p > 0 Ges a  1, b  1 nq, Z‡eÑ
i. logaP = logbP  logab (a) (b)
(L) logk(ab)logk b + logk(bc)logk c + logk(ca)logk a = 0 ( c)
ii. loga a  logb b  logc c Gi gvb 2 mgvavb :
iii. x
logay
=y
logax

Dc‡ii Z‡_¨i Av‡jv‡K wb‡Pi †KvbwU mwVK?


( a)
evgcÿ = logk(ab)logk b + logk(bc)logk c + logk(ca)logk a (b) (c)
= (logka + logkb)(logka − logkb) +
K i I ii L ii I iii  i I iii N i, ii I iii
3 - 5 bs cÖ‡kœi DËi `vI hLb x, y, z  0 Ges ax = by = cz (logkb + logkc)(logkb − logkc) +
3. †KvbwU mwVK? (logkc + logka)(logkc − logka)
y z z = (logka)2 − (logkb)2 + (logkb)2 −
b2
Ka=b
z L a=c
y a=c
x N a
c
(logkc)2 + (logkc)2 − (logka)2
z = 0 = Wvbcÿ (†`Lv‡bv n‡jv)
e¨vL¨v : ax = cz a=c
x
(M) log b  log c  log a = 8
b2 b2 a b c
†bvU : a  m¤úKwUI mZ¨; KviY, a, Gi mgvb bq|
c c
mgvavb :
4. wb‡Pi †KvbwU ac Gi mgvb?
y y y z y z z y
evgcÿ = log b  log c  log a
+ + a b c
x z x y x y y z
 b .b L b .b Mb Nb = log ( b)2  log ( c)2  log ( a)2
5. b2 = ac n‡j wb‡Pi †KvbwU mwVK? a b c
1 1 2 1 1 2 = 2 log b  2 log c  2 log a
 + = L + = a b c
x z y x y z
b  log c  log
1 1 2
M + =
y z x
1 1 z
N + =
x y 2
= 8 log
a ( b c
a
)
= 8 log b  log a
cÖkœ \ 6 \ †`LvI †h, a b

(K) logk n + logk n  + logk n = 0


n n n
a b c = 8 log a
b c a a

mgvavb : = 8.1 [ logaa = 1]


= 8 = Wvbcÿ (†`Lv‡bv n‡jv)
beg-`kg †kÖwY : D”PZi MwYZ  372
 a b ev, (x + y) logkc = p (x − y) (x + y)
(N) loga loga logaaa =b x+y
ev, logkc = p(x2 − y2) ............... (iii)
mgvavb : GLb, (i) + (ii) + (iii) n‡Z cvB,
y+z z+x x+y
 a b ev, logka logkb logkc = p(y2 − z2 + z2 − x2 + x2 − y2)
evgcÿ = loga loga logaaa  y+z z+x
ev, logk(a . b . c ) = p.0
x -y

ab ( ) y+z z+x x+y


= loga loga a logaa [ loga xr = r logax] ev, logk(a . b . c ) = 0
y+z z+x x+y
= loga(a ) logaa  1 [ logaa = 1]
b ev, logk(a . b . c ) = logk1
y+z z+x x+y
= b logaa  1 a b c = 1 (†`Lv‡bv n‡jv)
y2 + yz + z2 z2 + zx + x2 x2 + xy + y2
=b1 2. a .b .c =1
=b mgvavb :
= Wvbcÿ (†`Lv‡bv n‡jv) logka logkb logkc
g‡b Kwi, y − z = z − x = x − y = p
log a log b log c
cÖkœ \ 7 \ (K) hw` b −kc = c −ka = a −kb nq, Z‡e †`LvI †h, aabbcc = 1 logka
Zvn‡j, y − z = p
mgvavb :
ev, logka = p(y − z)
logka logkb logkc
g‡b Kwi, = = =p ev, (y2 + yz + z2) logka = p(y − z)(y2 + yz + z2)
b−c c−a a−b 2 2
ev, logka y + yz + z
= p(y3 − z3) ................ (i)
 logka = p(b − c)
logkb
ev, a logka = pa(b − c) [Dfqcÿ‡K a Øviv ¸Y K‡i] Avevi, z − x = p
ev, logkaa = p (ab − ac) ...... (i) ev, logkb = p(z − x)
ev, logkb = p(c − a) ev, (z2 + zx + x2) logkb = p(z − x)(z2 + zx + x2)
2 zx 2
 b logkb = pb(c − a) [Dfqcÿ‡K b Øviv ¸Y K‡i] ev, logkbz + + x = p (z3 − x3) .............. (ii)
ev, logkbb = p(bc − ab) .................... (ii) logkc
Ges x − y = p
logkc = p(a − b)
ev, logkc = p(x − y)
 c logkc = pc(a − b) [Dfqcÿ‡K c Øviv ¸Y K‡i]
ev, (x2 + xy + y2) logkc = p (x − y) (x2 + xy + y2)
ev, logkcc = p(ac − bc) ...................... (iii) x2 + xy + y2
 log kc = p (x3 − y3) ............... (iii)
GLb, (i) + (ii) + (iii) n‡Z cvB,
GLb, (i) + (ii) + (iii) n‡Z cvB,
ev, logkaa + logkbb + logkcc = p(ab − ca + bc − ab + ca − bc) x2 + xy + y2
y2 + yz + z2 z2 + zx + x2
ev, logkaabbcc = 0 logka + logkb + logkc
 aabbcc = k0 = 1 (†`Lv‡bv n‡jv) = p(y3 − z3) + p(z3 − x3) + p(x3 − y3)
ev, logk (a y +yz + z .b z + zx +x .c x + zy + y ) = p(y3 − z3 + z3 − x3 + x3 −y3)
2 2 2 2 2 2

logka logkb logkc y2 + yz + z2 z2 + zx + x2 x2 + xy + y2


(L) hw` y − z = z − x = x − y nq, Z‡e †`LvI †h, ev, logk (a .b .c ) = p.0 = 0
y2 + yz + z2 z2 + zx + x2 x2 + xy + y2
1. ay + zbz + xcx + y = 1 ev, logk (a .b .c ) = logk1
y2 + yz + z2 z2 + zx + x2 x2 + xy + y2
mgvavb : a .b .c = 1 (†`Lv‡bv n‡jv)
logka logkb logkc
g‡b Kwi, y − z = z − x = x − y = p logk(1 + x) 1+ 5
(M) hw` logkx
= 2 nq, Z‡e †`LvI †h, x =
2
logka
Zvn‡j, y − z = p logk(1+x)
mgvavb : †`Iqv Av‡Q, log x = 2
ev, logka = p(y − z) k

ev, (y + z) logka = p(y − z)(y + z) ev, logk(1 + x) = 2 logkx


ev, logkay + z = p(y2 − z2)   (i) ev, logk(1 + x) = logkx2
logkb ev, 1 + x = x2
Avevi, z − x = p
ev, x2 − x = 1
ev, logkb = p(z − x) 2
1
ev, (z + x) logkb = p (z − x) (z + x)
z+x
ev, (x)2 − 2.x.2 + 2 ( ) − 41 = 1
1

ev, logkb = p(z2 − x2) ............... (ii)


1 2 1
logkc
Ges x − y = p
ev, x − 2( ) =1+
4

ev, logkc = p(x − y)


beg-`kg †kÖwY : D”PZi MwYZ  373
2
( 1) = 45
ev, x − 2 (b)
ev, 2xlogk a = 2logka
b
ev, (x − 2) =  2   xlog (a) = log a (†`Lv‡bv n‡jv)
2 2
1 5
k k

1 5 a−1 b−1 c−1


ev, x − 2 =  2 (P) hw` xy = p, xy =q Ges xy =r nq, Z‡e †`LvI †h,
(b − c) logkp + (c − a) logkq + (a − b) logkr = 0
1 5
ev, x = 2  2 mgvavb : †`Iqv Av‡Q, xy = p
a −1

a −1
1 5 ev, logkxy = logkp [Dfq cv‡k logk wb‡q]
ev, x = 2 a−1
ev, logkx + logky = logkp
1+ 5 1− 5
ev, x = 2 A_ev, 2  logkx + (a − 1) logky = logkp ......... (i)
b −1
1− 5 Avevi, xy = q
GLv‡b x = 2
MÖnY‡hvM¨ bq| KviY x Gi FYvZ¥K
b −1
gv‡bi Rb¨ logx Gi †Kv‡bv gvb †bB| ev, logkxy = logkq
b−1
1+ 5 ev, logkx + logky = logkq
 x = 2 (†`Lv‡bv n‡jv)
ev, logkx + (b − 1) logky = logkq ............ (ii)
x − x2 − 1 c−1
Ges, xy = r
(N) †`LvI †h, log = = 2log (x − x2 − 1)
x+ x −1 2
c−1
ev, logkxy = logkr
mgvavb : c−1
x− x2 − 1
ev, logkx + logky = logkr
evgcÿ = log  logkx + (c − 1) logky = logkr ........... (iii)
x+ x2 − 1
(x − x − 1)(x −
2
x − 1)
2 GLb, evgcÿ = (b − c)logkp + (c − a)logkq + (a − b)logkr
= log = (b − c) {logkx + (a −1) logky} + (c − a) {logkx +
(x + x2 − 1)(x − x2 − 1)
[je I ni‡K (x − x2−1 Øviv ¸Y K‡i] (b −1) logky} + (a − b) {logkx + (c −1) logky}
= (b−c) logkx + (b − c)(a−1) logky + (c − a) logkx
(x − x2 − 1)2
= log + (c − a)(b −1) logky + (a − b) logkx + (a − b)(c−1) logky
x2 − ( x2 − 1) 2
= (b−c)logkx + (c−a)logkx + (a−b)logkx +
(x − x2 − 1)2
= log (b−c)(a−1)logky + (c−a)(b−1)logky + (a−b)(c−1)logky
x2 − x 2 + 1
2 = (b − c + c − a + a − b)logkx + (ab − b − ac + c +
= log (x − x2 − 1)
bc − c − ab + a + ac − a − bc + b) logky
= 2log (x − x−2 − 1) = 0  logkx + 0  logky
= Wvbcÿ (†`Lv‡bv n‡jv) =0
3 − x 5x 5 + x 3x = Wvbcÿ (†`Lv‡bv n‡jv)
(O) hw` a b =a b nq, Z‡e †`LvI †h, xlogk a = logka (b) ab logk(ab) bc logk(bc) ca logk(ca)
mgvavb : (Q) hw` a+b
=
b+c
=
c+a
nq, Z‡e †`LvI
3 − x 5x 5 + x 3x
†`Iqv Av‡Q, a b =a b †h, a = b = c
a b c

b 5x
a5+x ab logk(ab) bc logk(bc) ca logk(ca)
ev, b3x = mgvavb : a + b = b + c = c + a = p (awi)
a3 − x
5x − 3x
5 + x−3 + x ab logk(ab)
ev, b =a Zvn‡j, a + b = p
2x 2 + 2x
ev, b = a ev, ab logk(ab) = p(a + b)
2x 2 2x
ev, b = a .a p(a + b)
2x ev, logk(ab) = ab
b 2
ev, 2x =a p(a + b)
a  logka + logkb = ab .......... (i)
2x
(b) = a
ev, a
2
p(b + c)
Abyiƒcfv‡e, logkb + logkc = bc .................. (ii)
b 2x p(c + a)
ev, log (a) = log a [Dfq cv‡k log wb‡q] Abyiƒcfv‡e, logkc + logka = ca ................... (iii)
2
k k k

GLb (i) + (ii) + (iii) K‡i cvB,


beg-`kg †kÖwY : D”PZi MwYZ  374
logka + logkb + logkb + logkc + logkc + logka p logkz
p(a + b) p(b + c) p(c + a)
ev, x + y − z = z .................... (iii)
= + +
ab bc ca GLb, (i) + (ii) + (iii) †_‡K cvB,
ev, 2(logka + logkb + logkc) p logkx p logky p logkz
y+z−x+z+x−y+x+y−z= + +
p(ca + bc) + p(ab + ca) + p(bc + ab) x y z
= p logkx p logky p logkz
abc
ev, x + y + z = x + y + z ...(iv)
ev, 2(logka + logkb + logkc) =
p(ca + bc + ab + ca + bc + ab) GLb (iv) bs †_‡K (i) bs we‡qvM K‡i cvB,
(x + y + z) − (y + z − x) =  
abc p logkx p logky p logkz p logkx
p(2ab + 2bc + 2ca)  x + y + z − x
ev, 2(logka + logkb + logkc) = abc p logky p logkz
ev, x + y + z − y − z + x = y + z
2p(ab + bc + ca)
ev, 2(logka + logkb + logkc) = abc pz logky + py logkz
ev, 2x = yz
p(ab + bc + ca)
ev, logka + logkb + logkc = abc
... (iv) ev, 2xyz = p logkyz + p logkzy
GLb,(iv) bs †_‡K (i) we‡qvM K‡i cvB, ev, 2xyz = p(logkyz + logkzy)
logka + logkb + logkc − logka − logkb = 2xyz
ev, p = logkyz + logkzy
p(ab + bc + ca) p(a + b)
− 2xyz
 p = logk(yz.zy) ............ (v)
abc ab
p(ab + bc + ca) − p(ca + bc) Avevi, (iv)-(ii) †_‡K cvB,
ev, logkc = abc p logkx p logky p logkz p logky
p(ab + bc + ca − ca − bc) x + y + z − z − x + y= + + −
ev, logkc = abc
x y z y
p logkx p logkz
pab ev, 2y = x + z
ev, logkc = abc
pz logkx + px logkz
p ev, 2y =
ev, logkc = c zx
ev, 2xyz = p(logkxz + logkzx)
ev, clogkc = p 2xyz
ev, p = logkxz + logkzx
 logkcc = p ................ (v)
2xyz
Avevi, (iv) bs †_‡K (ii) bs we‡qvM K‡i Abyiƒcfv‡e cvB,  p = logk(xz.zx) .................. (vi)
 logkaa = p ..................... (vi) Avevi, (iv) - (iii) bs †_‡K cvB,
Avevi, (iv) bs †_‡K (iii) bs we‡qvM K‡i Abyiƒcfv‡e cvB, p logkx p logky p logkz p logkz

x + y + z − x−y + z = + +
 logkbb = p ................. (vii) x y z z
p logkx p logky
GLb (v), (vi) I (vii) bs mgxKiY Zzjbv K‡i cvB, ev, 2z = x + y
logkcc = logkaa = logkbb py logkx + px logky
ev, 2z =
 aa = bb = cc (†`Lv‡bv n‡jv) xy
ev, 2xyz = p(logkxy + logkyx)
x(y + z − x) y(z + x − y) z(x + y − z)
(R) hw` logkx
=
logky
=
logkz
nq, Z‡e 2xyz
ev, p = logkxy + logkyx
†`LvI †h, xyyz = yzzy = zxxz 2xyz
mgvavb :  p = logk(xy.yx) .................. (vii)
x(y + z − x) y(z + x − y) z(x + y − z) GLb, (v), (vi) I (vii) bs Zzjbv K‡i cvB,
g‡b Kwi, logkx
=
logky
=
logkz
=p
logk(yz.zy) = logk(xz.zx) = logk(xy.yx)
x(y + z − x) ev, yz.zy = xz.zx = xyyx
Zvn‡j, log x = p
k ev, xyyx = yzzy = zxxz (†`Lv‡bv n‡jv)
ev, x(y + z − x) = p logkx [we: `ª: cvV¨eB‡q xyyz Gi cwie‡Z© xyyx n‡e]
p logkx
ev, y + z − x = x ....................... (i) cÖkœ \ 8 \ ÔjM mviwYÕ (gva¨wgK exRMwYZ `ªóe¨) e¨envi K‡i P
y(z + x − y) Gi Avmbœ gvb wbY©q Ki †hLv‡b,
Avevi, log y = p l
k (K) P = 2 g
†hLv‡b   3.1416, g = 981 Ges l = 25.5
p logky
ev, (z + x − y) = y .................... (ii) l
mgvavb : †`Iqv Av‡Q, p = 2 g
z(x + y − z)
Ges log z = p 25.5
k ev, p = 2  3.1416  981
beg-`kg †kÖwY : D”PZi MwYZ  375
25.5 1
ev, p = 6.2832  ev, log p = 100 log 10 + 2 log e
981
1
ev, log p = log 6.2832 
25.5  ev, log p = 100 log 10 + 2 log 2.718
981 
1
1 ev, log p = 100  1 + 2  0.434249452 [log mviwY n‡Z]
25.5 2
ev, log p = log 6.2832  ( )
981 ev, log p = 100 + 0.217124726
1  log p = 100.217124726
ev, log p = log 6.2832  2 (log 25.5 − log 981) .. (i)
 ln p = 2.3026  100.217124726
GLb, log mviwY n‡Z cvB, = 230.76 (cÖvq) (Ans.)
1
log p = 0.79818 + (1.40654 − 2.99167) cÖkœ \ 10 \ †jLwPÎ A¼b Ki :
2
ev, log p = 0.79818 + 0.70327 − 1.495835 (K) y = 3x
ev, log p = 1.50145 − 1.495835 mgvavb : cÖ`Ë dvskb y = 3x
ev, log p = 0.005615 cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi gvb¸‡jvi
ev, p = anti log 0.005615 ZvwjKv ˆZwi Kwi :
 P = 1.01302 x −2 −1 0 1 2
myZivs P = 1.01302 (cÖvq) (Ans.) y 0.11 0.33 1 3 9
(L) p = 10000  e0.05t †hLv‡b e = 2.718 Ges t = 13.86 QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ
mgvavb : †`Iqv Av‡Q, p = 10000  e0.05t AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK
ev, p = 10000  (2.718)0.05  13.86 Ges y Aÿ eivei ¶z`ªZg e‡M©i wZb evûi ˆ`N©¨‡K GKK a‡i
ev, log p = log {10000  (2.718)0.05  13.86 (−2, 0.11), (−1, 0.33), (0, 1), (1, 3), (2, 9) we›`y¸‡jv QK
ev, log p = log 10000 + log (2.718)0.05  13.86
KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i †jLwPÎ A¼b
ev, log p = log 10000 + (0.05  13.86) log 2.718
Kwi|
ev, log p = 4 + 0.693  0.4342495 [log mviwY n‡Z]
ev, log p = 4 + 0.300934903
ev, log p = 4.300934903
ev, p = antilog 4.300934903
myZivs p = 19995.62 (cÖvq) [atilog mviwY n‡Z] (Ans.)
cÖkœ \ 9 \ lnP  2.3026  logP m~Î e¨envi K‡i lnP Gi Avmbœ
gvb wbY©q Ki, hLb − (K) P = 10000; (L) P = 0.00le2 (M) P =
10100  e
(K) p = 10000
mgvavb : †`Iqv Av‡Q, p = 10000
ev, log p = log 10000
ev, log p = 4 [log mviwY n‡Z]
GLb, lnp = 2.3026  4 = 9.2104 (cÖvq) (Ans.)
(L) p = 0.00le2
mgvavb : †`Iqv Av‡Q, p = 0.00le2 (L) y = − 3x
ev, log p = log 0.001e2 mgvavb : cÖ`Ë dvskb y = − 3x
ev, log p = log 0.001 + 2log 2.718 [ e  2.718]
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi gvb¸‡jvi
ev, log p = − 3 + 2  0.434249452 [log mviwY n‡Z] ZvwjKv ˆZwi Kwi :
ev, log p = −3 + 0.868498904 x −1 0 1 2
 log p = −2.131501095 y −0.33 −1 −3 −9
 lnp = 2.3026  (−2.131501095) QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ
= − 4.90799 (cÖvq) (Ans.) AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK
(M) p = 10100  e Ges y Aÿ eivei ¶z`ªZg e‡M©i wZb evûi ˆ`N©¨‡K GKK a‡i
(−1, −0.33), (0, −1), (1, −3), (2, − 9) we›`y¸‡jv QK KvM‡R
mgvavb : †`Iqv Av‡Q, p = 10100  e
¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i dvskbwUi †jLwPÎ
ev, log p = log (10100  e) A¼b Kwi|
ev, log p = log 10100 + log e
1
ev, log p = 100 log 10 + log e2
beg-`kg †kÖwY : D”PZi MwYZ  376
QK KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i dvskbwUi
†jLwPÎ A¼b Kwi|

x+1
(M) y = 3
mgvavb : cÖ`Ë dvskb y = 3x + 1 −x + 1
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi (O) y = 3
−x + 1
ZvwjKv ˆZwi Kwi : mgvavb : cÖ`Ë dvskb y = 3
x −2 −1 0 1 2 cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi
y 0.33 1 3 9 27 ZvwjKv ˆZwi Kwi :
QK KvM‡R XOX eivei x Aÿ Ges YOY eivei y Aÿ x −2 −1 0 1 2
AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK y 27 9 3 1 0.33
Ges y Aÿ eivei ¶z`ªZg e‡M©i cÖwZevûi ˆ`N©¨‡K GKK a‡i QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ
(−2, 0.33), (−1, 1), (0, 3), (1, 9) I (2, 27) we›`y¸‡jv QK AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK
KvM‡R ¯’vcb K‡i mvejxjfv‡e †hvM K‡i dvskbwUi †jLwPÎ Ges y Aÿ eivei cÖwZ evûi ˆ`N©¨‡K GKK a‡i (−2, 27),
A¼b Kwi| (−1, 9), (0, 3), (1, 1), (2, 0.33) we›`y¸‡jv QK KvM‡R ¯’vcb
Kwi Ges mvejxjfv‡e †jLwPÎ A¼b Kwi|

