0% found this document useful (0 votes)
101 views8 pages

Spray Drying of Dairy Products: State of The Art: Review

Milk
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
101 views8 pages

Spray Drying of Dairy Products: State of The Art: Review

Milk
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Lait 82 (2002) 375–382

© INRA, EDP Sciences, 2002


DOI: 10.1051/lait:2002017 375

Review

Spray drying of dairy products: state of the art

Pierre SCHUCK

Laboratoire de Recherches de Technologie Laitière, INRA, 65 rue de St-Brieuc,


35042 Rennes Cedex, France

Abstract – Milk is extremely perishable, and yet, for a number of reasons, it has to be preserved for
later consumption. The removal of water prevents the growth of micro-organisms and facilitates pres-
ervation and storage of milk constituents. Spray drying is one of the most convenient techniques for
producing milk powders and for stabilizing milk constituents. Before spray drying, the milk under-
goes several processes (such as heat treatment, cream separation, membrane processes, vacuum evap-
oration and homogenization). The chemical, physical, technological, nutritional, functional and
microbiological properties of final products are influenced by a number of factors such as operating
conditions, properties of the dairy products and storage conditions. The aim of this review is to de-
scribe the process of spray drying of dairy products and to review the present and recent advance-
ments of knowledge on the properties of spray-dried milk products, on modelling and water transfer
simulation (drying and rehydration), dairy powders and the spray drying equipment and energy con-
sumption.

Spray drying / milk

Résumé – Séchage par atomisation des produits laitiers. Le lait est extrêmement périssable, mais
pour un certain nombre de raisons, il est souhaitable de le préserver pour une utilisation postérieure.
L’élimination de l’eau (diminution d’activité de l’eau) empêche la croissance des micro-organismes
et améliore la conservation des constituants du lait. Le séchage par atomisation est une des techniques
les plus utilisées pour produire des poudres de lait afin de stabiliser les constituants de lait. Cepen-
dant, avant le séchage par atomisation, il est nécessaire d’appliquer successivement plusieurs opéra-
tions unitaires telles que le traitement thermique, l’écrémage, la filtration tangentielle, l’évaporation
sous vide et l’homogénéisation. Les propriétés des produits finis (propriétés chimiques, physiques,
technologiques, nutritionnelles, fonctionnelles et microbiologiques) sont influencées par un certain
nombre de facteurs impliquant les conditions de fonctionnement, les propriétés des matières premiè-
res mises en œuvre et les conditions de stockage. L’objectif de cette revue est d’établir un état de l’art
sur le séchage par atomisation des produits laitiers et de passer en revue les acquis sur les propriétés

Communication at the 1st International Symposium on Spray Drying of Milk Products, Rennes,
France, October 16–18, 2001.
Correspondence and reprints
Tel.: 33 (0)2 23 48 53 22; fax: 33 (0)2 23 48 53 50; e-mail: schuck@rennes.inra.fr
376 P. Schuck

des produits laitiers déshydratés, sur la modélisation et la simulation des transferts de l’eau (séchage
et réhydratation), sur les différentes poudres d’origine laitière ainsi que sur le matériel de séchage par
atomisation et la consommation énergétique.

