0% found this document useful (0 votes)
70 views3 pages

Ml4.ipynb - Colab

Uploaded by

Atharva Dhorje
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
70 views3 pages

Ml4.ipynb - Colab

Uploaded by

Atharva Dhorje
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 3

11/10/2024, ml4.

ipynb -
23:20 Colab

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('diabetes.csv')

df.head()

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI Pedigree Age Outcom


e
0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

df

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI Pedigree Age Outcome

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

... ... ... ... ... ... ... ... ... ...

763 10 101 76 48 180 32.9 0.171 63 0

764 2 122 70 27 0 36.8 0.340 27 0

765 5 121 72 23 112 26.2 0.245 30 0

766 1 126 60 0 0 30.1 0.349 47 1

767 1 93 70 31 0 30.4 0.315 23 0

768 rows × 9 columns

df.dtypes

Pregnancies int64

Glucose

int64 BloodPressure

int64

SkinThickness int64

Insulin int64

BMI float64

Pedigree float64

Age int64

Outcome int64

sns.heatmap(df.corr(),annot=True)

https://colab.research.google.com/drive/ 1/
1kw0teWnkZVDNbX2zdJoibQzSerRDrbD9#printMode=true 3
11/10/2024, ml4.ipynb -
23:20 Colab
<Axes: >

x=df.drop('Outcome',axis=
1) y = df['Outcome']

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

from sklearn.neighbors import KNeighborsClassifier


knn=KNeighborsClassifier()

knn.fit(x_train,y_train)

▾ KNeighborsClassifier i ?

KNeighborsClassifier()

y_pred=knn.predict(x_test)

from sklearn.metrics import accuracy_score,confusion_matrix,classification_report

accuracy_score(y_test,y_pred

) 0.6623376623376623

cm =
confusion_matrix(y_test,y_pred)
cm

array([[70, 29],
[23, 32]])

print(classification_report(y_test,y_pred))

precision recall f1-score support

0 0.75 0.71 0.73 99


1 0.52 0.58 0.55 55

accuracy 0.66 154


macro avg 0.64 0.64 0.64 154
weighted 0.67 0.66 0.67 154
avg

https://colab.research.google.com/drive/ 2/
1kw0teWnkZVDNbX2zdJoibQzSerRDrbD9#printMode=true 3
11/10/2024, ml4.ipynb -
23:20 Colab

https://colab.research.google.com/drive/ 3/
1kw0teWnkZVDNbX2zdJoibQzSerRDrbD9#printMode=true 3

You might also like