(N) y = − 3x + 1
x−1
mgvavb : cÖ`Ë dvskb y = − 3x + 1 (P) y = 3
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi mgvavb : cÖ`Ë dvskb y = 3
x−1

ZvwjKv ˆZwi Kwi :


cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi
x −2 −1 0 1 2
ZvwjKv ˆZwi Kwi :
y −0.33 −1 −3 −9 −27
x −1 0 1 2
QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ
y 0.11 0.33 1 3
AuvwK| x Aÿ eivei ¶z`ªZg e‡M©i cuvP N‡ii ˆ`N©¨‡K GKK
Ges y Aÿ eivei ¶z`ªZg e‡M©i cÖwZ evûi ˆ`N©¨‡K GKK a‡i QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ
(−2, −0.33), (−1, −1), (0, −3), (1, −9), (2, −27) we›`y¸‡jv AuvwK| QK KvM‡Ri ¶z`ªZg e‡M©i `k evûi ˆ`N©¨‡K GKK
a‡i (−1, 0.11), (0, 0.33), (1, 1), (2, 3) we›`y¸‡jv QK KvM‡R
beg-`kg †kÖwY : D”PZi MwYZ  377
¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i dvskbwUi †jLwPÎ
A¼b Kwi|

cÖkœ \ 11 \ wb‡Pi dvsk‡bi wecixZ dvskb †jL Ges †jLwPÎ


0
A¼b K‡i †Wv‡gb I †iÄ wbY©q Ki| hLb x = 0 ZLb y = 1 − 2 = 1 − 1 = 0, Kv‡RB †jL †iLvwU
(K) y = 1 − 2
x (0, 0) we›`yMvgx|
x hLb x →  ZLb y → 1
mgvavb : cÖ`Ë dvskb, y = 1− 2
x
hLb, x → − ZLb y → −
ev, 2 = 1 − y  †Wv‡gb, D = (, − )
x
ev, 1 − y = 2 I †iÄ, R = (1 − ) (Ans.)
ev, log2(1 − y) = x
(L) y = log10x
ev, x = log2(1 − y) mgvavb : cÖ`Ë dvskb, y = log10x
ev, x = log2(1 − y)  x = 10y
ev, x = log21 + log2(1 − y) [ log21 = 0] -1
ev, f (y) = 10y
ev, x = log2 (11 − y) = log2 (1 − y) -1
 f (x) = 10
x

1
ev, − (y) = log2(1 − y) †jLwPÎ A¼b : cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y
1 Gi gvb¸‡jvi ZvwjKv ˆZwi Kwi :
  (x) = log2 (1 − x)

x
x 0.5 1 2 3 4 5
†jLwPÎ A¼b : y = 1 − 2 Gi †jLwPÎ A¼‡bi Rb¨ x I y y −0.3 0 0.3 0.5 0.6 0.7
Gi gvb¸‡jvi ZvwjKv ˆZwi Kwi :
x −2 −1 0 1 2 3
y 075 05 0 −1 −3 3, −7
QK KvM‡Ri XOX eivei x Aÿ Ges YOY eivei y Aÿ Ges 0
g~jwe›`y| QK KvM‡Ri ¶z`ªZg e‡M©i Pvi evûi ˆ`N©¨‡K GKK
a‡i (−2, 075), (−1, 05), (0, 0), (1, −7), (2, −3)(3, −7)
we›`y¸‡jv QK KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i
dvskbwUi †jLwPÎ A¼b Kwi| †jLwPÎ †_‡K †`Lv hvq †h,

g‡b Kwi, QK KvM‡Ri XOX eivei x Aÿ Ges YOY


eivei y Aÿ AuvwK Ges 0 g~jwe›`y| QK KvM‡Ri x Aÿ eivei
¶z`ªZg e‡M©i cÖwZ cuvP evûi ˆ`N©¨‡K GKK Ges y Aÿ eivei
cÖwZ `k evûi ˆ`N©¨‡K GKK a‡i (0.5, −0.3), (1, 0), (2, 0.3),
(3, 0.5), (4, 0.6), (5, 0.7) we›`y¸‡jv QK KvM‡R ¯’vcb Kwi
Ges mvejxjfv‡e †hvM K‡i dvskbwUi †jLwPÎ A¼b Kwi|
beg-`kg †kÖwY : D”PZi MwYZ  378
†h‡nZz jMvwi`g ïay abvZ¥K ev¯Íe msL¨vi Rb¨ msÁvwqZ nq Avevi, awi, y = (x) = ln(x − 2)
Ges k~b¨‡Z AmsÁvwqZ| ev, ey = x − 2
 †Wv‡gb, D = (0, ) ev, x − 2 = ey
Avevi, †jLwPÎ n‡Z †`Lv hvq, ev, x = ey + 2
hLb, x → 0 ZLb y →  y Gi mKj ev¯Íe gv‡bi Rb¨ ey ev¯Íe|
hLb, x →  ZLb y →  d‡j, x = ey + 2 ev¯Íe|
 †iÄ, R = (− + )  †iÄ, R = R (Ans.)
1−x
(M) y = x2, x > 0 cÖkœ \ 13 \ (x) = ln 1 + x dvskbwUi †Wv‡gb Ges †iÄ wbY©q Ki|
mgvavb : cÖ`Ë dvskb, y = x , x > 0
2
mgvavb : Avgiv Rvwb, jMvwi`g ïay abvZ¥K ev¯Íe msL¨vi
awi, y = (x) = x2 Rb¨ msÁvwqZ nq|
ev, x = y; [x >0 nIqvq FYvZ¥K gvb MÖnY‡hvM¨ bq|] 1−x
 1 + x > 0 hw`
ev,  (y) = y
−1
(i) 1 − x > 0 Ges 1 + x > 0 nq|
ev, −1(x) = x A_ev, (ii) 1 − x < 0 Ges 1 + x < 0 nq|
†jLwPÎ A¼b : cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges ev, 1 > x Ges x > −1
y Gi gvb¸‡jvi ZvwjKv ˆZwi Kwi : ev, x < 1 Ges x > −1
x 1 2 3 4 ev, x >−1 Ges x < 1
y 1 4 9 16  †Wv‡gb = {x : x > − 1}  {x : x < 1}
= { − 1, }  { − , 1} = ( − 1, 1)
(ii) ev, 1 < x Ges x < − 1
ev, x < − 1 Ges x > 1
 †Wv‡gb = {x : x < − 1}  {x : x > 1} = 
 cÖ`Ë dvsk‡bi †Wv‡gb, D = (i) I (ii) †ÿ‡Î cÖvß
†Wv‡g‡bi ms‡hvM = (−1, 1)   = (−1, 1)
1−x
†iÄ, y = ln 1 + x
1−x
ev, ey = 1 + x
ev, 1 − x = ey + xey
ev, xey + ey = 1 − x
ev, xey + x = 1 − ey
1 − ey
g‡b Kwi, QK KvM‡Ri XOX eivei x Aÿ Ges YOY ev, x = 1 + ey
eivei y Aÿ AuvwK Ges 0 g~jwe›`y| x Aÿ eivei ¶z`ªZg e‡M©i y Gi mKj ev¯Íe gv‡bi Rb¨ x Gi gvb ev¯Íe nq|
cuvP evûi ˆ`N©¨‡K GKK Ges y Aÿ eivei ¶z`ªZg e‡M©i cÖwZ  cÖ`Ë dvsk‡bi †iÄ, R = R.
evûi ˆ`N©¨‡K GKK a‡i (1, 1), (2, 4), (3, 9), (4, 16) cÖkœ \ 14 \ †Wv‡gb, †iÄ D‡jøLmn †jLwPÎ A¼b Ki|
we›`y¸‡jv QK KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e †hvM K‡i K. (x) = |x| hLb −5  x  5
dvskbwUi †jLwPÎ A¼b Kwi| mgvavb :
†h‡nZz y = x2, x > 0 †m‡nZz 0 e¨ZxZ mKj ev¯Íe gv‡bi Rb¨ (x) = |x| hLb −5  x  5
dvskbwU msÁvwqZ| + x 0  x  5
 †Wv‡gb D = (0, + ) Ges
= { −x −5  x  0
†iÄ R = (0, + ) †Wv‡gb : GLv‡b −5  x  5 mxgvi g‡a¨ x Gi cÖwZwU ev¯Íe
gv‡bi Rb¨ (x) Gi cÖwZ”Qwe i‡q‡Q|
cÖkœ \ 12 \ (x) = ln (x − 2) dvskbwUi D I R wbY©q Ki : dvsk‡bi †Wv‡gb n‡jv D = [−5, 5]
mgvavb : †iÄ : −5  x  5 mxgvi g‡a¨ x Gi abvZ¥K ev FYvZ¥K
Avgiv Rvwb, jMvwi`g ïay abvZ¥K ev¯Íe msL¨vi Rb¨ Dfq gv‡bi Rb¨ (x) abvZ¥K, Avi x = 0 n‡j (0) = 0
msÁvwqZ| myZivs dvsk‡bi †iÄ, R = [0, 5]
 (x) = ln (x − 2) Gi gvb ev¯Íe n‡e hw` (x) = |x| Gi †jLwPÎ A¼b :
x−2>0 g‡b Kwi, y = (x) = |x|
ev, x > 2 nq| −5 †_‡K 5 Gi g‡a¨ K‡qKwU gvb wb‡q mswkøó y Gi gvb
 †Wv‡gb, D = {x : x > 2} = (2, ) (Ans.) wb‡Pi Q‡K †`Lv‡bv n‡jv Ñ
x −3 0 3
beg-`kg †kÖwY : D”PZi MwYZ  379
y 3 0 3  hLb x  0 |x|
GLb QK KvM‡R myweavgZ X Aÿ XOX Ges Y Aÿ YOY (M) (x) =  x
AuvwK| X Aÿ eivei ¶z`ªZi 2 eM©Ni = 1 GKK Ges Y Aÿ 0 hLb x = 0
eivei ¶z`ªZi 5 eM©Ni = 1 GKK a‡i (x, y) we›`y¸‡jv cvZb | x | hLb x  0
mgvavb : cÖ ` Ë dvskb  (x) =  x
Kwi| we›`y¸‡jv‡K mnRfv‡e eµ‡iLvq hy³ K‡i y =(x) Gi
0 hLb x = 0
†jL cvIqv hvq|
GLv‡b, x Gi cÖwZwU ev¯Íe gv‡bi Rb¨ (x) Gi cÖwZ”Qwe
−− Y
i‡q‡Q e‡j dvsk‡bi †Wv‡gb n‡jv ev¯Íe msL¨vi †mU R
(−3, 3) (3, 3)  †Wv‡gb, D = R
hLb, x = 0 ZLb (x) = 0
x
hLb, x > 0 ZLb (x) = x = 1
−x
hLb, x < 0 ZLb (x) = x = −1
myZivs dvsk‡bi †iÄ n‡jv, R = {− 1, 0, 1} †hLv‡b †Kej
O (0, 0)
wZbwU Dcv`vb i‡q‡Q|
X X †jLwPÎ A¼b :
 hLb x  0
|x|
awi, y = (x) =  x
Y 0 hLb x = 0
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi gvb¸‡jvi
L. (x) = x + | x | hLb −2  x  2
ZvwjKv ˆZwi Kwi|
mgvavb : GLv‡b, −2 ≤ x ≤ 2 mxgvi g‡a¨ x Gi cÖwZwU
x −2 −1 0 1 2
ev¯Íe gv‡bi Rb¨ (x) cÖwZ”Qwe i‡q‡Q|
y −1 −1 0 1 1
 dvsk‡bi †Wv‡gb, D = [−2, 2]
hLb x = 0 ZLb (0) = 0 + | 0 | = 0 QK KvM‡R XOX eivei x Aÿ Ges YOY y Aÿ Ges 0
hLb x = −2 ZLb (−2) = −2 + |−2| = −2 + 2 = 0 g~jwe›`y| ¶z`ªZg e‡M©i wZb evûi ˆ`N©¨‡K GKK awi,
(−2, −1), (−1, −1), (0, 0), (1, 1), (2, 1) we›`y¸‡jv ¯’vcb K‡i
hLb x = 2 ZLb (2) = 2 + | 2 | = 2 + 2 = 4
myZivs dvsk‡bi †iÄ, R = [0, 4] dvskbwUi †jLwPÎ A¼b Kwi|
†jLwPÎ A¼b :
cÖ`Ë dvskb (x) = x + |x| hLb −2  x  2
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi gvb¸‡jvi
ZvwjKv ˆZwi Kwi :
x −2 −1 0 1 2
y 0 0 0 2 4
QK KvM‡R XOX eivei x Aÿ Ges YOY eivei y Aÿ Ges
0 g~jwe›`y| ¶z`ªZg e‡M©i Pvi evûi ˆ`N©¨‡K GKK a‡i (−2,
0), (−1, 0), (0, 0), (1, 2), (2, 4) we›`y¸‡jv ¯’vcb K‡i
dvskbwUi †jLwPÎ A¼b Kwi|

cÖkœ \ 15 \ †`Iqv Av‡Q,


2x y−1
2 .2 = 64 ............................... (i)
y−2
6
Ges 6x. 3 = 72 ..................... (ii)
K. (i) I (ii) †K x I y PjKwewkó mij mgxKi‡Y cwiYZ Ki|
L. mgxKiYØq mgvavb K‡i ï×Zv hvPvB Ki|
M. x I y gvb hw` †Kv‡bv PZzf©y‡Ri mwbœwnZ evûi ˆ`N©¨ nq
†hLv‡b evû؇qi AšÍf©y³ †KvY 90| Z‡e PZzf©yRwU AvqZ bv
eM© D‡jøL Ki Ges Gi †ÿÎdj I K‡Y©i ˆ`N©¨ wbY©q Ki|
beg-`kg †kÖwY : D”PZi MwYZ  380
mgvavb : mgvavb :
2x y−1
K. †`Iqv Av‡Q, 2 .2 = 64 ............ (i) log(1 + x)
K. †`Iqv Av‡Q, logx = 2
y
x 6 −2 ev, 2 logx = log(1 + x)
Ges 6 . 3 = 72 ................... (ii) 2
2x + y − 1 6 ev, logx = log(1 + x)
(i) n‡Z cvB, 2 =2 2
ev, x = 1 + x
ev, 2x + y − 1 = 6
x −x−1=0
2
ev, 2x + y = 6 + 1 2
wb‡Y©q wØZxq mgxKiY, x − x − 1 = 0
 2x + y = 7 2
L. ÔKÕ †_‡K cvB, x − x − 1 = 0
n‡Z cvB, 6 − = 72  3
x+y 2
(ii)
(−1)2  (−1)2−41(−1) 1 1 +4
ev, 6 − = 216
x+y 2 ev, x = 21
=
2
x+y−2
ev, 6 =6
3
1 5
x=
ev, x + y − 2 = 3 2
1+ 5
x+y=5 ïw× cixÿv : x = n‡j,
2
 mijxK…Z mgxKiYØq n‡jv, 2x + y = 7
log 1 +
1 + 5
log 
3 + 5
L.
x+y=5
ÔKÕ n‡Z cvB, 2x + y = 7 ............. (iii) log(1 + x)  2   2 
evgcÿ = = =
log
1 + 5
log
x + y = 5 ............. (iv) logx 1 + 5
(iii) n‡Z (iv) we‡qvM K‡i cvB, 2x + y − x − y = 7 − 5  2   2 
x=2 = 2 (K¨vjKz‡jUi e¨envi K‡i]
x Gi gvb (iv) bs mgxKi‡Y ewm‡q cvB, = Wvbcÿ
2+y=5
 y=3 1− 5
wb‡Y©q mgvavb, (x, y) = (2, 3) Avevi, x = 2
n‡j,
ïw× cixÿv :
log 1 −
1 + 5
log 
3 − 5
x = 2, y = 3 n‡j (iii) bs mgxKi‡Yi evgcÿ = 2  2 + 3 = 7  2   2 
= Wvbcÿ evgcÿ = =
log
1 − 5
log
1 − 5
Avevi, x = 2, y = 3 n‡j (iv) mgxKi‡Yi evgcÿ = 2 + 3 = 5  2   2 
= Wvbcÿ
Gi ev¯Íe gvb cvIqv m¤¢e bq| KviY 
1 − 5
 cÖvß mgvavb mwVK| 2 
FYvZ¥K|
M. Avevi FYvZ¥K msL¨vi jMvwi`‡gi m¤¢e gvb †bB| myZivs x Gi
D C gvb †Kej GKwU gvb mgxKiYwU‡K wm× K‡i| (†`Lv‡bv n‡jv)
2
M. ÔLÕ n‡Z cvB, g~jØq h_vµ‡g,
1+ 5 1− 5
x1 =
2
Ges x2 = 2
......... (i)
90 2
 x12 = 
A B 1 + 5 1
2  4
= (1 + 5 + 2 5)
3
GLv‡b, ABCD PZzf‚‡R©i `yBwU mwbœwnZ evû 1 3 1 1 5
AB = y = 3 = (6 + 2 5) = + ( 5) = 1 + +
4 2 2 2 2
AD = x = 2
†h‡nZz AB  AD Ges AB = DC, AD = BC 1+ 5
 x12 = 2 + 1 = x1 + 1
myZivs ABCD PZzfz©RwU GKwU AvqZ| 2