Séchage par atomisation / lait

1. INTRODUCTION such as dairy proteins and whey concentrates


[9, 23, 44, 46, 50], micellar casein concen-
Dehydration of milk and whey is in- trates [18, 67], native phosphocaseinate
tended to stabilize these products for their suspension (NPCS) [56, 68], whey concen-
storage and later use. These powders are trates, selectively demineralized concen-
used mostly in animal feeding. With trates [29], and super-clean skim milk con-
changes in agricultural policies (like the centrates [57, 67, 78, 80], in large part due to
implementation of the quota system and the the emergence of filtration technology
dissolution of the price support system), the (microfiltration, ultrafiltration, nanofiltration
dairy industry was forced to look for a and reverse osmosis).
better use for the dairy surplus and the by- Most of these proteins, used either as nu-
products of cheese (whey) produced from tritional or functional ingredients, are mar-
milk and butter milk manufactured from keted in dehydrated form (Fig. 1). Milk
cream. Efforts have been made to reuse pro- “cracking” in different dried and stable
tein fractions whose nutritional qualities forms led to a sudden increase in the use of
and functionality led us to believe that they intermediate dairy products. Many new
could have multiple applications. The re- uses of these constituents appeared with the
sult has been a change in the nature of dairy manufacture of formula products, substi-
powders over the last fifteen years [10, 11]. tutes and adapted raw material.
The total quantity of powder has not varied The most frequently used technique for
(about 1 400 000 t in 1986 and in 2000) but dehydration of dairy products is spray dry-
the amount of milk powder decreased by ing. It became popular in the industrial
40% between 1986 and 2000. This decrease world in the 70s, but at that time, there were
was observed essentially for skim and fatty few scientific or technical studies on spray
milk powders. The production of whole drying and none in particular on the effects
milk powder and whey powder, however, of spray drying parameters and on the ef-
increased by 60% and 73%, respectively fects of the physico-chemical composition
between 1986 and 2000. This increase was and microbiology of the concentrates on
reflected in the types of whey and derived the powder quality. Manufacturers ac-
powders (protein concentrates) produced. quired expertise in milk drying and eventu-
This overall change may be explained by ally in whey drying processes through trial
the quota system implemented, which gives and error. Today, due to the variety and
a better control over dairy production. complexity of the mixes to be dried, a more
Cheese production from cow’s milk having rigorous method based on physico-chemi-
increased by 31% between 1986 and 2000, cal and thermodynamic properties has be-
there was a corresponding increase in whey come necessary. A better understanding of
production and a decrease in milk powder the biochemical properties of milk products
production. before drying, water transfer during spray
Since the 80s, the dairy industry has de- drying, the properties of powders and influ-
veloped new technological processes for encing factors has now become indispens-
extracting and purifying proteins (casein, able in the production of milk powder. The
caseinates, whey proteins, etc.) [36, 49], lack of technical and economical data and
Spray drying of dairy products 377

CREAM
Cream
Standardization sepraration
STANDARDI ZED MILK WHOLE MILK SKIM MILK

VE
BUTTER BUTTER MILK
VE + Fat (Option) MF UF
[MILK]

VE
Coagulation Spray MCC
Drying
VE
MPC [BUTTER MILK]
POWDER MILK Spray VE
[MCC] Drying
Spray
Spray
Drying
[MPC] Drying
CASEIN WHEY / MICROFILTRAT E MCC
POWDER
MPC BUTTER MILK
+ Alkalis POWDER POWDER
VE NF, ED, IE UF

CASEINATE [Whey] / [MFat] DEMINERALIZED


Whey / MFat WPC ULTRAFILTRAT E
Legend
Spray Drying Spray Drying
VE VE
[ ]: Concentrate by Vacuum Evapo ration
MCC: Micellar Casein Concentrate
CASEINATE Whey / MFat WPC: Whey Protein Concentrate
POWDER POWDER [DEMINERALIZED [WPC] [ULTRAFILTRAT E] MPC: Milk Concentrate Concentrate
Whey / MFat] ED: Electrodialysis
IE: Ion Exchange
Spray Drying VE: Vacuum Evaporation
Spray Drying
MF: Microfiltration 0.1 µm
MFat: Microfiltrate
DEMINERALIZED NF: Nanofiltration
WHEY / MFat WPC ULTRAFILTRAT
UF: Ultrafiltration
POWDER POWDER E
POWDER

Figure 1. “Cracking” of milk.

of scientific methods, prevents the manu- index, heat number, thermostability, insolu-
facturer from optimizing his installations in bility index, dispersibility index, wettability
terms of energy costs and powder quality. index, sinkability index, free fat, occluded
The aim of this review is to give a brief air, interstitial air and particle size) which
summary of the process of spray drying of form the basic elements of quality specifi-
dairy products and to review present knowl- cation, and there are well-defined test
edge on the properties of spray-dried milk methods for their determination according
products, on the modelling and simulation to international standards [1, 48, 61, 62,
of water transfer processes (drying and 64]. These characteristics depend on drying
rehydration), on dairy powders and on parameters (type of tower spray dryer, noz-
spray drying equipment and energy con- zles / wheels, pressure, agglomeration and
sumption. thermodynamic conditions of the air: tem-
perature, relative humidity and velocity) and
characteristics of the concentrate before
2. PROPERTIES OF SPRAY-DRIED spraying (composition / physico-chemical
MILK PRODUCTS characteristics, viscosity, thermo-sensibil-
ity and availability of water). Several scien-
tific papers on the effect of technological
A dairy powder is not only characterized
parameters on these properties have been
by its composition (proteins, carbohy-
published [2, 5, 6, 15, 16, 24, 28, 34, 47, 48,
drates, fats, minerals and water) but also by
58, 59, 61, 79].
its microbiological and physical properties
(bulk and particle density, instant character- Water content, water dynamics, water
istics, flowability, floodability, hygroscopicity, availability is one of the most important
degree of caking, whey protein nitrogen properties (Fig. 2).
378 P. Schuck