Avevi, x22 =  2  = 4 (1 − 2 5 + 5)
 †ÿÎdj = xy = 2  3 eM© GKK = 6 eM© GKK (Ans.) 1− 5 1
2 2
Ges e‡M©i ˆ`N©¨ = AB + BC GKK 1 3 5
2 2
= 3 +2 GKK = (6 − 2 5) = −
4 2 2
= 9 +4 GKK = 13 GKK (Ans.)
=1+
1 5 1 − 5
=1+ −
log (1 + x) 2 2  2 
cÖkœ \ 16 \ †`Iqv Av‡Q, log x
=2  x22 = 1 + x2
K. cÖ`Ë mgxKiYwU‡K x PjK msewjZ
GKwU wØNvZ mgxKi‡Y myZivs g~j؇qi cÖwZwUi eM© Zvi ¯^xq gvb A‡cÿv 1 †ewk (cÖgvwYZ)
cwiYZ Ki| 1+ 5 1− 5
L. cÖvß mgxKiYwU‡K mgvavb Ki Ges †`LvI †h, x Gi †Kej GLb, x1 = 2
= 1.618 Ges x2 = 2
= −0.618
GKwU exR mgxKiYwU‡K wm× K‡i| QK KvM‡R ¶z`ªZg e‡M©i cuvP evûi ˆ`N©¨‡K GKK a‡i,
M. cÖgvY Ki †h, g~j؇qi cÖwZwUi eM© Zvi ¯^xq gvb A‡cÿv 1 (1.618, 0) Ges (−0.618, 0) we›`y w`‡q y A‡ÿi mgvšÍivj
(GK) †ewk Ges Zv‡`i †jLwPÎ ci¯úi mgvšÍivj| K‡i †jL‡iLv `yBwU A¼b Kwi|
beg-`kg †kÖwY : D”PZi MwYZ  381
x
y = 2 Gi ˆewk󨸇jv wbgœiƒc :
(i) †jLwPÎwU (0, 1) we›`yMvgx
x
(ii) †jLwPÎwU EaŸ©Mvgx; x Gi gvb evovi mv‡_ mv‡_ 2 Gi
gvbI evo‡e|
x
(iii) x → − n‡j y = 2 → 0+
(iv) x Gi †h †Kvb gv‡bi Rb¨ y abvZ¥K|
x
M. †`Iqv Av‡Q, y = 2
ev, x = log2y
1
Avgiv Rvwb, y = (x) n‡j, − (y) = x
1
 − (y) = log2y
†jL n‡Z †`Lv hvq †iLvØq ci¯úi mgvšÍivj| 1
 − (x) = log2x
x
cÖkœ \ 17 \ †`Iqv Av‡Q, y = 2  cÖ`Ë dvsk‡bi wecixZ dvskb, (x) = log2x
K. cÖ`Ë dvskbwUi †Wv‡gb Ges †iÄ wbY©q Ki| awi, x1R Ges x2R
L. dvskbwUi †jLwPÎ A¼b Ki Ges Gi ˆewk󨸇jv †jL| 1
Zvn‡j, − (x1) = log2x1
M. dvskbwUi wecixZ dvskb wbY©q K‡i GwU GK-GK wKbv Zv 1
Ges − (x2) = log2x2
wba©viY Ki Ges wecixZ dvskbwUi †jLwPÎ AuvK| 1 1
GLb, − (x1) = − (x2)
mgvavb : ev, log2x1 = log2x2
x 0
K. †`Iqv Av‡Q, y = 2 hLb x = 0 ZLb y = 2 = 1 ev, x1 = x2
 wecixZ dvskbwU GK-GK|
Avevi, x Gi FYvZ¥K †h †Kv‡bv gv‡bi Rb¨ y Gi gvb †Kv‡bv
wecixZ dvskbwUi †jLwPÎ A¼b Ki‡Z n‡e A_©vr y = log2x
mgq (0) k~‡b¨i LyeB KvQvKvwQ †cuŠQvq wKš‘ k~b¨ nq bv| Gi †jLwPÎ A¼b KivB h‡_ó|
+
A_©vr x → −, y → 0 x
†h‡nZz y = log2x n‡j y = 2 Gi wecixZ dvskb|
GKBfv‡e, x Gi †h †Kv‡bv abvZ¥K gv‡bi Rb¨ y Gi gvb y = x †iLvi mv‡c‡ÿ m~PK dvsk‡bi cÖwZdjb jMvwi`wgK
µgvš^‡q Wvbw`‡K (Dc‡i) e„w× †c‡Z _vK‡e ev  w`‡K dvskb wbY©q Kiv n‡q‡Q, hv y = x †iLvi mv‡c‡ÿ m`„k|
avweZ n‡e| 0
Avevi, 2 = 1 Kv‡RB y = log21 = 0
A_©vr, x → −, y → −
myZivs †iLvwU (1, 0) we›`yMvgx|
myZivs †Wv‡gb, D = (−, ) hLb x → − ZLb y → 0
Ges †iÄ R = (0, )  y = log2x †iLvwU e„w×cÖvß|
x
L. y = 2 Gi †jLwPÎ A¼b : wb‡P †iLvwUi †jLwPÎ A¼b Kiv n‡jv|
x
cÖ`Ë dvskb y = 2
cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi gvb¸‡jvi
wbgœiƒc ZvwjKv ˆZwi Kwi|
x −3 −2 −1 0 1 2
y 0.125 0.25 0.5 1 2 4
QK KvM‡R XOX eivei x Aÿ I YOY eivei y Aÿ Ges
g~jwe›`y O| ¶z`ªZg e‡M©i cÖwZ Pvi evûi ˆ`N©¨‡K GKK a‡i
(−3, 0.125), (− 2, 0.25), (−2, 0.5), (0, 1), (1, 2), (2, 4)
x
we›`y¸‡jv ¯’vcb K‡i mvejxjfv‡e †hvM K‡i, y = 2 Gi
†jLwPÎ A¼b Kiv n‡jv|
beg-`kg †kÖwY : D”PZi MwYZ  382

¸iæZ¡c~Y© enywbe©vPwb cÖ‡kœvËi


1. log 16 2 = KZ? 7. log42 + log6 6 = KZ?
2
1 3
K2 2 L4 M8 9 K 1 M N −2
2 2
2. M = 1 + logp qr n‡j, pM = KZ?
K p + qr L 1 + qr  pqr N qr 8. p = logab + logcc nq Z‡e 1 + p = KZ?
3. ax = y n‡j, wb‡Pi †KvbwU mwVK? K1 L 1 + bc
K loga x = y L log y = x  loga y = x N x log a = y  loga abc N abc loga1
1 9. hw` ax = b nq, hLb a > 0, n  N; ZLb−
4. log5 ( )
25
Gi gvb KZ? i. logab = x ii. logaab = b
K5 L −5 M2  −2 iii. loga b = log5b loga5
5. hw` a, b, p > 0 Ges a  1, b  1 nq Z‡e- wb‡Pi †KvbwU mwVK?
p p a 4 1 K i I ii L i I iii M ii I iii  i, ii I iii
i. logb = loga  logb ii. logb b=
4 10. 400 Gi−
1
iii. loga a  logb b  log c = i. gvb (2 5)4 Gi mgvb ii. jM 4 n‡j wfwË 2 5
2
wb‡Pi †KvbwU mwVK? iii. 2 5 wfwËK jM 4
 i I ii L i I iii M ii I iii N i, ii I iii wb‡Pi †KvbwU mwVK?
6. loga loga loga (aa)a Gi gvb KZ? K i I ii L i I iii M ii I iii  i, ii I iii
K0 1 Ma N −1

AwZwi³ enywbe©vPwb cÖ‡kœvËi


 `yBwU L wZbwU M PviwU N cuvPwU
96 : jMvwi`g 1
20. log3 gvb †KvbwU? 81
= Gi (KwVb)
mvaviY enywbe©vPwb cÖ‡kœvËi K −1 L −2 M −3  −4
11. abvZ¥K msL¨vi N Gi mvaviY jMvwi`g‡K KqwU As‡ki 1 1
e¨vL¨v : log3 81 = log3 34 = log33−4 = − 4log33 = 41 = −4
mgwó w`‡q cÖKvk Kiv hvq? (mnR)
21. b = anti log3 x wK wb‡`©k K‡i? (ga¨g)
K GKwU  `yBwU M wZbwU N PviwU
 b msL¨vwU‡K wfwË a‡i a Gi mv‡c‡ÿ x Gi cÖwZjM
12. a > 0 Ges a  1 hw` ax = y nq Z‡e x †K ejv nq y Gi a L a msL¨vwU‡K wfwË a‡i x Gi mv‡c‡ÿ b Gi cÖwZjM
wfwËKÑ (mnR) M x msL¨vwU‡K wfwË a‡i b Gi mv‡c‡ÿ a Gi cÖwZjM
 jMvwi`g L m~PK M NvZ N AskK
N x msL¨vwU‡K wfwË a‡i a Gi mv‡c‡ÿ b Gi cÖwZjM
13. a > 0 Ges a1 Ges y > 0 n‡j y Gi Abb¨ a wfwËK jMvwi`g‡K 22. a > 0, a  1 n‡j, ax = b Gi †ÿ‡Î x †K Kx ejv nq? (ga¨g)
wb‡Pi †KvbwU Øviv cÖKvk Kiv nq? (mnR)  b Gi a wfwËK jMvwi`g L a Gi b wfwËK jMvwi`g
K loga L logya  logay N logey
M a Gi n wfwËK jMvwi`g N b Gi e wfwËK jMvwi`g
14. logay = x hw` I †Kej hw`Ñ (mnR) e¨vL¨v : ax = b †hLv‡b a > 0 Ges a  1 nq, Z‡e x †K ejv nq b Gi a
1
x
wfwËK jMvwi`g ax = bev x = logab
 ax = y nq L ao = x nq M ay = x nq N a = y nq 23. logab = x n‡j wb‡Pi †KvbwU mZ¨? (mnR)
1
15. log5 ( ) Gi gvb KZ?
25
(ga¨g)  ax = b L a = b
24. log16256 Gi gvb †KvbwU?
M xa = b N x = b
(KwVb)
K0 L −1  −2 N −3 K 1 2 M3 N4
16. log64256 Gi gvb KZ? (KwVb) e¨vL¨v : log16256 = log16162 = 2log1616 = 21 = 2
4 2 3 1 25. 4x = 16 n‡j x Gi gvb KZ? (mnR)
 L M N
3 3 4 2
K 1 2 M4 N8
17. log101000 Gi gvb KZ? (ga¨g)
K2 3 M4 N 1.001 enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi
18. ¯^vfvweK jMvwi`g logey †K wb‡Pi †Kvb cÖZxK Øviv cÖKvk 26. a, m, n, x PjK n‡j−
Kiv nq? (mnR) am
1 i. n = am − n n‡e, hw` m < n nq
 ln y L y ln y M ly a N log y
y
ii. x ( R, a ( 0 n‡j, a(n = eq \f(1,an)
19. cÖ‡Z¨K abvZ¥K msL¨vi jMvwi`‡gi KqwU Ask _v‡K? (mnR)
beg-`kg †kÖwY : D”PZi MwYZ  383
1 K2 L8 M 16  32
iii. log x=1 n‡j, x = 4 1 10
8 3 e¨vL¨v : log x = 3 3 = 3
wb‡Pi †KvbwU mwVK? (mnR) 8
10 3 10
K i I ii L i I iii M ii I iii  i, ii I iii
ev, x = ( 8) =
3
()
2
2 3
= 25 = 32
27. i. e wfwËK jMvwi`g n‡jv ¯^vfvweK jMvwi`g
ii. e¨envwiK MwY‡Z mvaviYZ e wfwËK jMvwi`g e¨eüZ nq enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi
iii. weªMwmqvb jMvwi`g 10 wfwËK jMvwi`g 41. i. log28 = 3
wb‡Pi †KvbwU mwVK? (mnR) ii. log381 = 4
K i I ii  i I iii M ii I iii N i, ii I iii iii. log416 = 2

Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi wb‡Pi †KvbwU mwVK? (mnR)


K i I ii L i I iii M ii I iii  i, ii I iii
wb‡Pi Z‡_¨i Av‡jv‡K 28Ñ31 bs cÖ‡kœi DËi `vI : 42. hw` a > 0 Ges a  1 nq, Z‡eÑ
loga logb logc i. loga1 = 0
= = =k
y−z z−x x−y ii. logaa = 1
28. logax Gi gvb KZ? (ga¨g) iii. loga1 = 1
 k(xy − zx) L k(zx − xy) wb‡Pi †KvbwU mwVK? (mnR)
M k(yz − zx) N k(xy − yz)
 i I ii L i I iii M ii I iii N i, ii I iii
29. logax + logby + logcz = KZ? (ga¨g)
43. i. log25 + log27 + log23 = log235
0 L xyz M −1 N logaabc
ii. log564 = 6log52
30. ax.by.cz = KZ? (ga¨g) 1
K0 L2 1 Nk iii. log764 = log74
3
31. x = a, y = b Ges z = c n‡j logax + logby + logcz = KZ? wb‡Pi †KvbwU mwVK? (ga¨g)
(mnR) K i I ii  ii I iii Mi I iii N i, ii I iii
K −1 0 M1 N AmsÁvwqZ 44. a > 0, a  1 n‡jÑ
i. logaMr = rlogaM
97 : jMvwi`‡gi m~Îvejx ii. logaMN = logaM + logaN
mvaviY enywbe©vPwb cÖ‡kœvËi iii. logaM = logbM  logaN
wb‡Pi †KvbwU mwVK? (mnR)
32. hw` a  1 nq, Z‡e a1 = a Zvn‡j, logaa = KZ? (mnR)
K i I ii L i I iii M ii I iii  i, ii I iii
1
1 L0 M3 N
a Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi
33. logab  logba = 1 n‡j, logap = KZ? (KwVb)
logbp wb‡Pi Z‡_¨i Av‡jv‡K 45 Ñ 47 bs cÖ‡kœi DËi `vI :
1

logba
L logp(ab) M logbp N loga
p () x
GKwU dvskb (x) = | x | Øviv msÁvwqZ Ges x
34. logap  logpq  logqr  logrb = KZ? (KwVb) 45. (0) = KZ? (mnR)
K loga L logb  logab N logba
K0 L1  AmsÁvwqZ N 2
35. †hLv‡b 10x = y Ges y > 0 n‡j, y Gi mvaviY jMvwi`g
wb‡Pi †KvbwU? (mnR) 46. (x) Gi †Wv‡gb KZ? (ga¨g)
K L  M = {1}  − {0}
K x = log (1y) L x = log10x 47. (x) Gi †iÄ KZ? (KwVb)
M x = logky  x = log10y K {1} L {−1}  {−1, 1} N 
36. mvaviY jMvwi`g log10y †K mPivPi wfwË 10 Dn¨ †i‡L wb‡Pi Z‡_¨i Av‡jv‡K 48 Ñ 50 bs cÖ‡kœi DËi `vI :
wb‡Pi †KvbwU cÖKvk Kiv nq? (mnR) log abc = x,log abc = y, log abc = z
a b c
1 1
K log L log M log x  log y 1 1
y x 48. x + z = KZ? (ga¨g)
37. hw` log a = n nq Z‡e a †K n Gi Kx ejv nq? (mnR) 1 1
K jM ZvwjKv L cÖwZjM M Anti log  L+M K0 L1 M −
y y
38. logk n + logk n + logk n Gi gvb KZ?
an bn cn 49. hw` xyz = 1 nq, Z‡e xy + yz + zx = KZ? (KwVb)
(ga¨g)
b c a K0 1 M logaabc N abc
K −1 0 M1 N2
1
b 50. = KZ? (ga¨g)
39. loga loga loga aa ( ) Gi gvb KZ? b
(KwVb)
1+x
K 1 + logabc L logabc M0  logaa bc 2

Ka b M1 N aa
1
40. log x = 3 3 n‡j x Gi gvb †KvbwU?
8
(KwVb) 97 : m~PKxq, jMvwi`gxq I ciggvb dvskb
beg-`kg †kÖwY : D”PZi MwYZ  384
mvaviY enywbe©vPwb cÖ‡kœvËi  32 L 23 M
10
N
3
3 10
51. loga loga loga aa ( b ) Gi gvb KZ? (KwVb)
70. ciggvb dvskb (x) = |x| Gi †Wv‡gb KZ?
 L  M {0} N (0, )
(mnR)
b
Ka b M1 N aa 71. ciggvb dvskb (x) = |x| Gi †iÄ KZ? (ga¨g)
52. log2 5 400 =x n‡j x Gi gvb KZ? (KwVb) K (−, ) L (0, ) M (, 0)  [0, )
K −1 L1 M2 4 5+x
53. logarithm kãwU G‡m‡Q †Kvb kã †_‡K? (mnR) 72. y = ln
5−x
dvskbwU‡Z x→5 n‡j, y Gi gvb KZ? (mnR)
K j¨vwUb L cZ©ywMR  wMÖK N divwm K0  M1 N 10
54. log264 = KZ? (ga¨g) 73. wb‡Pi †KvbwU x- †K b Gi a wfwËK jMvwi`g ejv nq?
K2 6 M8 N 64 K b = log ax L b = log xb
55. log864 = KZ? (ga¨g)  x = log ab N b = log ba
2 L4 M8 N 16 74. y = 3x Gi †iÄ KZ?
56. loga(M  N) = KZ? (mnR) K (−, 0)  (0, () M (0, (() N (((, ()
 logaM + logaN L logMa + logaN 75. y = 3x Gi wecixZ dvsk‡bi †iÄ KZ?
L (−, 0)
M loga (MN) N logaM − logaN K (0 )
a+x
 (−, ) N (−1. 1)

57. y = 2x GB dvsk‡bi †iÄ KZ? (ga¨g) 76. y = 1n


a−x
dvskbwUi †Wv‡gb KZ?
 (0, ) L (−, ) K (−1, 1) L (−, )  (−a a) N (a, −a)
M (−, 0) NR 77. f(x) = x + |x| hLb −2  x  2 Gi †Wv‡gb KZ?
58. y = 2x †iLvwUÑ (ga¨g)
 (−2, 2) L (0, −2) M (0 2) N (0. 3)
K g~jwe›`yMvgx  (0, 1) we›`yMvgx
78. f(x) = x + |x| hLb − 2  x  2 Gi †iÄ KZ?
M (0, 2) we›`yMvgx N (0, 3) we›`yMvgx
K (2, 2) L (0, 2) M (0, 3)  (0, 4)
59. wb‡Pi †KvbwU jMvwi`wgK dvskb? (mnR)
K y = 2x L y = x2 + 3x + 2 enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi
2+x
 y = ln N y=2 2x
79. a > 0 nIqvq mKj x Gi Rb¨ ax > 0 Ges y  0 n‡jÑ
2−x
i. y Gi a wfwËK †Kv‡bv jMvwi`g †bB
60. y = 3x Gi †Wv‡gb KZ? (ga¨g)
ii. y Gi a wfwËK jMvwi`g Av‡Q
K (−, 0) L (0, )
iii. a Gi y wfwËK jMvwi`g †bB
M [0, )  (−, )
61. y = 3x Gi wecixZ dvsk‡bi †Wv‡gb KZ? wb‡Pi †KvbwU mwVK? (mnR)
K (−, )  (0, ) M (0, −] N (0, 1] i L ii M i I iii N i I iii
x 80. logay = x hw` I †Kej hw` ax = y nqÑ
62. (x) = |x| GKwUÑ (mnR)
i. loga(ax) = x
 dvskb L m~PK dvskb ii. alogay = y
M jMvwi`wgK dvskb N wecixZ dvskb 1
x iii. alogay = xyx
63. (x) = |x| Gi †Wv‡gb KZ? (ga¨g)
wb‡Pi †KvbwU mwVK? (ga¨g)
K L − 204  − {0} N (−, 0] K i I ii  i I iii M ii I iii N i, ii I iii
x
64. (x) = |x| Gi †iÄ KZ? (ga¨g) 81. x > 0, y > 0 Ges a  1 n‡j, x = y n‡e hw`Ñ
K L − {0} M {1, 1}  {−1, 1}
i. logax > 0
a+x ii. logax = logay
65. y = ln a − x dvskbwUi †iÄ KZ? (KwVb) iii. logay > 0
K − {a} L  − {a} N wb‡Pi †KvbwU mwVK? (KwVb)
− |x|
K i I ii L i I iii M ii I iii  i, ii I iii
66. (x) = e 2 ; −2 < x < 0 GB dvsk‡bi †Wv‡gb KZ? (ga¨g)
82. P = logabc n‡j 1 − p = KZ?
K (−1, 0) L (−1, 0]  (−2, 0) N (2, 0)
i. 1 − logabc
67. y = ax, a > 1 Z‡e Gi †Wv‡gb KZ? (ga¨g)
ii. logaa − logabc
K (−, ] L (−, 0] M (0, )  (−, )
a
68. logxx x x = KZ?
3
(ga¨g) ()
iii. loga
bc
3 5 4 11 wb‡Pi †KvbwU mwVK? (mnR)
K L M 
2 6 6 6 K i I ii L i I iii M ii I iii  i, ii I iii
69. log x = 10 n‡j, x = KZ? (ga¨g) 83. i. logaPQ = logaP + logaQ
2
ii. logaPQ = logaP.logaQ
beg-`kg †kÖwY : D”PZi MwYZ  385
Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi
(QP ) = log P + log (Q1 )
iii. loga a a

wb‡Pi †KvbwU mwVK? (ga¨g) wb‡Pi Z‡_¨i Av‡jv‡K 88 I 89 bs cÖ‡kœi DËi `vI :
K i I ii L ii I iii i I iii N i, ii I iii y = x2; x > 0
84. i. log512 = 2log52 3 88. dvskbwUi †Wv‡gb KZ? (ga¨g)
ii. log53 log35 = 1 K  (0, ) M − {0} N N
iii. xlogay = ylogax 89. dvskbwUi †iÄ KZ? (ga¨g)
wb‡Pi †KvbwU mwVK? (ga¨g)  (0, ) L − {0} M − {2} N (−, 9[
 i I ii L i I iii M ii I iii N i, ii I iii (x) = x + |x| hLb −2  x < 2
85. y = (x) = e−x; 2 < e < 3 Dc‡ii eY©bv n‡Z 90 Ñ 92 bs cÖ‡kœi DËi `vI :
i. G‡ÿ‡Î x →  n‡j, y → 0 + nq
90. dvskbwU GKwUÑ (mnR
ii. GwU (0, 1) we›`yMvgx
K jMvwi`wgK dvskb  ciggvb dvskb
iii. x → − n‡j, y →  nq
M m~PK dvskb N wecixZ dvskb
wb‡Pi †KvbwU mwVK? (ga¨g)
91. cÖ`Ë dvsk‡bi †Wv‡gb KZ? (ga¨g)
K i I ii L i I iii M ii I iii  i, ii I iii
K (−2, 2) L [−2, 2] M (−2, 2]  [−2, 2)
86. a, b > 0 Ges a  b n‡jÑ 92. cÖ`Ë dvsk‡bi †iÄ KZ? (ga¨g)
i. (ap)qr = a n‡j, pqr = 1 K (0,4) L (0, 4] M {0, 4}  (0, 4)
2
ii. (axy)(axy)z = a2 n‡j, xyz = 1 logka logkb logkc
iii. logk n + logk n + logk n = 0
n n n = =
a b c y−z z−x x−y
b  c  a 
Dc‡ii ivwk n‡Z 93 Ñ 95 bs cÖ‡kœi DËi `vI :
wb‡Pi †KvbwU mwVK? (KwVb)
93. axbycz = KZ? (ga¨g)
K i I ii L ii I iii  i I iii N i, ii I iii
1
87. (x) = 2x n‡jÑ K0 L xyz 1 N
xyz
i. (x) Gi †Wv‡gb = (−, )
2 2 2 2 2 2
94. a y + yz + z
.a z + zx + x
.a x + xy + y
= KZ? (KwVb)
ii. (x) Gi †iÄ = (0, ) K0 1 M logka N 
iii. −1(x) = log2x 95. ay + z.bz + x.cx + y = KZ? (KwVb)
wb‡Pi †KvbwU mwVK? (mnR) K0 L z−x M y −z 2 2
1
K i I ii L ii I iii M i I iii  i, ii I iii

wbe©vwPZ enywbe©vPwb cÖ‡kœvËi


96. y = 1n (x − 2) n‡j wb‡Pi †KvbwU mwVK? 103.
logk (1 + 3x)
= 2 n‡j Gi wØNvZ mgxKiY wb‡Pi †KvbwU?
K (x − 2)c
=y  =x−2
ey logkx
M ex − 2 = y N e−y = x − 2 K x2 + 3x + 1 = 0 L x2 − 3x + 1 = 0
97. log 0 Gi gvb KZ? M x2 + 3x − 1 = 0  x2 − 3x − 1 = 0
K0  bvB M N1 104. log10 (999 + x) = 3 n‡j, x Gi gvb KZ?
98. F(x) = 2x G x →  n‡j y = F(x) Gi gv‡bi †ÿ‡Î †KvbwU K 0  1 M 2 N3

mwVK? 105. a > 0, a  1 n‡jÑ


r i. logaM = rlogaM
 y→ L y→0 M y=0 N y→
ii. loga(MN) = logaM + logaN
99. y = 1 − 3−x wecixZ dvskb †KvbwU? M logaM
iii. loga =
 log3  
1 N logaN
K log3 (1 − y)
1 − x wb‡Pi †KvbwU mwVK?
M 1 − 3x N 3x − 1
 i I ii L i I iii M ii I iii N i, ii I iii
100. hw` a > 1 Ges 0 < x < 1 nq Z‡eÑ
106. f(x) = 2x
 logax < 0 L logax > 0
i. f(x) Gi †Wv‡gb (− , )
M loga x = 0 N loga a = 0
x ii. f (x) Gi †iÄ (0, )
101. f(x) = |x| dvsk‡bi †iÄ KZ? iii. f−1(x) = lgo2x
 {−1, 1} L {0, 1} M {0, −1} N {0, 0} wb‡Pi †KvbwU mwVK?
x K i I ii L i I iii M ii I iii  i, ii I iii
102. f(x) = |x| Ges x ev¯Íe msL¨v n‡j, f(0) = KZ?
107. f(x) = 3x
K0 L1  AmsÁvwqZ N −1 i. GKwU m~PK dvskb
beg-`kg †kÖwY : D”PZi MwYZ  386
ii. GKwU GK-GK dvskb K0 1 M3 N9
iii. Gi wecixZ dvskb log3x 109. Dc‡iv³ dvskbwUi †Wv‡gb KZ?
wb‡Pi †KvbwU mwVK?  [0, ] L [−, 0] MN NR
Ki L ii 110. dvskbwUi wecixZ dvsk‡bi †Wv‡gb KZ?
Mi I ii  i, ii I iii  [0, ] L [0, ] M [−, ] Nd

wb‡Pi Z‡_¨i Av‡jv‡K 108 − 111 bs cÖ‡kœi DËi `vI : 111. dvskbwUi †iÄ nq?
K [−, 0] L [−, ] MR  R+
(x) = 3x2 GKwU m~PKxq dvskb, †hLv‡b x  R
108. −1(3) = KZ?

G A a¨v‡q i c vV mg wš^Z e nyw be©v Pwb cÖ‡ kœv Ëi


enyc`x mgvwßm~PK enywbe©vPwb cÖ‡kœvËi i. logaMr = r logaM ii. logaMN = logaM + logaN
logbM
iii. logaM =
112. wb‡Pi mgxKiY¸‡jv jÿ Ki : logba
i. 16x = 4x+2 wb‡Pi †KvbwU mwVK? (ga¨g)
ii. 2x = 8 K i I ii L i I iii M ii I iii  i, ii I iii
iii. x − 4 + 2 = x + 12 118. i. x  0, a > 0, b > 0 Ges ax = bx n‡j a = b
wb‡Pi †KvbwU mwVK? (ga¨g) ii. am = an Ges a  0 n‡j m = n
 i I ii L ii I iii Mi I iii N i, ii I iii iiilogba  logab = 1
113. i. 3x2 = 34 n‡j x = ± 2 wb‡Pi †KvbwU mwVK? (ga¨g)
ii. 22 = 9 n‡j, y = ± 3 K i I ii L i I iii M ii I iii  i, ii I iii
iii. 2.3y = 18 n‡j, y = 2 ar
119. i. (aP) = a n‡j pqr = 0
wb‡Pi †KvbwU mwVK? (ga¨g) ii. {(axy) (axy)}z = a2 n‡j xyz = 1
K i I ii L i I iii M ii I iii  i, ii I iii n n n
114. i. am.an = am+n
am
iii. (ba ) + log (bc ) + log (ca ) = 0
n k n k n

ii. n = am−n wb‡Pi †KvbwU mwVK? (KwVb)


a
K i I ii L i I iii  ii I iii N i, ii I iii
†hLv‡b a  0
iii. (am)n = amn
wb‡Pi †KvbwU mwVK? (ga¨g) Awfbœ Z_¨wfwËK enywbe©vPwb cÖ‡kœvËi
K i I ii L i I iii M ii I iii  i, ii I iii
wb‡Pi Z_¨ †_‡K 120 I 121 bs cÖ‡kœi DËi `vI:
115. i. a  0 n‡j a = 1
a3−x b5x = a5+x b3x
1 1
ii. a−1 = iii. an = b2x
a a−(−n) 120. a2x = KZ? (ga¨g)
wb‡Pi †KvbwU mwVK? (ga¨g) 1
 i I ii L i I iii M ii I iii N i, ii I iii Ka  a2 M a N
a2
116. i. logaa = 1, a > 0, a  1 121. logka Gi gvb wb‡Pi †KvbwU− (KwVb)
am l an l
ii. ( ) ( )
an = m
a K logk () a
b
L logk () b
a
iii. loga1 = 0, a > 0, a  1
a b
wb‡Pi †KvbwU mwVK? (ga¨g) M x log ( )
k  x log ( )
k
b a
K i I ii  i I iii M ii I iii N i, ii I iii
117. a > 0, a  1 n‡j−

¸iæZ¡c~Y© m„Rbkxj cÖkœ I mgvavb


œ 1  p = xya − 1, q = xyb − 1, z = xyc − 1
cÖk- wbY©q Ki| 4
a a
−1
 1bs cª‡kœi mgvavb 
a b
K. a = b n‡j †`LvI †h,
b a
() b
=b b 2 K. †`Iqv Av‡Q, ab = ba
p q a a
L. cÖgvY Ki †h, (b + a) log q +(c + b) log r + a
†`Lv‡Z n‡e †h, b b = ab − 1
r
()
(a + c) log = 0
p
4
M. (b − c) logp + (c − a) log q + (a − b) log r Gi gvb
beg-`kg †kÖwY : D”PZi MwYZ  387
a a a p q r
a  (b + a) log + (c + b) log + (a + c) log = 0 (cÖgvwYZ)
a ab ab ab
evgcÿ = () b
b= a= 1=
b
bb (ba)b (a )b
1 [ ab = ba ]
M.
q r
†`Iqv Av‡Q, p = xya − 1, q = xyb − 1, r = xyc − 1
p

a
a
(b − c)log p + (c − a)log q + (a − b)log r Gi gvb wbY©q
ab −1
= =ab = (Wvbcÿ) Ki‡Z n‡e|
a1
a a cÖ`Ë ivwk = (b − c)log p + (c − a)log q + (a − b) log r
(a )
 b = a = (†`Lv‡bv n‡jv)
b b
−1
= (b − c)log (xya−1) + (c − a)log (xyb−1)
+ (a − b) (xyc−1)
L. †`Iqv Av‡Q, p = xya − 1, q = xyb − 1, r = xyc − 1
= (b − c)log x + (b − c)logy + (c − a)logx
a−1
p q r
evgcÿ = (b + a)log q + (c + b)log r + (a + c)log p + (c−a)logyb−1 + (a − b)logx + (a − b)logc−1
p q r = (b − c)logx + (b − c) (a − 1) logy + (c − a)logx + (c − a)
= (a + b)log
q
+ (b + c)log + (c + a)log
r q (b − 1) logy + (a − 1) logx + (a − b) (c − 1) logy
xya−1 xyb−1 xyc−1 = (b − c + c − a + a − b)logx + {(b − c) (a − 1)
= (a + b)log b−1 + (b + c)log c−1 + (c + a)log a−1
xy xy xy + (c − a) (b − 1) + (a − b)(c − 1)} logy
ya−1 yb−1 yc−1 = 0  logx + {(b − c) (a − 1)
= (a + b)log b−1 + (b + c)log c−1 + (c + a)log a−1 + (c − a) (b − 1) + (a − b)(c − 1)} logy
y y y
= 0 + {(ab − ca − b + c) + (bc − ab − c + a)
= (a + b)log ya − 1 − b + 1 + (b + c)log yb − 1 − c + 1
+ (ca − bc − a + b)}logy
+ (c + a)log yc − 1 − a + 1
− − = (ab − ca − b + c + bc − ab − c + a + ca − bc − a + b)logy
= (a + b)log y a b + (b + c) log y b c + (c + a) log yc − a
= 0  log y = 0
= (a + b) (a − b)log y + (b + c)(b − c)log y + (c + a) (c − a)log y
= (a2 − b2)log y + (b2 − c2)log y + (c2 − a2)log y
wb‡Y©q gvb 0
= (a2 − b2 + b2 − c2 + c2 − a2)log y
= 0  log y = 0 = (Wvbcÿ)

A byk xj b g ~j K K v‡R i A v‡j v‡K m„R b kxj cÖk œ I mg vavb


2 2
loga logb logc
œ 2  hw` b − c = c − a = a − b nq, Z‡eÑ
cÖk- ev, logca + ab + b = k (a3 − b3) ................... (iii)
mgxKiY (i), (ii) I (iii) †hvM K‡i cvB,
K. AbycvZ¸‡jvi gvb k a‡i, logaa Gi gvb wbY©q Ki| 2 2 2 2 2 2 2
loga b + bc + c + logb c + ca + a + logc a + ab + b = k (b3 − c3) +
L. aa.bb.cc Gi gvb wbY©q Ki| 4 k (c3 − a3) + k(a3 − b3)
2 2 2 2 2 2
2 2 2 2 2 2
M. cÖgvY Ki †h, ab + bc + c  bc + ca + a  ca + ab + b = aabbcc. 4 ev, log (a b + bc + c  b c + ca + a  c a + ab + b ) = 0
2 2 2 2 2 2

 2bs cª‡kœi mgvavb  ev, log (a b + bc + c  b c + ca + a . c a + ab + b = log1


2 2 2 2 2 2
ev, a b + bc + c . b c + ca + a  c a + ab + b = 1
loga logb logc
 a b + bc + c  b c + ca + a  c a + ab + b = aa.bb.cc [ÔLÕ n‡Z] (cÖgvwYZ)
2 2 2 2 2 2
K. awi, b − c = c − a = a − b = k
 loga = k (b − c) œ 3  hw` x = 1 + logabc, y = 1 + logbca Ges z = 1 + logcab
cÖk-
ev, a log a = ka (b − c); [Dfq cÿ‡K a Øviv ¸Y K‡i] nq, Z‡eÑ
 logaa = ka (b − c) .............. (i) 1

L. GLb, log b = k (c − a) K. †`LvI †h, a = (abc)x 2


ev, b log a = kb (c − a); [Dfq cÿ‡K b Øviv ¸Y K‡i] L. cÖgvY Ki †h, xyz = xy + yz + zx 4
ev, logbb = kb (c − a) .............. (ii) M. †`LvI †h, ax − 3. by − 3. cz − 3 = 1 4
Ges log c = k (a − b)  3bs cª‡kœi mgvavb 
ev, c log c = kc (a − b) .............. (iii) K. †`Iqv Av‡Q, x = 1 + logabc
GLb, (i), (ii) I (iii) †hvM K‡i cvB, ev, x = logaa + logabc
logaa + logbb + logcc = k (ab − ac + bc − ab + ac − bc)
ev, log (aabbcc) = k 0 = 0 ev, x = logaabc
 aabbcc = 1 (Ans.) ev, ax = abc
1
M. ÔKÕ †_‡K cvB, loga = k (b − c)
ev, (b2 + bc + c2) loga = k (b − c) (b2 + bc + ca) a = (abc) x
(†`Lv‡bv n‡jv)
2 2
1
ev, log ab + bc + c = k (b3 − c3) ....................... (i) L. ÔKÕ n‡Z cvB, a = (abc) ............. (i)
x
ÔLÕ †_‡K cvB, logb = k(c − a) 1
ev, (c2 + ca + a2) logb = k(c − a) (c2 + ca + a2) Abyiƒcfv‡e, b = (abc) y............ (ii)
2 2
ev, logbc + ca + a = k(c3 − a3) .................... (ii) 1