Properties of concentrate
Physical, biochemical and
microbiological

Drying conditions
Parameters, Type of Spray
Drying Installations
POWDER
PROPERTIES/QUALITIES
Physical
WATER
Storage Biochemical TRANSFER
conditions Microbiological

Rehydration Figure 2. Properties and quali-


conditions ties of powders.

The nutritional quality of dairy powders drying and after drying (stability and
depends on the intensity of the various preservation). There are, therefore, some
kinds of thermal processing during the studies on water and protein [3, 12, 66, 68,
technological process. The thermal pro- 71, 72] and water and lactose interactions
cessing induces physico-chemical changes [7, 8, 12, 17, 30–32, 65, 70, 74, 82, 83] and
which tend to decrease the availability of their effects on the functional properties of
the nutriments (loose of vitamins, reduction powders [14, 28, 45, 73]. Several authors
of available lysin content and whey protein tried to model the mechanisms of water
denaturation) or to produce nutritional transfer and the kinetics of drying in a drop-
compounds such as lactulose [76, 77]. let [13, 20, 21, 76, 77]. However, the com-
plexity of the mathematical models
presented makes it difficult for manufactur-
3. MODELLING, SIMULATION ers to put them into practice.
AND WATER TRANSFER
DURING DRYING
AND REHYDRATION 4. DAIRY POWDERS
OF DAIRY POWDERS
The different processes of spray drying,
The physical and biochemical qualities associated with membrane filtration, also
of milk powder depend on the water distri- affect the physico-chemical environment,
bution in the concentrate at the air/water the purity and the biochemical properties of
droplet interface which depends on the milk powders and produce a range of pow-
composition of the concentrate [4, 21, ders with different physical and functional
66–68, 70–73, 81]. Roos [65] describes the properties, such as high milk protein pow-
physico-chemical properties of pure and der [52–54, 68], whey protein powder [25],
bound water and the effect of water on the whole milk powder [27, 33, 51] and high fat
physical state, transition temperatures, powder [27, 55]. Now, physico-chemical
sticking temperature, reaction kinetics and indications help the dairy industry to opti-
stability of milk products. The emphasis is mize drying parameters and characterize
on the physical state of non-fatty solids and these new dairy concentrates (except the
the effect of water and its physical state on dry matter and the viscosity). Methods
physico-chemical changes, growth of mi- generally used to analyze solubility,
cro-organisms and stability [22, 30–32, dispersibility and wettability of milk pow-
38–43, 63, 74]. These articles and Vuataz’s ders [1, 19, 26, 64] give inadequate results
recent works [82, 83] demonstrate the role because they do not fully take into account
of water before concentration, during spray the new functions [28].
Spray drying of dairy products 379