Ges, logc = k (a − b) Ges c = (abc) z.............. (iii)


ev, (a2 + ab + b2) log c = k 9a − b) (a2 + ab + b2) (i), (ii) I (iii) ¸Y K‡i cvB,
beg-`kg †kÖwY : D”PZi MwYZ  388
1 1 1
Y
abc = (abc) x.(abc) y .(abc)z
2, 25
1 1 1
+ +
†¯ ‹j : X A‡ÿ eivei ÿ z`ªZg 5 eM© Ni = 1 GKK
ev, (abc)1 = (abc)x y z Y A‡ÿ eivei ÿ z`ªZg 2 eM© Ni = 1 GKK

1 1 1
ev, 1 = x + y + z
yz + zx + xy
ev, xyz
=1
 xyz = zy + yz + zx (cÖgvwYZ)
M. †`Iqv Av‡Q, x = 1 + logabc
ev, x − 1 = logabc
ev, ax − 1 = bc ................ (i)
Avevi, y = 1 + logbca
ev, y − 1 = logbca
ev, by − 1 = ca ............... (ii)
Abyiƒcfv‡e, cz − 1 = ab .......... (iii) 1, 5
(i), (ii) I (iii) ¸Y K‡i cvB,
ax −1. by − 1. cz − 1 = bc. ca. ab
ev, ax − 1. by − 1. cz − 1 = a2.b2.c2 (−2 251 ) −1, 51 (0, 1)
ax − 1 by − 1 cz − 1 −1 −2 −3 O
ev, a2 . b2 . c2 = 1 X
Y
1 2 3 X

ev, ax − 1 − 2. by − 1 − 2. cz − 1 − 2 = 1 M. †jLwPÎ †_‡K †`Lv hvq †h, hLb x = 0


 ax − 3. by − 3. cz − 3 = 1 (†`Lv‡bv n‡jv) ZLb y = 5 = 1 Kv‡RB †jLwU (0, 1) we›`yMvgx|
œ 4  wb‡Pi QKwU jÿ Ki :
cÖk- Avevi x G‡i FYvZ¥K gv‡bi Rb¨ y Gi gvb µgvš^‡q k~‡b¨i
x −2 −1 0 1 2 LyeB KvQvKvwQ †cuŠQvq wKš‘ 0 nq bv A_©vr x → − , y → 0+.
y 1 1 1 5 25 x Gi †h‡Kv‡bv abvZ¥K gv‡bi Rb¨ dvskbwUi gvb Amx‡gi
25 5 KvQvKvwQ A_©vr x → , y → .
Avevi, dvskbwU (x) = ax AvKv‡ii †hLv‡b a > 0 Ges a  0|
K. QKwU †Kvb dvskb Øviv eY©bv Kiv hvq| 2 myZivs y = 5x GKwU m~PKxq dvskb|
L. dvskbwUi †jLwPÎ A¼b Ki| 4 myZivs dvskbwUi †Wv‡gb mKj ev¯Íe msL¨vi †mU A_©vr (−, )
M. dvskbwUi cÖK…wZ eY©bv Ki Ges †Wv‡gb I †iÄ Ges dvskbwUi †iÄ mKj abvZ¥K ev¯Íe msL¨vi †mU A_©vr (0, )|
wbY©q Ki| 4
œ 5  y = 2−x GKwU dvskb †hLv‡b −3  x  3
cÖk-
 4bs cª‡kœi mgvavb  K. cÖ`Ë mxgvi g‡a¨ dvskbwUi K‡qKwU gv‡bi ZvwjKv
K. QKwU‡Z ewY©Z (x, y) µg‡Rv‡oi gvb¸‡jv y = 5x dvskb Øviv cÖ¯‘Z Ki| 2
eY©bv Kiv hvq, †hLv‡b x-ev¯Íe msL¨v| L. dvskbwUi †jLwPÎ A¼b Ki| 4
L. QK KvM‡R myweavgZ x-Aÿ eivei XOX Ges y-Aÿ eivei M. dvsk‡bi †Wv‡gb I †iÄ wbY©q Ki Ges wecixZ
YOY AuvwK| x-Aÿ eivei 5 eM© Ni = 1 GKK Ges y-Aÿ dvskbwUI wbY©q Ki| 4
eivei 2 eM© Ni = 1 GKK we‡ePbv K‡i (x, y) we›`y¸‡jv QK  5bs cª‡kœi mgvavb 
KvM‡R ¯’vcb Kwi| we›`y¸‡jv mvejxjfv‡e eµ‡iLvq hy³ K‡i
dvskbwUi †jL cvIqv hvq| hv wb‡¤œ †`Lv‡bv n‡jv : K. awi, y = (x) = 2−x
x Gi −3 †_‡K 3 Gi g‡a¨ K‡qKwU gvb wb‡q mswkøó y Gi
gvb wb‡Pi Q‡K †`Lv‡bv n‡jvÑ
x −3 −2 −1 0 1 2 3
y 8 4 2 1 0.5 0.25 0.125
L. QK KvM‡Ri myweavgZ x-Aÿ XOX Ges YOY AuvwK| x-
Aÿ eivei ÿz`ªZg 5 eM© Ni = 1 GKK Ges y-Aÿ eivei
ÿz`ªZg 5 eM© Ni = 1 GKK a‡i (x, y) we›`y¸‡jv cvZb Kwi|
we›`y¸‡jv‡K mvejxjfv‡e eµ‡iLvq hy³ K‡i y = (x) Gi †jLv
cvIqv hvq| hv wb‡¤œ †`Lv‡bv n‡jvÑ
beg-`kg †kÖwY : D”PZi MwYZ  389
−3, 8 Y y 1 0.5 −1 −4 AmsÁvwqZ 8 5 35 3 275
ÿ z`Z
ª g 5 eM© Ni = 1 GKK
L. ÔKÕ Gi cÖvß we›`y¸‡jv QK KvM‡R myweavgZ x-Aÿ XOX
Ges y-Aÿ YOY AuvwK| x-Aÿ eivei ÿz`ªZg 5 eM© Ni = 1
GKK Ges y-Aÿ eivei ÿz`ªZg 2 eM© Ni = 1 GKK a‡i
(x, y) we›`y¸‡jv cvZb Kwi| we›`y¸‡jv‡K mvejxjfv‡e
eµ‡iLvq hy³ K‡i y = (x) Gi †jL cvIqv hvq|
(−2, 4) Y
xAÿ eivei ¶z`ªZg 5 eM© = 1 GKK
Aÿ eivei ¶z`ªZg 2 eM© = 1 GKK
(15, 8)
(−1, 2)
(2, 5)
(3, 35)
0, 1 1,05 (2, 25 (4, 3)
(3, 125 )
−2, 1 (5, 275)
X −3 −2 −1 O 1 2 X −1, 0.5
3 )
Y
X O X
(0, −1)
M. †jLwPÎ †_‡K †`Lv hvq †h, x Gi abvZ¥K gvb e„w×i Rb¨
dvskwUi gvb µgk: k~‡b¨i KvQvKvwQ †cuŠQvq wKš‘ k~b¨ nq (0.5, −4)
1 1
bv| x = 0 n‡j dvskbwUi gvb, y = 2−0 = 20 = 1 = 1 Kv‡RB
dvskbwU (0, 1) we›`yMvgx| Avevi, x Gi D”PZi FYvZ¥K Y
gv‡bi Rb¨ dvskbwUi gvb e„w× cvq| myZivs cÖ`Ë mxgvi g‡a¨
dvskbwU x = 1 Gi Rb¨ AmsÁvwqZ
dvskwUi †Wv‡gb = [−3, 3] Ges dvskbwUi †iÄ = 8 8 [1 ] †Wv‡gb D = R − {1}
wecixZ dvskb wbY©q : M. awi, y = (x) = x − 1
2x + 1
y =  (x) = 2−x
2x + 1
GLb, y = 2−x GLb, y = x − 1
ev, log2y = −x ev, y(x − 1) = 2x + 1
ev, x = − log2y ev, yx − 2x + y + 1
ev, x = log2y−1 ev, x(y − 2) = y + 1
1 y+1
 x = log2 x=
y y−2
1
wecixZ dvskb, f−1 : y → x hLb x = log2 y wecixZ dvskb −1 : y → x †hLv‡b, x = y − 2
y+1

1
ev, f−1 : y → log2 y ev, −1 : y → y − 2
y+1

y Gi ¯’‡j x ¯’vcb K‡i cvB, x+1


1 y Gi ¯’‡j x ¯’vcb K‡i cvB, −1 : x → x − 2
f−1 : x → log2
x x+1
1  −1 (x) = ;x2
 f−1 (x) = log2 x−2
x
5+x
2x + 1 œ 7  y = ln 5 − x GKwU jMvwi`g dvskb|
cÖk-
œ 6  y = x − 1 GKwU dvskb|
cÖk-
K. dvskbwU †h k‡Z©i Rb¨ AmsÁvwqZ †mme kZ© wbY©q
K. cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi R‡b¨ x I y Gi Ki| 2
gv‡bi ZvwjKv cÖ¯‘Z Ki| 2 L. dvskbwUi †Wv‡gb wbY©q Ki| 4
L. dvskbwUi †jLwPÎ A¼b Ki Ges †Wv‡gb wbY©q Ki| 4 M. dvskbwUi †iÄ wbY©q Ges wecixZ dvsk‡bi †Wv‡gb
M. dvskbwUi wecixZ dvskb wbY©q Ki| 4 I †iÄ †ei Ki| 4
 6bs cª‡kœi mgvavb   7bs cª‡kœi mgvavb 
2x + 1 K. x = 5 Gi Rb¨ dvskbwU AmsÁvwqZ| Avevi, jMvwi`g dvskb
K. awi, y = (x) = x − 1
5+x
cÖ`Ë dvskb (x) Gi †jLwPÎ A¼‡bi Rb¨ x Ges y Gi FYvZ¥K gv‡bi Rb¨I AmsÁvwqZ| ZvB 5 − x < 0 dvskbwU
gvb¸‡jvi ZvwjKv cÖ¯‘Z Kwi| AmsÁvwqZ|
x −2 −1 0 0.5 1 1.5 2 3 4 5
beg-`kg †kÖwY : D”PZi MwYZ  390
5+x y 014 036 1 271 74 2008 546
L. awi, y = (x) = ln 5 − x
L. GLb, ÔKÕ G cÖvß we›`y¸‡jv QK KvM‡R myweavgZ X-Aÿ
†h‡nZz jMvwi`g dvskb ïaygvÎ abvZ¥K ev¯Íe msL¨vi Rb¨ XOX Ges Y-Aÿ YOY AuvwK| X-Aÿ eivei ÿz`ªZg 5 eM©
msÁvwqZ nq| Ni = 1 GKK Ges Y-Aÿ eivei ÿz`ªZg 1 eM© Ni = 1 GKK
5+x
 > 0 hw` (i) 5 + x > 0 Ges 5 − x > 0 nq a‡i (x, y) we›`y¸‡jv cvZb Kwi| we›`y¸‡jv‡K mvejxj
5−x
eµ‡iLvi hy³ K‡i y = (x) Gi †jL cvIqv hvq|
A_ev, (ii) 5 + x < 0 Ges 5 − x < 0 nq|
(i) bs n‡Z cvB, x > −5 Ges − x > − 5
hv wb‡¤œ †`Lv‡bv n‡jvÑ
(−4, 546)
ev, x > −5 Ges x < 5 Y

 †Wv‡gb = {x : −5 < x} Ges {x : x < 5} X Aÿ eivei ÿ z`Z


ª g 5 eM© Ni = 1 GKK
= (−5, )  (− , 5) = (−5, 5) Y Aÿ eivei ÿ z`Z
ª g 1 eM© Ni = 1 GKK
(ii) bs n‡Z cvB, x < −5 Ges −x < −5
ev, x < − 5 Ges x > 5
 †Wv‡gb = {x : x < −5}  (x : x > 5} = 
 cÖ`Ë dvsk‡bi †Wv‡gb,
D = (i) I (ii) G cÖvß †Wv‡g‡bi ms‡hvM = (−5, 5)   = (−5, 5)
5+x
M. awi, y = (x) = ln 5 − x
5+x
ev, ey = 5 − x (−3, 2008)
ev, 5 + x = 5ey − xey
ev, x(1 + ey) = 5(ey − 1)
5(ey − 1)
x = ey + 1 (−2, 74)
y Gi mKj ev¯Íe gv‡bi Rb¨ x Gi gvb ev¯Íe nq| (0, 1) (1, 36)
(−1,271) (2, 14)
 cÖ`Ë dvsk‡bi †iÄ R = R
−4 −3 −1 O 1
5(ey − 1) X
Y
X
wecixZ dvskb −1 : y → x †hLv‡b, x = ey + 1
5(ey − 1)
M. x Gi mKj ev¯Íe gv‡bi Rb¨ cÖ`Ë dvskb (x) msÁvwqZ|
ev, −1 : y → ey + 1  dvskbwUi †Wv‡gb D = R
y Gi cwie‡Z© x ewm‡q cvB, Ges x hLb +  Gi KvQvKvwQ nq ZLb (x) Gi gvb k~‡b¨i
5(e − 1)
x KvQvKvwQ nq Ges x Gi gvb n«v‡mi mv‡_ mv‡_ (x) Gi gvb
−1 : x → x
e +1 Amx‡gi w`‡K e„w× cvq|
5(ex − 1)
  (x) = x
−1  cÖ`Ë dvsk‡bi †iÄ R = (0, )
e +1
myZivs, wecixZ dvsk‡bi †Wv‡gb n‡e dvskbwU †iÄ Ges †iÄ ÔKÕ n‡Z cvB, y = e−x
n‡e dvskbwUi †Wv‡gb| ev, logey = −x
−1 ev, x = −logey
 D−1 = R Ges R = (−5, 5) (Ans.)
ev, x = logey−1
1
œ 8  (x) = e−x GKwU dvskb|
cÖk- ev, x = loge y
K. cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ GKwU mviwY wecixZ dvskb −1 : y → x †hLv‡b, x = loge y
1
ˆZwi Ki| 2
1
L. dvskbwUi †jLwPÎ A¼b Ki| 4 ev, −1 : y → loge y
M. dvskbwUi †Wv‡gb I †iÄ wbY©q Ki Ges wecixZ y Gi cwie‡Z© x ewm‡q cvB,
dvskb wbY©q Ki| 4 1
−1 : x → loge
 8bs cª‡kœi mgvavb  x
1
K. awi, y = (x) = e−x  −1(x) = loge
x
x Gi K‡qKwU gvb wb‡q mswkøó y Gi gvb wb‡gœi Q‡K
†`Lv‡bv n‡jv-
x 2 1 0 −1 −2 −3 −4
beg-`kg †kÖwY : D”PZi MwYZ  391

AwZwi³ m„R bkxj cÖkœ I mgvavb


log p log q log r  †Wv‡gb D =
œ 9  y −kz = z −kx = x −ky
cÖk-
†iÄ : y = 1 − 2−x
K. cÖgvY Ki †h, pqr = 1 2 ev, 2−x = 1 − y
L. py + z.qz + x.rx + y = 1 4 ev, − x = log2(1 − y)
2 2 2 2 2 2
M. py + yz + z .qz + zx + x .rx + xy + y = 1 4
 9bs cª‡kœi mgvavb  ev, x = log2(1 − y)−1

logkp logkq logkr  x = log  1 


K. awi, y − z = z − x = x − y = c 1 − y
2

 logkp = c(y − z) ..........(i) ïaygvÎ abvZ¥K ev¯Íe msL¨vi Rb¨ jMvwi`g msÁvwqZ nq|
logkq = c(z − x) ........... (ii) 1
 >0 hw` 1 − y > 0 nq|
1−y
logkr = c(x − y) ........... (iii)
ev, 1 > y
(i), (ii) I (iii) bs †hvM K‡i cvB,
logkp + logkq + logkr = c(y − z + z − x + x − y) y<1
ev, logkpqr = c.0 = 0 = logk1  †iÄ R = (− , 1)
 pqr = 1 (cÖgvwYZ) L. †jLwPÎ A¼b : cÖ`Ë dvskb, y = 1 − 2−x
L. mgxKiY (i), (ii) I (iii) †K h_vµ‡g (y + z), (z + x) I (x + y) cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi gv‡bi GKwU
Øviv ¸Y Kivi ci †hvM K‡i cvB, ZvwjKv cÖ¯‘Z Kwi :
(y + z)logkp + (z + x)logkq + (x + y)logkr = x −3 −2 −1 0 1 2
c {(y + z)(y − z) + (z + x)(z − x) + (x + y)(x − y)} y −7 −3 −1 0 0.5 0.75
ev, logkp(y + z) + logkq(z + x) + logkr(x + y) =
c{y2 − z2 + z2 − x2 + x2 − y2}
QK KvM‡R gvb¸‡jv ¯’vcb Ki‡j wbgœiƒc †jLwPÎ cvIqv hvq|
ev, logk(py + z.qz + x.rx + y) = c.0 = 0 = logk1 x-Aÿ : cÖwZ 4 eM© = 1 GKK a‡i
 py + z.qz + x.rx + y = 1 (cÖgvwYZ) y-Aÿ : cÖwZ 4 eM© = 1 GKK a‡i

M. mgxKiY (i), (ii) I (iii) †K h_vµ‡g (y2 + yz + z2), (z2 + zx + x2)


I (x2 + xy + y2) Øviv ¸Y Kivi ci †hvM K‡i cvB,
(y2 + yz + z2)logkp + (z2 + zx + x2)logkq +
(x2 + xy + y2)logkr = c {(y −z)(y2 + yz + z2) +
(z − x)(z2 + zx + x2) + (x − y)(x2 + xy + y2)}
2 + yz + z2) 2 + zx + x2) 2 + xy + y2)
ev, logkp(y + logkq(z + logkr(x
3
= c{y − z3 + z3 − x3 + x3 − y3}
2 2 2 2 2 2
ev, log k(py + yz + z .qz + zx + x .rz + xy + y ) = c.0 = 0 = logk1
2 + yz + z2 2 + zx + x2 z2 + xy + y2
 py .q z .r = 1 (cÖgvwYZ)
œ 10  †`Iqv Av‡Q, y = 1 − 2 − x
cÖk- ˆewkó¨ :
1. †iLvwU g~jwe›`yMvgx|
K. cÖ`Ë dvsk‡bi †Wv‡gb I †iÄ wbY©q Ki| 2
2. dvskbwUi †Wv‡gb D =
L. dvskbwUi †jLwPÎ A¼b Ki Ges Gi ˆewk󨸇jv 3. dvskbwUi †iÄ R = (−,1)
†jL| 4 M. wecixZ dvskb wbY©q :
M. dvskbwUi wecixZ dvskb wbY©q K‡i Zv GK-GK GLv‡b, y = 1 − 2−x = (x) (awi)
wKbv Zv wba©viY Ki| 4 ev, 2−x = 1 − y
ev, − x = log2(1 − y)
 10bs cª‡kœi mgvavb 
ev, x = log21 − y
1
K. GLv‡b, y = 1 − 2−x −
y = (x) n‡j  1(y) = x
x Gi mKj ev¯Íe gv‡bi Rb¨ dvskbwU msÁvwqZ|
beg-`kg †kÖwY : D”PZi MwYZ  392
logkc = p(a − b) .......... (iii)
  1(y) = log2 
− 1
1 − y (i)  a + (ii)  b + (iii)  c K‡i cvB,
ev,  −1(x) = log21 − x
1 a logka + b logkb + c logkc = p{a(b − c) + b(c − a) + c(a − b)}
ev, logkaa + logkbb + logkcc = p (ab − ca + bc − ab + ca − bc)
wb‡Y©q wecixZ dvskb  −1(x) = log21 − x
1
a
ev, logk(a .bb.cc) = p.0 = 0 = logk1
x1 , x2  aa.bb.cc = 1 (Ans.)
  (x1) = log2 
−1 1
œ 12  a, b, c > 0 Ges a, b, c  1
cÖk-
1 − x1
K. loga(abc) = x n‡j, a = KZ? 2
Ges  −1(x2) = log21 − x 
1
 2 L. †`LvI †h,
1
+
1
+
1
=1 4
loga(abc) logb(abc) logc(abc)
GLb,  −1 (x1) =  −1(x2)
M. hw` p = loga(bc), q = logb(ca) Ges r = logc(ab)
ev, log21 − x  = log21 − x 
1 1
 
1  
2
1 1 1
nq Z‡e †`LvI †h, 1 + p + 1 + q + 1 + r = 1 4
1 1
ev, 1 − x = 1 − x  12bs cª‡kœi mgvavb 
1 2
ev, 1 − x1 = 1 − x2 K. †`Iqv Av‡Q, loga(abc) = x
ev, − x1 = −x2 x
ev, a = abc
 x1 = x2 x
a
†h‡nZz  −1(x1) =  −1(x2) Gi Rb¨ x1 = x2 nq| ev, a = bc
  1(x) = log2 
− 1
1 − x dvskbwU GKwU GK-GK dvskb| ev, ax − 1 = bc
1 2 1
logka −
œ 11  a, b, c  ; †hLv‡b b = (1 + 3 + 3 ) Ges
cÖk- 3 3
=  a = (bc) 1
x
b−c
logkb logkc 1
=
c−a a−b L. ÔKÕ n‡Z cvB, a = (abc)x
b awi, logb(abc) = y Ges logc(abc) = z
K. †`LvI †h, logalogaloga(a ) = b aa
2 1 1
L. †`LvI †h, b3 − 3b2 − 6b − 4 = 0 4 ev, b = (abc)y Ges c = (abc) z
a b c
M. a .b .c Gi gvb †ei Ki| 4 1 1 1
 11bs cª‡kœi mgvavb   abc = (abc) .(abc) .(abc)z
x y
1 1 1
ab b + +
K. evgcÿ = logalogalogaaa = logalogaaa logaa ev, (abc) = (abc)x y z
1

ab b
1 1 1
= logalogaa .1 = logaa logaa ev, x + y + z = 1
= logaab.1 = blogaa = b.1 = b = Wvbcÿ
1 1 1
ab  log (abc) + log (abc) + log (abc) = 1 (†`Lv‡bv n‡jv)
A_©vr logalogaloga(aa ) = b (†`Lv‡bv n‡jv) a b c

1 2 M. †`Iqv Av‡Q, p = loga(bc), q = logb(ca) Ges r = logc(ab)


3 3
L. †`Iqv Av‡Q, b = 1 + 3 + 3  1 + p = logaa + loga(bc) = loga(abc)
1 2 1 + q = logbb + logb(ca) = logb(abc)
3 3
ev, b − 1 = 3 + 3 .................. (i) 1 + r = logcc + logc(ab) = logc(abc)
 
1 2 3
Avevi, ÔLÕ n‡Z cvB,
ev, (b − 1) = 3 + 3 
3 3 3
[Nb K‡i] 1 1 1
+ + =1
 3  3  3 3
1 3 2 3 1 2 1 2 loga(abc) logb(abc) logc(abc)
ev, b − 1− 3b + 3b = 3  + 3  + 3.3 .3 3 + 3 
3 3
3 2
1 1 1
3 2 2 1  1 + p + 1 + q + 1 + r = 1 (†`Lv‡bv n‡jv)
ev, b −1−3b + 3b = 3 + 3 + 3.3 .(b −1) [(i) †_‡K]
3 2
ev, b − 3b + 3b − 1 = 12 + 9b − 9 2x + 1
3 2
ev, b − 3b + 3b − 1 − 12 − 9b + 9 = 0 œ 13  (x) = x −1
cÖk-
3 2
 b − 3b − 6b − 4 = 0 (†`Lv‡bv n‡jv) K. cÖ`Ë dvskbwUi †Wv‡gb I †iÄ wbY©q Ki| 2
logka logkb logkc L. dvskbwUi wecixZ dvskb wbY©q Ki Ges wecixZ
M. b − c = c − a = a − b = p (awi) dvsk‡bi †Wv‡gb I †iÄ wbY©q Ki| 4
5+x
Zvn‡j, logka = p(b − c) .......... (i) M. hw` y = ln 5 − x nq, Z‡e dvskbwUi †Wv‡gb I
logkb = p(c − a) .......... (ii)
beg-`kg †kÖwY : D”PZi MwYZ  393
†iÄ wbY©q Ki| 4 ev, −5 < x Ges x < 5
 13bs cª‡kœi mgvavb   †Wv‡gb = {x : −5 < x}  {x : x < 5}
2x + 1 = {−5, }  {, 5}
K. cÖ`Ë dvskb, (x) = x − 1 −G = {−5, 5}
x − 1 = 0 ev, x = 1 emv‡j dvskbwU AmsÁvwqZ nq| (ii) n‡Z x < −5 Ges 5 < x

 †Wv‡gb  = − {1} ev, x < −5 Ges x > 5


2x + 1  †Wv‡gb = {x : x < −5} {x : x < 5}
Avevi awi, y = x − 1 =
ev, 2x + 1 = xy − y  cÖ`Ë dvsk‡bi †Wv‡gb D = (i) I (ii) †ÿ‡Î cÖvß †Wv‡g‡bi ms‡hvM
ev, 2x − xy = −1 − y = {−5, 5}  
ev, x(2 − y) = −(1 + y) = {−5, 5}
−(y + 1) 5+x
†iÄ : y = ln 5 − x
ev, x = −(y − 2)
y+1 5+x
x= ............... (i) ev, ey = 5 − x
y−2
(i)-G y = 2 emv‡j x Gi gvb AmsÁvwqZ nq| ev, xey + x = 5ey − 5
 †iÄ  = − {2} 5 (ey − 1)
x=
†Wv‡gb  = − {1}, †iÄ  = − {2} (Ans.) ey + 1
yGi mKj ev¯Íe gv‡bi Rb¨ x Gi gvb ev¯Íe nq|
L. msÁvbymv‡i, ( −1(x)) =x
 cÖ`Ë dvsk‡bi †iÄ R =
(y) = x .......... (i) [†h‡nZz −1(x) = y]
logk1 + x
†`Iqv Av‡Q, (x) = x − 1
2x + 1 œ 14 
cÖk- logkx
=2

2y + 1
ev, (y) = y − 1 K. cÖgvY Ki †h, x2 − x − 1 = 0 2
1+ 5
2y + 1 L. †`LvI †h, x = 4
ev, x = y − 1 2
1+ 5
ev, 2y + 1 = xy − x M. x = 2
Ges log Gi wfwË 2 a‡i DcwiD³
ev, 2y − xy = −1− x mgxKi‡Yi mZ¨Zv hvPvB Ki| 4
ev, y (2 − x) = −(1 + x)  14 bs cª‡kœi mgvavb 
−(x + 1)
ev, y = −(x − 2) logk(1 + x)
K. †`Iqv Av‡Q, logkx
=2
x+1
ev, y = x − 2 ev, logk(1 + x) = 2logkx
 −1(x) =
x+1 ev, logk(1 + x) = logkx2
x−2
ev, 1 + x = x2
x − 2 = 0 ev, x = 2 emv‡j dvskbwU AmsÁvwqZ nq|  x2 − x − 1 = 0 (cÖgvwYZ)
−1
 †Wv‡gb  = − {2} (Ans.)
x+1 L. ÔKÕ †_‡K cvB, x2 − x − 1 = 0
Avevi awi, y = x − 2 1 2

ev, xy − 2y = x + 1
ev, (x)2 − 2.x.2 + 2 (1) − 14 − 1 = 0
ev, xy − x = 2y + 1 1 2
5  52
ev, x(y − 1) = 2y + 1
( )
ev, x − 2 =
4 2
=

1 5
x=
2y + 1 ev, x − 2 =  2
y−1
y = 1 emv‡j x Gi gvb AmsÁvwqZ nq| 1
nq, x − 2 = 2
5 1
A_ev, x − 2 = − 2
5
−1
 †iÄ  = − {1} (Ans.)
5 1 5 1
M. †h‡nZz jMvwi`g ïaygvÎ abvZ¥K ev¯Íe msL¨vi Rb¨ msÁvwqZ ev, x = 2 + 2 ev, x = − 2 + 2
5+x
 >0 1+ 5 − 5 + 1 −( 5 − 1)
5−x x=  x=− =
2 2 2
hw` (i) 5 + x > 0Ges 5 − x >0 nq −( 5 − 1)
A_ev, (ii) 5 + x<0 Ges 5 − x<0 nq| GLv‡b, x = 2
MÖnY‡hvM¨ bq|
n‡Z x > −5 Ges 5 > x KviY x Gi FYvZ¥K gv‡bi Rb¨ logx Gi gvb msÁvwqZ bq|
beg-`kg †kÖwY : D”PZi MwYZ  394

x=
1+ 5
2
(†`Lv‡bv n‡jv)  xlogk (ba) = log a (†`Lv‡bv n‡jv)
k

logk(1 + x)
M. †`Iqv Av‡Q, log x = 2 œ 16  x = 1 + logabc, y = 1 + logbca Ges z = 1 + logcab
cÖk-
k 1
cÖkœg‡Z, k = 2 [ wfwË = 2] K. †`LvI †h, a = (abc)x 2
logk(1 + x) log2(1 + x) L. cÖgvY Ki †h, xyz = xy + yz + zx 4
evgcÿ =
logkx
=
log2x
M. †`LvI †h, ax − 3.by − 3.cz − 3 = 1 4
log210  log10 (1 + x) log(1 + x)
=
log210  log10x
=
logx
 16bs cª‡kœi mgvavb 
K. †`Iqv Av‡Q x = 1 + logabc
log 1 +
1 + 5
 2  log 2.618 ev, x = logaa + logabc
= = = 2.000006
ev, x = logaabc
log 
1 + 5 log 1.618
 2  ev, ax = abc
= 2 Wvbcÿ (†`Lv‡bv n‡jv) 1
 a = (abc)x (†`Lv‡bv n‡jv)
œ 15  a3 − x b5x = a5 + xb3x
cÖk-
K. hw` x = 0 nq Z‡e cÖgvY Ki 2logka = 0 2 1
x
L. †`LvI †h, (1 + x)logka = xlogkb 4 L. ÔKÕ n‡Z cvB, a = (abc) .............. (i)
1
M. †`LvI †h, xlogk a = logka (b) 4 Abyiƒcfv‡e, b = (abc)y .............. (ii)
 15bs cª‡kœi mgvavb  1

K. †`Iqv Av‡Q, a3 − x b5x = a5 + x b3x Ges c = (abc)z .............. (iii)


ev, a3 − 0b5.0 = a5 + 0b3.0 [ x = 0] (i), (ii) I (iii) ¸Y K‡i cvB,
1 1 1
ev, a3b0 = a5b0
ev, a3 = a5 abc = (abc) .(abc) .(abc)z
x y
1 1 1
a5 + +
ev, =1 ev, (abc)1 = (abc)x y z
a3
1 1 1
ev, a2 = 1 ev, 1 = x + y + z
ev, logka2 = logk1 xy + yz + zx
ev, 1 =
 2logka = 0 (cÖgvwYZ) xyz
L. †`Iqv Av‡Q, a3 − x b5x = a5 + x b3x  xyz = xy + yz + zx (cÖgvwYZ)
5x 5+x
ev,
b
=
a M. †`Iqv Av‡Q, x = 1 + logabc
b3x a3 − x ev, x − 1 = logabc
ev, b2x = a2 + 2x
ev, ax − 1 = bc ................ (i)
ev, (bx)2 = (a1 + x)2
Avevi, y = 1 + logbca
ev, bx = a1 + x
x ev, y − 1 = logbca
ev, logkb = logka1 + x −1
 by = ca ................ (ii)
ev, xlogkb = (1 + x) logka
Abyiƒcfv‡e, cz − 1 = ab ...... (iii)
 (1 + x)logka = xlogkb (†`Lv‡bv n‡jv)
(i), (ii) I (iii) ¸Y K‡i cvB,
−1 −1 z−1
M. ÔLÕ bs †_‡K, b2x = a2 + 2x ax .by .c = bc.ab.ca
ev, b2x = a2x.a2 ev, a .by −1.cz −1 = a2b2c2
x −1

b2x x−1 y−1 z−1


ev, a2x = a2 a b c
ev, a2 . b2 . c2 = 1
b 2x − − −
 ax 3.by 3.cz 3 = 1 (†`Lv‡bv n‡jv)
( ) =a
ev, a 2

x
b 2x 2
ev, log (a) = log a
k k
2 œ 17  y = 2 GKwU m~PK dvskb Ges −3  x  3
cÖk-
b K. cÖ`Ë dvsk‡bi †jLwPÎ A¼‡bi Rb¨ x I y Gi
ev, 2x log (a) = 2 log a
k k gv‡bi ZvwjKv cÖ¯‘Z Ki| 2
L. dvskbwUi †jLwPÎ A¼b Ki| 4
M. dvskbwUi †Wv‡gb I †iÄ wbY©q Ki| 4
beg-`kg †kÖwY : D”PZi MwYZ  395
 17bs cª‡kœi mgvavb  x
x M. †`Iqv Av‡Q, y = 22
x
K. awi, y = (x) = 22
x Gi K‡qKwU wbw`©ó gv‡bi Rb¨ y-Gi Avmbœ Abym½x gvb awi, y = (x) = 22
wbY©q Kwi Ges Q‡K wjwL : x Gi †h‡Kv‡bv ev¯Íe gv‡bi Rb¨ y = (x) Gi gvb msÁvwqZ
x −3 −2 −1 0 1 2 3 nq|
y myZivs dvskbwUi †Wv‡gb D =
0.35 0.5 0.70 1 1.41 2 2.82
GLb,
L. ÔKÕ Gi cÖvß we›`y¸‡jv QK KvM‡R myweavg‡Zv x Aÿ XOX (x) = y
Ges y-Aÿ YOY AuvwK| x-Aÿ eivei 4 ¶z`ªZg eM© = 1 ev, −1(y) = x .......... (i)
GKK Ges y Aÿ eivei ¶z`ªZg 10 eM© Ni = 1 GKK a‡i (x, x
y) we›`y¸‡jv cvZb Kwi| we›`y¸‡jv‡K mnRfv‡e eµ‡iLvq hy³ Ges y = 22
K‡i y = (x) Gi †jL cvIqv hvq| x
ev, log2y = 2
hv wb‡P †`Lv‡bv n‡jv Ñ
ev, x = 2log2y .......... (ii)
ïaygvÎ abvZ¥K ev¯Íe msL¨vi jMvwi`g msÁvwqZ nq|
myZivs y-Gi abvZ¥K ev¯Íe gv‡bi Rb¨ x-Gi ev¯Íe gvb Av‡Q|
 dvskbwUi †iÄ R = {xR : x > 0}