5. SPRAY DRYING EQUIPMENT The two-stage dryer shows us how to


AND ENERGY CONSUMPTION reduce drying costs and improve the perfor-
mance of units: by transferring most of the
For more than thirty years, spray drying drying from atomization to the fluidization
has been the most frequently used milk dry- phase until the wet product begins to stick
ing technique. It is also the most convenient the walls of the chamber. This contact is in-
technique for producing powders directly evitable considering the internal agitation
from pumpable feeds. Indeed, it is since the necessary for the thermal exchange. Re-
70s that there has been an increase in the ca- moving this limit would mean the complete
pacity of tower spray dryers (from 1 to 6 t of overhaul of the spray drying phase. This
water drained per hour). Recently, tower study led to the three-stage dryer, the big-
spray dryers from 10 to 15 t of water per gest breakthrough in this field since the
hour were installed in New Zealand and in emergence of spray drying. Because it is
Australia. The total capacity and the num- impossible to do away with the walls of the
ber of tower spray dryers have more than unit, we had to try to minimize any contact
doubled in a short time in certain countries between the walls and the wet product. The
[60]. latter was stabilized and dried in an internal
fluid bed inside the spray drying chamber
Spray drying involves atomizing the [37, 48, 60, 75].
feed into a spray of droplets which are put
into contact with hot air in a drying cham- There are other spray dryer designs,
ber. There are three modes of contact: co- such as the tall-form tower, flat-bottom
current, counter-current and mixed flow. chamber, restricted-height chamber, high or
Sprays are produced by a rotary (wheel) at- extra high-temperature chamber, box dryer
omizer or nozzle atomizer [48]. and integrated belt chamber (Filtermat).
The kind of tower spray dryer depends on
The tower is a one-stage spray drying the specific properties of the product to be
unit which means that the processing time dried (high fat content, starches, maltodextrin,
in the spray drying chamber is very short egg products, hygroscopic products, etc.) [37,
(20 to 60 s on average). So, there is no real 48, 62] and the choice of the technology used
equilibrium between air humidity and depends on the thermal efficiency (calculated
product humidity. Therefore, if the outlet according to different methods [4, 35, 48,
air temperature of drying is raised, the en- 69]), the qualities and properties of the
ergy efficiency of the unit decreases [37, product to be dried and the powders to be
48, 75]. The two-stage spray dryer consists obtained.
of limiting spray drying for longer pro-
cesses, and is therefore closer to thermody- Recommendations for fire prevention
namics balance. On being discharged from in spray drying of milk: fire in spray dryers
the spray drying unit, the product should for milk or milk products can lead to dan-
have a compatible maximal moisture with gerous situations for the operators, and
continuous evacuation. This brings about a may cause serious damage to plants and
significant lowering of the outlet air tem- buildings. Fire prevention in this area is
perature, and an increase in the inlet air primarily promoted through efforts to
temperature. In order to get the required re- avoid situations involving a fire hazard.
sidual moisture, the final drying takes place So, any situation that threatens to involve
in an external vibrating fluid or vibro- a fire hazard must be quickly detected,
fluidizer in which the air flow and the treat- either through a system of recording and
ment temperatures are lower than in the automatic alarm, or through visual in-
chamber and so better designed for qualita- spection. In the event that in spite of all
tive preservation of the powder [37, 48, 75]. precautions, a fire should break out,
380 P. Schuck