wbe©vwPZ m„Rbkxj cÖkœ I mgvavb


œ 18  p2 + q2 = 9pq
cÖk- ev, p2 − 2pq + q2 = 9pq − 2pq
K. †`LvI †h, log(p2 + q2) = 2 log3 + logp + logq. 2 ev, (p − q)2 = 7pq
ev, log(p − q)2 = log7pq [Dfq w`‡K log wb‡q]
L. †`LvI †h, log(p4 + q4) = log 79 + 2 (logp + ev, 2log (p − q) = log7 + logpq
logq) 4 ev, 2log (p − q) = log7 + logp + logq (cÖgvwYZ)
M. cÖgvY Ki †h, 2log(p − q) = log7 + logp + logq 4 logkp logkq logkr
 18bs cª‡kœi mgvavb  œ 19  y − z = z − x = x − y
cÖk-
K. †`Iqv Av‡Q, p2 + q2 = 9pq K. cÖgvY Ki †h, pqr = 1 2
mgxKi‡Yi Dfq cv‡k¦© log wb‡q cvB, L. py + z. qz + x. yx + y = 1 4
2 2 2 2 2 2
log (p2 + q2) = log 9pq M. py + yz + z  qz + zx + x  rx + xy + y = 1 4
= log9 + logp + logq
= log32 + logp + logq  19bs cª‡kœi mgvavb 
 log(p2 + q2) = 2log3 + logp + logq (†`Lv‡bv n‡jv) logkp logkq logkr
L. †`Iqv Av‡Q, p2 + q2 = 9pq K. awi, y − z = z − x = x − y = T
ev, (p2 + q2)2 = (9pq)2 [eM© K‡i]  logkp = T(y − z) ................. (i)
ev, p4 + q4 + 2p2q2 = 81p2q2 logkq = T (z − x) ................. (ii)
ev, p4 + q4 = 79p2q2
logkr = T (x − y) .................. (iii)
ev, log (p4 + q4) = log(79 p2q2) [Dfq w`‡K log wb‡q]
= log 79 + log (pq)2 mgxKiY (i), (ii) I (iii) †hvM K‡i cvB,
= log79 + 2log(pq) logkp + logkq + logkr = T (y − z + z − x + x − y)
 log (p4 + q4) = log79 + 2(logp + logq) (†`Lv‡bv n‡jv)
ev, logk (pqr) = T  0
M. †`Iqv Av‡Q, p2 + q2 = 9pq
beg-`kg †kÖwY : D”PZi MwYZ  396
ev, logk (pqr) = 0 =
1
+
1
+
1
ev, logk (pqr) = logk1 1 + xa + x−b 1 + xb + x−c 1 + xc + x−a
1 1 1
 pqr = 1 (cÖgvwYZ) = b + +
x + x−c + 1 xc + x−a + 1 xa + x−b + 1
L. ÔKÕ Ask n‡Z cÖvß, logkp = T(y − z) 1 1 1
= + c +
ev, p = kT(y − z) b
1 x + x−a + 1 xa + x−b + 1
x + c+1
x
ev, py + z = kT(y − z) (y + z)
2 2
xc 1 1
 py + z = kT(y − z ) ......... (i) = + + [a + b + c = 0
1 + x c + xb + c 1 + xc + xb + c a 1
x + b+1
Abyiƒcfv‡e, q + x = kT(z − x ) ................(ii)
2 2
z x
Ges rx + y = kT(x
2
− y2) ................. (iii)  b + c = − a]
2 2 2 2 2 2 xc 1 xb
 py + z.qz + x.rx + y
= kT(y − z + z − x + x − y ) = + +
1 + xc + xb + c 1 + xc + xb + c xa+b + xb + 1
= kT.O = k0 = 1 xc 1 xb
 p .q .r
y + z z + x x + y = 1 (cÖgvwYZ) = + +
1 + xc + bb + c 1 + xc + bb + c x−c + xb + 1
M. ÔKÕ Ask n‡Z cvB, logkp = T(y − z) xc 1 xb
= c b + c + c b + c +
1+x +b 1+x +b 1
ev, p = kT(y − z) [j‡Mi msÁv n‡Z] xc
+ xb + 1
2 2 2 2
ev, py + yz +z = kT(y − z) (y + yz + z ) xc 1 xb.xc
= + +
 py
2 + yz + z2
= kT(y
3 − z3)
.............. (i) 1 + x c + bb + c 1 + x c + bb + c 1 + x c + bb + c
2 2 3 3 xc + 1 + x b + c 1 + x c + xb + c
Abyiƒcfv‡e, qz + zx + x = kT(z − x ) ............ (ii) = =
1 + x c + xb + c 1 + x c + xb + c
=1
2 2 3 3
Ges rx + xy + y = kT(z − x ) ..................... (iii) 1 1 1
 + + = 1 (†`Lv‡bv n‡jv)
mgxKiY (i), (ii) I (iii) ¸Y K‡i cvB, 1 + p + q−1 1 + q + r−1 1 + r + p−1
œ 21  f(x) = log (1 + x) − 2log(x)
2 + yz + z2 2 +zx + x2 2 + xy + y2 3 3 3 3 + x3 − y3)
py .qz . rx = kT(y − z + z − x cÖk-
= kT.0 = k0 = 1 K. †`LvI †h, logaxm = mlogax 2
2 + yz + z2 2 +zx + x2 2 + xy + y2
 py .qz . rx = 1 (cÖgvwYZ)
1+ 5
L. f(x) = 0 n‡j, †`LvI †h, x = 2 4
œ 20  p = xa, q = xb, r = xc Ges a + b + c = 0
cÖk-
K. (pqr)2 Gi gvb †ei Ki| 2 M. D Ges R wbY©q Ki| 4
a2 + ab + b2 b2 + bc + c2  21bs cª‡kœi mgvavb 
L. †`LvI †h, q−1   −1  
p q r
r  q−1 K. awi, log ax = p
c2 + ca + a2 ev, x = ap
=1 4 ev, xm = amp
M. cÖgvY Ki †h, ev, logaxm = logaamp
1 1 1 ev, logaxm = mp  logaa
+ −
1 + p + q−1 1 + q + r 1 + r + p−1
=1 4
ev, logaxm = mp
 20bs cª‡kœi mgvavb   logaxm = mlogax [†`Lv‡bv n‡jv]
K. †`Iqv Av‡Q, p = xa, q = xb, r = xc Ges a + b + c = 0 L. †`Iqv Av‡Q, (x) = log(1 + x) − 2log(x)
 (pqr)2 = (xa.xb.xc)2 = (xa + b + c)2 = (x0)2 = (1)2 = 1 = log (1 + x) − logx2
 (pqr)2 = 1 (Ans.) 1+x
a2 + ab + b2 b2 + bc + c2 c2 + ca + a2
= log 2
x
L. evgcÿ = q−1   −1   −1
p q r
r  q  GLb (x) = 0 n‡j,
a2 + ab + b2 b2 + bc + c2 c2 + ca + a2
= (xx )
a
b  (xx )
b
c 
c

(xx )
a
ev, log (1 x+ x) = 0 = log1
2

1+x
2 2
= (xa − b)a + ab + b  (xb − c)b + bc + c  (xc − a)c
2 2 2 + ca + a2
ev, x2 = 1
3 3 3 3 3 3
= x(a − b )  x(b − c )  x(c − a ) ev, x2 = 1 + x
3 3 3 3 3 3
= xa − b + b − c + c − a
ev, x2 − x − 1 = 0
= x0 = 1 = Wvbcÿ
1 1 1
a2 + ab + b2 b2 + bc + c2 c2 + ca + a2 ev, x2 − 2x.2 + 4 − 1 − 4 = 0
 q−1   −1   −1
p q r
r  q  =1 (†`Lv‡bv n‡jv) 2

( 1) = 54
ev, x − 2
1 1 1
M. 1 + p + q−1 + 1 + q + r−1 + 1 + r + p−1 1 5
ev, x − 2 = 2 [FYvZ¥K gvb eR©b K‡i]
beg-`kg †kÖwY : D”PZi MwYZ  397
5 1 1+ 5 Y
x=
2 2
+ =
2
(†`Lv‡bv n‡jv) (35, 468)

M. (x) = log(1 + x) − 2 log(x)


log (1 + x) dvskbwU 1 + x > 0 ev, x > −1 Gi Rb¨
msÁvwqZ|
Avevi, logx dvskbwU x > 0 Gi Rb¨ msÁvwqZ
 f(x) = log (1 + x) − 2log(x) dvskbwU x > 0 Gi Rb¨
msÁvwqZ
(3, 27)
Df = {x  R : x  0} (Ans.)
1+x
 (x) = log 2 Gi †iÄ R = (0, ) (Ans.)
x
log (1 + y)
œ 22  †`Iqv Av‡Q, y = 3x Ges
cÖk- logy
=2
(25, 156)
K. y = Gi †Wv‡gb Ges †iÄ wbY©q Ki|
3x 2
L. y = 3x Gi †jLwPÎ A¼b Ki| 4 (2, 9)
M. wØZxq mgxKiY †_‡K †`LvI †h, y Gi †Kej GKwU (05, 173)
gvb mgxKiYwU‡K wm× K‡i| 4 (0, 1) (15, 519)
(1, 3)
 22bs cª‡kœi mgvavb  0 0.5 1 1.5 2 2.5 3 35 X

K. †`Iqv Av‡Q, y = 3x M. †`Iqv Av‡Q,


log (1 + y)
=2
log y
x -Gi †h‡Kv‡bv ev¯Íe gv‡bi Rb¨ y ev¯Íe n‡e|
ev, log (1 + y) = 2 log y
myZivs †Wv‡gb = R (Ans.)
ev, log (1 + y) = log y2
Avevi, y = 3x
ev, 1 + y = y2
ev, logy = log3x ev, y2 − y − 1= 0
ev, logy = x log3 ev, 4y2 − 4y + 1 − 5 = 0
ev, (2y − 1)2 = 5
log y
 x = log3 ev, 2y − 1 =  5
1 5
GLv‡b y- Gi gvb AFYvZ¥K n‡jB †Kej x Gi ev¯Íe gvb y=
2
cvIqv hv‡e| wKš‘ y FYvZ¥K
n‡j logy AmsÁvwqZ nq|
 y Gi gvb FYvZ¥K n‡Z cv‡i bv|
 †iÄ = {x : x  R Ges x > 0} (Ans.)
1+ 5
L. awi, x = (x) = 3x myZivs y = 2
0 †_‡K 3.5 Gi g‡a¨ x Gi K‡qKwU gvb wb‡q mswkøó y Gi  y Gi †Kej GKwU gvb mgxKiY‡K wm× K‡i (†`Lv‡bv n‡jv)
gvb wb‡¤œi Q‡K †`Lv‡bv n‡jvÑ œ 23  f(x) = − 5−x + 1, x  R n‡j,
cÖk-
x 0 0 .5 1 1 .5 2 2 .5 3 3 .5 3a 1
y 1 1.73 3 5.19 9 15.6 27 46.8 K. †`LvI 3b = 3b − a hLb a, b  N , a < b 2
GLb, QK KvM‡R myweavgZ X Aÿ YOY Ges Y Aÿ AuvwK|
X-Aÿ eivei ÿz`ªZg 10 eM© Ni = 1 GKK Ges Y-Aÿ eivei
L. f(x) Gi wecixZ dvskb‡K log b Gi gva¨‡g (a )
ÿz`ªZg 1 eM©Ni = 1 GKK a‡i (x, y) we›`y¸‡jv ¯’vcb Kwi| cÖKvk Ki| 4
we›`y¸‡jv‡K mnRfv‡e eµ‡iLvq hy³ K‡i y = (x) = 3x Gi M. †jLwP‡Îi gva¨‡g dvskbwUi †iÄ wbY©q Ki| 4
†jL cvIqv hvq| hv wb‡gœ †`Lv‡bv n‡jv:  23bs cª‡kœi mgvavb 
3a 1
K. †`Lv‡Z n‡e, 3b = 3b − a
3a 1 1
evgcÿ = 3b = 3b.3−a = 3b − a
= Wvbcÿ (†`Lv‡bv n‡jv)
L. †`Iqv Av‡Q, f(x) = −5−x + 1
ev, y = f(x) = −5−x + 1
beg-`kg †kÖwY : D”PZi MwYZ  398
ev, 5−x = 1 − y M. cÖ`Ë dvskb, f(x) = −5−x + 1
ev, log5−x = log(1 − y) [Dfq c‡ÿ log wb‡q] awi, y = f(x) = −5−x + 1
ev, − xlog5 = log(1 − y) x Gi K‡qKwU gv‡bi Rb¨ y Gi cÖwZiƒcx gvb wb‡Pi Q‡K
log(1 − y) †`Iqv n‡jv :
ev, − 1 = log5
x −1 0 1 2 3
log(1 − y)
ev, x = − log5 y −4 0 0.8 0.96 0992
log(1 − y) Y
 f−1(y) = − (2, 0.96)
log5 (1, 0.8)
 y †K x Øviv cÖwZ¯’vcb K‡i, (3, 0.992)
log(1 − x) (0, 0)
f−1(x) = − (Ans.)
log5
x x

†¯ ‹j : X-Aÿ eivei ¶z`ªZg


5 eM© Ni = 1 GKK
Y-Aÿ eivei ¶z`Z ª g 5 eM©
Ni = 1 GKK
(−1, −4)

Y
†jLwPÎ n‡Z †`Lv hvq †h, x Gi gvb hZ e„w× cvq, y Gi
gvb ZZB 1 Gi KvQvKvwQ †cŠQvq wKš‘ 1 nq bv| A_©vr x →
, y →  ZLb y → 1| x Gi gvb hZB FYvZ¥K w`‡K e„w×
cvq, y Gi gvb ZZB n«vm †c‡Z _v‡K Ges µgvš^‡q − 
w`‡K avweZ nq| A_©vr x → − , y → − 
†Wv‡gb Dr = (−,); †iÄ Rr = (− , 1) (Ans.)

m„R bkxj cÖkœe¨vsK DËimn


œ 24  wb‡Pi mgxKiY¸‡jv jÿ Ki :
cÖk- œ 27  log4 x = a Ges log2y = b
cÖk-
(i) x2 − 5x + 6 = 0
(ii) 5x + 52−x = 26 K. x Ges y Gi gvb wbY©q Ki| 2
logk(3 + x) x
(iii)
(logkx) L. xy Ges y
†K 2
Gi kw³iƒ‡c cÖKvk Ki| 4
K. (i) bs mgxKi‡Yi wbðvqK †ei Ki| 2 x
L. (ii) bs mgxKiYwUi mgvavb Ki| 4 M. hw` xy = 128 Ges y = 4 nq, Z‡e a Ges b Gi gvb wbY©q Ki| 4
1 + 13
M. (iii) bs mgxKiY Øviv cÖgvY Ki †h, x= 2 4 x 9 5
DËi : K. 22a, 2b; L. xy = 22a + b, y = 22a-b; M. 4 , 2
DËi : K. 1; L. 0, 2
ab logk (ab) bc logk(bc) ca logk (ca) œ 28  y = logex GKwU jMvwi`wgK dvskb|
cÖk-
œ 25 
cÖk- a+b
=
b+c
=
c+a
=m
K. x I y Gi gv‡bi GKwU †Uwej ˆZwi Ki| 2
K. logk (ab) Ges logk (bc) Gi gvb KZ? 2
L. cÖgvY Ki †h, cc = km 4 L. dvskbwUi †jLwPÎ Au vK| 4
M. cÖgvY Ki †h, aa = bb = cc 4 M. †`LvI †h, dvskbwUi wecixZ dvskb = ex| GB dvskbwUi
DËi : K. m(aab+ b), m(bbc+ c) †Wv‡gb I †iÄ wbY©q Ki| 4
log a log b log c
œ 26  ax = b, by = c Ges cz = a.
cÖk- œ 29  b −kc = c −ka = a −kb
cÖk-
K. cÖ_g k‡Z© a = 3 I b = 81 n‡j, x Gi gvb KZ n‡e? 2
L. cÖ`Ë k‡Z©i mvnv‡h¨ xyz Gi gvb wbY©q Ki| 4 K. abc Gi gvb KZ? 2
1 1 1 L. cÖgvY Ki †h, aa.bb.cc = 1 4
M. xa = yb = cc Ges ÔLÕ bs n‡Z cÖvß gv‡bi Rb¨ cÖgvY Ki M. cÖgvY Ki †h, a(b + c).b(c + a).c(a + b) = 1 4
a + b + c = 0| 4
DËi : K. 4; L. 1 DËi : K. 1
beg-`kg †kÖwY : D”PZi MwYZ  399

Aa¨vq mgwš^Z m„R bkxj cÖkœ I mgvavb


xa xb xc = (xyp − 1)q − r.(xyq − 1)r − p.(xyr − 1)p − q ................. (i)
œ 30  P = xb , Q = xc Ges R = xa.
cÖk-
= xq − r.(yp − 1)q − r.xr − p.(yq − 1)r −p.(xp − q)(yr − 1)p − q
K. Q = 1 n‡j, †`LvI †h, b = c. 2 = xq − r + r − p + p − q.ypq − q − rp + r.yqr − r − pq + p.yrp − p − qr + q
− − −− − −
L. †`LvI †h, = x0.ypq q rp + r + qr r pq + p + rp p qr + q
Pa + b − c . Qb + c − a. Rc + a − b = 1. 4 = x .y = 1.1 = 1 = Wvbcÿ
0 0

M. cÖgvY Ki †h,  xa − r br − pCp − q = 1 (†`Lv‡bv n‡jv)


(a2 + ab + b2) logkP + (b2 + bc + c2) logkQ + (c2
M. (q − r) loga + (r − p) logb + (p − q) logc
+ ca + a2) logkR = 0. 4 − − −
= (q − r) logxyp 1 + (r − p)logxyq 1 + (p − q)logxyr 1
 30bs cª‡kœi mgvavb  − − − −
= log(xyp 1)q r + log(xyq 1)r p + log(xyr 1)p q
− −

p−1 q−r q −1 r − p r −1 p − q
xb = log{(xy ) .(xy ) .(xy ) }
K. †`Iqv Av‡Q, Q = xc = xb–c = log1 [(i) Gi mvnv‡h¨]
hw` Q = 1 nq, = 0 (Ans.)
1 = xb–c œ 32  x = logay †hLv‡b a > 0, a 1
cÖk-
ev, x = xb–c x
ev, 0 = b – c  1 x − y x − y
2 2

 x x + y 
 b = c (†`Lv‡bv n‡jv) K. 2   Gi gvb KZ? 2
L. †`Iqv Av‡Q, pa+b–c . Qb+c–a . Rc+a–b 1

1
a a+b–c b b+c–a c c+a–b
L. y = 23 + 2 3 n‡j, †`LvI †h, 2y3 − 6y − 5 = 0 4
= (xx ) (xx ) (xx )
b c a
log10(1 + x)
= (xa–b)a+b–c . (xb–c)b+c–a . (xc–a)c+a–b M. x Gi †Kvb gv‡bi Rb¨ log10x
=2 n‡e? 4
2 2 2 2 2 2
= xa +ab–ac–ab–b +bc . xb +bc–ab–bc–c +ac . xc +ac–bc–ac–a +ab
=x a2–ac–b2+bc
.x b 2–ab–c2+ac
.x c2–bc–a2+ab  32bs cª‡kœi mgvavb 
= x = 1 x x
 1 x − y x − y  1 (x − y) (x + y)x − y
2 2
 pa+b–c . Qb+c–a . Rc+a–b =1 (†`Lv‡bv n‡jv)  
 x x+y   (x + y) 
M. (a2 + ab + b2) logkP + (b2 + bc + c2) logkQ + (c2 + ca + a2) logkR K. 2   = 2x 
xa xb (x − y)x
= (a2 + ab + b2) logk b + (b2 + bc + c2) logk c +  1 x−y  1x
= 2x = 2x = 21 = 2 (Ans.)
x x
2 2
xc 1 1
(c + ca + a ) logk a −
x 3 3
L. y=2 +2 ........................ (i)
= (a2 + ab + b2) logkxa–b + (b2 + bc + c2) logkxb–c +
(c2 + ca + a2) logkxc–a
 − 33
1 1

= 2 +2 
3
= (a – b) (a2 + ab + b2) logkx + (b2 + bc + c2) (b – c) logkx ev, y 3
[Nb K‡i]
+ (c2 + ca + a2) (c – a) logkx
 33  − 33  − 3
1 1 1 1
= (a3 – b3) logkx + (b3 – c3) logkx + (c3 – a3) logkx 1

1
ev, y3 = 2  + 2  + 3.23.2 32 + 2 
3
= (a3 – b3 + b3 – c3 + c3 – a3) logkx
= 0.logkx
=0 ev, y3 = 2 + 2−1 + 3.20.y [(i) †_‡K]
 (a2 + ab + b2) logkP + (b2 + bc + c2) logkQ + (c2 + ca + 1
a2) logkR = 0 (cÖgvwYZ) ev, y3 = 2 + 2 + 3y
œ 31  a = xyp − 1, b = xyq − 1 Ges C = xyr − 1
cÖk- ev, 2y3 = 4 + 1 + 6y
K. aq−r Gi mij gvb wbY©q Ki| 2  2y3 − 6y − 5 = 0 (†`Lv‡bv n‡jv)
L. †`LvI †h, aq − rbr − pcp − q = 1 4
log10(1 + x)
M. mij Ki : (q − r) loga + (r − p) logb + (p − q) M. =2
log10x
logc 4
 31bs cª‡kœi mgvavb  ev, 2log10x = log10(1 + x)

K. †`Iqv Av‡Q, a = xyp − 1 ev, log10x2 = log10(1 + x)


 aq−r = (xyp − 1)q−r = xq − r.ypq − q − pr + r (Ans.) ev, x2 = 1 + x
L. evgcÿ = a q−r r−p p−q
b c
ev, x2 − x − 1 = 0
beg-`kg †kÖwY : D”PZi MwYZ  400
−(−1)  (−1)2 − 4.1.(−1) 1  1 + 4 (x − x2 − 1)2 (x − x2 − 1)2
ev, x = 2.1
=
2
= logk = logk
x2 − x2 + 1
x2 − ( x2 − 1)2
1 5 = logk (x − x2 − 1)2 = 2logk (x − x2 − 1)
=
2
= Wvbcÿ (†`Lv‡bv n‡jv)
wKš‘ FYvZ¥K gvb MÖnY‡hvM¨ bq, KviY log10x > 0
œ 34  (x) = ln(x − 4)
cÖk-
1 5 K. dvskbwUi wecixZ dvskb †ei Ki| 2
x= 2 (Ans.)
L. (x) Gi †Wv‡gb I †iÄ †ei Ki| 4
œ 33  a  0, Ges m, n  Z Ges FYvZ¥K c~Y© mvswL¨K m~P‡Ki
cÖk- M. (x) dvskbwUi †jLwPÎ A¼b Ki| 4
n
Rb¨ (am) = amn m~ÎwU mZ¨|  34bs cª‡kœi mgvavb 
m n
K. †`LvI †h, (a ) = amn, †hLv‡b m < 0 Ges n < 0 2 K. †`Iqv Av‡Q, (x) = ln (x − 4)
b c a awi, y = (x) = ln (x − 4)
bc ca ab  y = (x) Ges y = ln (x − 4)
xc xa x b
L. c

a

b
Gi gvb ev, x = −1(y) ev, ey = x − 4 ....... (i)
xb xc xa
 x = ey + 4 ........ (ii)
I (ii) †_‡K  (y) = e + 4
(i) −1 y
wbY©q Ki| 4
 −1(x) = ex + 4
x− x2−1
M. cÖgvY Ki †h, logk = 2logk(x − x2−1) 4 L. †h‡nZz jMvwi`g ïaygvÎ abvZ¥K ev¯Íe msL¨vi Rb¨ msÁvwqZ nq|
x+ x2−1 x−4>0
 33bs cª‡kœi mgvavb  ev, x > 4
ev, {x : x > 4}
K. †`Iqv Av‡Q, m < 0 Ges n < 0 = (4, )
awi, m = − q Ges n = − r, †hLv‡b, q, r x>4
msL¨v‡iLv :
G‡ÿ‡Î evgcÿ = (am)n = (a−q)−r O
1 1 1  cÖ`Ë dvsk‡bi †Wv‡gb = (4, )
= −q r = =
(a )  1 r 1 Avevi ÔKÕ n‡Z cvB, x = ey + 4 hv y Gi Rb¨ x ev, nq|
aq aqr  cÖ`Ë dvsk‡bi †iÄ = .
= aqr = a(−q)(−r) = amn = Wvbcÿ M. cÖ`Ë dvskb, y = (x) = ln(x − 4)
 (am)n = amn (†`Lv‡bv n‡jv) dvskbwUi †jLwPÎ A¼‡bi Rb¨ x I y Gi gvb¸‡jvi ZvwjKv
ˆZwi Kwi :
b c a
bc ca ab x 4 4.5 5 6 7 8 10
xc xa xb
L. cÖ`Ë ivwk = c

a

b
y − −0.693 0 0.693 1.09 1.39 1.79

xb xc xa

 b 1  c 1  a 1
xcbc xaca xbab
=  
 c 1  a 1  b 1
x 
b bc x  xaab
c ca

1 1 1
2 2 2
x c xa x b
=   = 1 (Ans.)
1 1 1
2 2 2
xb xc xa

x− x2 − 1
M. evgcÿ = logk g‡b Kwi, QK KvM‡Ri XOX eivei x-Aÿ, YOY eivei y
x+ x2 − 1
Aÿ Ges O g~jwe›`y| x-A‡ÿ cÖwZ ¶z`ªZg 2 eM© = 1 GKK
(x − x2 − 1)(x − x2 − 1) Ges y A‡ÿ cÖwZ ¶z`ªZg 10 eM© = 1 GKK a‡i Q‡K cÖvß
= logk
(x + x − 1)(x −
2
x2 − 1) (x, y) we›`y¸‡jv QK KvM‡R ¯’vcb Kwi Ges mvejxjfv‡e hy³
K‡i cÖ`Ë dvsk‡bi †jLwPÎ A¼b Kwi|
beg-`kg †kÖwY : D”PZi MwYZ  401
b b+c c c+a a a+b
ev, x2 − 12x + 32 = 0
œ 35  A = xc
cÖk- (x )  (xx ) a  (xx )b
ev, x(x − 8) − 4(x − 8) = 0
2 2  (x − 4) (x − 8) = 0
B = a2 − 33 − 33 + 2 Ges a  0  x = 4 A_ev 8
P = loga(bc), q = logb(ca), r = logc(ab) n‡j, wb‡Y©q mgvavb, x = 4 A_ev 8
K. †`LvI †h, A = 1 2 3 3
L. †`Iqv Av‡Q, a2 − b2 = c3 Ges x = a + b + a − b
L. B = 0 n‡j †`LvI †h, 3a3 + 9a = 8 4
evgcÿ = x3 − 3cx − 2a
1 1 1
M. cÖgvY Ki †h, p + 1 + q + 1 + r + 1 = 1 4 3
= ( 3
a+b+ ) + 3.c ( a + b + a − b) − 2a
3 3
a−b
3

 35bs cª‡kœi mgvavb 


K. Abykxjbx-9.1 Gi c„ôv-184, D`vniY-12 `ªóe¨|
[ x = a + b + (a − b)] 3 3

= ( a + b) + 3. a + b. a − b( a + b + a − b)
3 3 3
2 2 3 3 3

L. †`Iqv Av‡Q, B = a2 − 33 − 3 3 + 2 Ges B = 0
+ ( a − b) −3.c( a + b + a − b) − 2a
3 3 3
2 2 3

A_©vr a2 + 2 + 33 −3 3 =0
3 2
2

2 = a + b + 3. a − b2. x + a − b − 3cx − 2a
ev, a2 +2= 33 +3 3
3 3
1 2 1 2 = 2a + 3 − 3cx − 2a = 3cx − 3cx = 0 = Wvbcÿ
c .x
( ) + (3 ) − 2
ev, a2 = 33

3  x3 − 3cx − 2a = 0 (†`Lv‡bv n‡jv)
1 2 1 2 1 1 1 1
ev, a = (3 ) + (3 ) − 23
− −
[ −
] 3
3 3 3 3 3 33. 3 3 = 3 = 1
(ba) + (ba) = 1
2 2 2
2
M. cÖgvY Ki‡Z n‡e, a+
1 1 3
ev, a = (3 ) − b
2 3−3 3
3 3 2

(ba) + (ba)
1 1
− evgcÿ =
ev, a = 33 − 3 3 [Dfqc‡ÿ eM©g~j Ges
 a  0 abvZ¥K gvb wb‡q]
a3 3 b2 1 3 b2  a = b3
= a3. 3 +
b3  a2 = b3 
1 1 3 = +
ev, a3 ( −
33 − 3 3 ) [Dfqcÿ‡K Nb K‡i]
b3 a2 b
1 3 1 3 1 1 1 1 a a 3 1 1
ev, a3 = ( ) − (3 ) −
33

3

3.33.3 3 (3 −
3−3 3 ) =
a
+
b
= a+
3
= Wvbcÿ
[ (a − b)3 = a3 − b3 − 3ab (a − b)] b
ev, a3 =3− 3−1 − 3.30.a a 3 3
b 2 1
1 1 1 1 1 1  ()b
+ ()= a
a+ (cÖgvwYZ)
− − − 3
[ 33 .3 3 = 33 3 = 3 Ges 33 −3 3 = a] b
1 loge(1 + x)
ev, a3 = 3 − 3 − 3a œ 37 
cÖk- logex
=2 GKwU jMvwi`wgK mgxKiY|
8 K. cÖ`Ë mgxKiYwU‡K x PjK msewjZ GKwU exRMvwYwZK
ev, a3 + 3a = 3
wØNvZ mgxKi‡Yi Av`k©iƒ‡c cÖKvk Ki| 2
(†`Lv‡bv n‡jv)
 3a3 + 9a = 8
L. ÔK' n‡Z cÖvß wØNvZ mgxKibwUi g~‡ji cÖK…wZ
M. Abykxjbx- 9.2 c„ôv-192, D`vniY-10 bs `ªóe¨|
wbY©q Ki Ges †jLwP‡Îi mvnv‡h¨ mgvavb Ki| 4
3 3 − x 5x
3
œ 36  hw` a > 0 Ges x = a + b + a − b Ges a = b3 nq
cÖk- M. hw` a b = a b nq Z‡e †`LvI †h,
5 + x 3x

Z‡e,
K. mgvavb Ki : log10 [98 + − 12x + 36] = 2 x2 2
x loge (ba) = log a e 4

L. hw` a2 − b2 = c3 Zvn‡j †`LvI †h, x3 − 3cx − 2a = 0 4  37bs cª‡kœi mgvavb 


loge(1 + x)
a 3 3
b 2 1 K. †`Iqv Av‡Q, =2
M. cÖgvY Ki : () b
+ () a
= a+
3
b
4
ev,
logex
2logex = logc( 1 + x) [Avo ¸bb K‡i]
 36bs cª‡kœi mgvavb  ev, logex2 = loge (1 + x)
ev, x2 = 1 + x
K. log10[98 + x2 − 12x + 36] = 2
 x2 − x − 1 = 0
ev, [98 + x2 − 12x + 36] = 102 [ logax = b n‡j x = ab]
BnvB wb‡Y©q wØNvZ mgxKi‡Yi Av`k©iƒc|
ev, 98 + x2 − 12x + 36 = 100 L. ÔKÕ n‡Z cÖvß mgxKiY,
ev, x2 − 12x + 36 = 2 x2 − x − 1 = 0 †hLv‡b, a = 1, b = −1 Ges c = −1|
ev, x2 − 12x + 36 = 4 [eM© K‡i]
GLv‡b wbðvqK = b2 − 4ac = (−1) − {4.1.(−1)}
beg-`kg †kÖwY : D”PZi MwYZ  402
= 1 + 4 = 5 > 0 wKš‘
c~Y©eM© bq| k n
 mgxKiYwUi g~jØq ev¯Íe, Amgvb I Ag~j`|
(ii) A = x + 2
x ( )
GKwU wØc`x ivwk Ges D³ ivwki we¯Í…wZ‡Z

†jLwP‡Îi mvnv‡h¨ mgvavb wbY©q : PZz_© c` x gy³ we‡ePbv Kiv n‡jv|


K. cÖgvY Ki †h, m(n − 2) + n(m − 2) = 0 2
awi, y = x2 − x − 1.................... (i)
L. DÏxc‡Ki we¯Í…wZ †_‡K n Gi gvb wbY©q Ki| 4
(i) bs mgxKi‡Y x Gi wewfbœ gv‡bi Rb¨ y Gi gvb wb‡Pi
M. x Gi mnM 144 n‡j, †`LvI †h, k =  2
3 4
Q‡K wbY©q Kwi|
 38bs cª‡kœi mgvavb 
x −3 (1 2 3 4 5
y 11 1 1 5 11 19 K. †`Iqv Av‡Q, am  an = (am)n
GLv‡b, †j‡Li K‡qKwU we›`y n‡jvÑ ev, am + n = amn
 m + n = mn
(−3, 11), (−1, 1), 2, 1), (3, 5), (4, 11) I (6, 29)
evgcÿ = m(n − 2) + n(m − 2)
GLb, QK KvM‡Ri XOX eivei X- Aÿ, YOY eivei Y- = mn − 2m + mn − 2n
Aÿ Ges O g~jwe›`y| = 2mn − 2 (m + n)
Dfq A‡ÿ ÿz`ªZg e‡M©i cÖwZ evûi ˆ`N©¨‡K GKK a‡i = 2mn − 2mn [ m + n = mn]
= 0 = Wvbcÿ
we›`y¸‡jv ¯’vcb Kwi Ges †hvM Kwi|
 evgcÿ = Wvbcÿ
Y
A_©vr, m(n − 2) + n(m − 2) = 0 (cÖgvwYZ)
L. wØc`x Dccv`¨ e¨envi K‡i cvB,
(5, 19)

(x + xk ) = x + C x (xk ) + C x (xk ) + C
n 2
n n n−1 n n−2 n
2 1 2 2 2 3

(xk ) + ...................
3
n−3
x 2
(−3, 11) (4, 11)
k n k2 k3
= xn + nxn − 1  2 + C2 xn − 2  4 + nC3 xn − 3  6 + .......
x x x
(3, 5) = xn + nxn − 3 k + nC2 xn − 6 k2 + nC3 xn − 9 k3 + ............
we¯Í„wZwUi 4_© c` nC3 xn − 9 k3
(−1, 1) (2, 1) ivwkwU x gy³ e‡j
X X xn − 9 = x0
Y ev, n − 9 = 0
 n = 9 (Ans.)
Aw¼Z †jLwU X- Aÿ‡K x = 16 Ges M. ÔLÕ Ask n‡Z cÖvß, n = 9, we¯Í„wZwU‡Z ewm‡q cvB,
x = −06 we›`y‡Z †Q` K‡i‡Q| k 9
wb‡Y©q mgvavb : x = −06, 16 ( )
x + 2 = x9 + 9c1x9 − 3 k + 9c2x9 − 6 k2 + 9c3x9 − 9 k3 +
x
.............
M. †`Iqv Av‡Q, a3 − x b5x = a5 + x b3x = x9 + 9c1x6 k + 9c2x3 k2 + 9c3 k3 + ..................
b5x a5 + x cÖkœg‡Z, c2k2 = 144
9
ev, b3x = a3 − x [Dfqcÿ‡K a3 −x. b3x Øviv fvM K‡i]
98
ev, b5x − 3x = a5 + x − 3 + x ev, 12 k2 = 144
ev, b2x = a2 + 2x 72
ev, 2 k2 = 144
ev, b2x = a2.a2x
ev, 36 k2 = 144
b2x
ev, a2x = a2 [Dfqcÿ‡K a2x Øviv fvM K‡i] 144
ev, k2 = 36
b2x
ev, logea2x = logea2 [Dfqc‡ÿ loge wb‡q] ev, k2 = 4
2x  k =  2 (†`Lv‡bv n‡jv)
(b) = log a
ev, loge a e
2
x3 + 2x2 + 1
œ 39  (x) = x2 − 2x − 3 Ges g(y) = 22y − 3.2y + 2 + 32.
cÖk-
b
ev, 2x log (a ) = 2log a

b
e e
( 1)
K.  − 3 wbY©q Ki| 2
x log (a ) = log a (†`Lv‡bv n‡jv)
e e L. g(y) = 0 n‡j y Gi gvb wbY©q Ki| 4
M. (x) †K AvswkK fMœvs‡k cÖKvk Ki| 4
cÖk-œ 38  wb‡Pi Z_¨¸‡jv j¶ Ki Ges cÖkœ¸‡jvi DËi `vI:  39 bs cª‡kœi mgvavb 
(i) am.an = (am)n GKwU m~PKxq mgxKiY| x3 + 2x2 + 1
K. †`Iqv Av‡Q, (x) = x2 − 2x − 3
beg-`kg †kÖwY : D”PZi MwYZ  403
1 1 3 2 x(x2 − 2x − 3) + 4x2 + 3x + 1
1
 (− ) =
(− ) + 2 (− ) + 1
3 3
=
2
x2 − 2x − 3
3 2 4x + 3x + 1
(−13) − 2 (−13) − 3 =x+ 2
x − 2x − 3
1 2 −1 + 6 + 27 4(x2 − 2x − 3) + 11x + 13
− + +1 =x+
x2 − 2x − 3
27 9 27
= =
1 2 1 + 6 − 27 11x + 13
+ −3 =x+4+ 2
9 3 9 x − 2x − 3
32 11x + 13
=x+4+
27 32 9 (x + 1)(x − 3)
= = 
−20 27 −20 11x + 13
9
GLv‡b, (x + 1)(x − 3) GKwU cÖK…Z fMœvsk|
8 11x + 13 A B
=−
15
(Ans.) awi, (x + 1)(x − 3)  (x + 1) + (x − 3) ............(i)
L. †`Iqv Av‡Q, (i) bs mgxKi‡Yi Dfqcÿ‡K (x + 1)(x − 3) Øviv ¸Y K‡i cvB,
g(y) = 22y − 32y + 2 + 32 11x + 13  A(x − 3) + B(x + 1) .......................(ii)
GLb, g(y) = 0 (ii) bs mgxKi‡Y x = 3 ewm‡q cvB,
ev, 22y − 32y + 2 + 32 = 0 33 + 13 = 4B
ev, 22y − 32y. 22 + 32 = 0 ev, 4B = 46
ev, 22y − 32y 4 + 32 = 0 23
B=
2
ev, (2y)2 − 122y + 32 = 0
Avevi, (ii) bs mgxKiY x = − 1 ewm‡q cvB,
ev, x2 − 12x + 32 = 0 [2y = x a‡i]
−11 + 13 = − 4A
ev, x2 − 8x − 4x + 32 = 0 ev, − 4A = 2
ev, x(x − 8) − 4(x − 8) = 0 1
A=−
ev, (x − 8)(x − 4) = 0 2
nq, x − 8 = 0 A_ev, x − 4 = 0 A I B Gi gvb (i) bs mgxKi‡Y ewm‡q cvB,
ev, x = 8 ev, x = 4 11x + 13
=
23

1
(x + 1)(x − 3) 2(x − 3) 2(x + 1)
ev, 2 = 2
y 3 ev, 2y = 22
wb‡Y©q AvswkK fMœvsk,
y=3 y=2
23 1
 y Gi gvb 2, 3 (Ans.) f(x) = x + 4 + − (Ans.)
2(x − 3) 2(x + 1)
x3 + 2x2 + 1
M. †`Iqv Av‡Q, f(x) = x2 − 2x − 3

You might also like