provisions must have been made to pre- solutions sucrées, Ind. Alim. Agric. (1995)
485–489.
vent personnel injury and to limit material
[8] Busin L., Buisson P., Bimbenet J.J., Notion de
damage. transition vitreuse appliquée au séchage par
pulvérisation de solutions glucidiques, Sci. Ali-
ments 16 (1996) 443–459.
6. CONCLUSIONS [9] Caron A., St-Gelais D., Pouliot Y., Coagulation
of milk enriched with ultrafiltered or diafiltered
microfiltered milk retentate powders, Int. Dairy
This review discusses the complexity of J. 7 (1997) 445–451.
the spray drying process for dairy manufac- [10] Centre National Interprofessionnel de l’Économie
turers who want to optimize their produc- Laitière, L’économie laitière en chiffres, CNIEL,
tion. It is impossible to provide a simple Paris, France, 1987.
mathematical model that takes into account [11] Centre National Interprofessionnel de l’Économie
Laitière, L’économie laitière en chiffres, CNIEL,
all parameters simultaneously for complex Paris, France, 2001.
processes in spray drying of dairy products [12] Cheftel J.C., Cheftel H. L’eau, in: Cheftel J.C.,
[20]. Cheftel H. (Eds.), Introduction à la biochimie et
à la technologie des aliments, Tec et Doc,
Furthermore, the existing studies, essen- Lavoisier, Paris, France, 1977, pp. 3–30.
tially centered on skim milk, cannot be eas- [13] Chen X.D., Towards a comprehensive model
ily extrapolated to other dairy products. based of control of milk drying processes,
Study of more interaction processes, the Drying Technol. 12 (1994) 1105–1130.
production, and functions of dairy products [14] Davenel A., Schuck P., Marchal P., A NMR
relaxometry method for determining the
is necessary in order to increase our knowl- reconstitutability and the water-holding capacity
edge of the mechanisms of water transfer, of protein-rich milk powders, Milchwissenschaft
drying parameters, storage conditions and 52 (1997) 35–39.
rehydration of dairy powders. [15] De Vilder J., La fabrication de poudre de lait
écrémé instantanée. I. Les caractéristiques phy-
siques et chimiques, Rev. Agric. 39 (1986)
865–877.
REFERENCES [16] De Vilder J., Martens R., Naudts M., The influ-
ence of the dry matter content, the homogeni-
[1] American Dairy Products Institute, Standard For zation and the heating of concentrate on
Grades of Dry Milk Including Methods of Anal- physical characteristics of whole milk powder,
ysis, ADPI, Chicago, USA, 1990. Milchwissenschaft 34 (1979) 78–84.
[2] Baldwin A.J., Baucke A.G., Sanderson W.B., [17] Elisée P., Influence de l’état de cristallisation du
The effect of concentrate viscosity on the prop- lactose et de l’hydratation sur les propriétés
erties of spray dried skim milk powder, N.Z.J. rhéologiques des poudres de lait écrémé, Thèse
Dairy Sci. Technol. 15 (1980) 289–297. INPL, Nancy, France, 1992.
[3] Banon S., Hardy J., L’eau dans les produits [18] Fauquant J., Maubois J.L., Pierre A., Microfiltration
laitiers, in: Lorient D., Simatos D., Le Mestre M. du lait sur membrane minérale, Tech. Lait. 1028
(Eds.), L’eau dans les aliments, Tec et Doc, (1988) 21–23.
Lavoisier, Paris, France, 2001. [19] FIL. Lait sec et produits laitiers sec –
[4] Bimbenet J.J., Le séchage dans les industries Détermination de l’indice d’insolubilité. Norme
agricoles et alimentaires, SEPAIC, Paris, 129, Féd. Int. Lait, Bruxelles, Belgique, 1988.
France, 1978, pp. 1–31. [20] Ferrari G., Meerdink G., Walstra P., Drying ki-
[5] Bloore C.G., Boag I.F., The effect of processing netics for a single droplet of skim-milk, J. Food
variables on spray dried milk powder, N.Z.J. Eng. 10 (1989) 215–230.
Dairy Sci. Technol. 17 (1982) 103–120. [21] Furuta T., Moisture transfer modelling of a liquid
[6] Borios M., Lancelot J., Davenas P.H., Ilari J.L., food droplet on drying, in: Thorne S. (Ed.),
Vérification industrielle de l’influence de Mathematical modelling of food processing op-
certains paramètres technologiques de fabrica- erations, Elsevier Applied Science, London,
tion sur les propriétés physiques de la poudre de UK, 1992, pp. 99–136.
lait écrémé, Ind. Alim. Agric. 101 (1984) [22] Genin N., René F., Analyse du rôle de la transi-
1211–1219. tion vitreuse dans les procédés de conservation
[7] Busin L., Mortazavi F., Bimbenet J.J., Étude agro-alimentaires, J. Food Eng. 26 (1995)
expérimentale du séchage par atomisation de 391–408.
Spray drying of dairy products 381

[23] Goudédranche H., Maubois J.L., Ducruet P., properties of food materials, Reidel, Dordrecht,
Mahaut M., Utilization of the new mineral UF Germany, 1975, p. 197.
membrane for making semi-hard cheeses, Desa- [40] Labuza T.P., The effect of water activity on reac-
lination 35 (1980) 243–258. tion kinetics of food deterioration, Food
[24] Hall C.W., Hedrick T.I., Quality control and sani- Technol. 34 (1980) 36–59.
tation, in: Hall C.W., Hedrick T.I. (Eds.), Drying [41] Labuza T.P., Fu B., Growth kinetics for shelf-life
milk and milk products, Avi Publishing Co, prediction: theory and practice, J. Ind.
Westport, UK, 1966, pp. 197–231. Microbiol. 12 (1993) 309–323.
[25] Hall G.M., Iglesias O., Functional properties of [42] Labuza T.P., Tannenbaum S.R., Karel M., Water
dried milk whey, Food Sci. Technol. Int. 3 (1997) content and stability of low-moisture and inter-
381–383. mediate-moisture foods, Food Technol. 24
[26] Haugaard Sorensen I., Krag J., Pisecky J., (1970) 543–550.
Westergaard V., Méthodes d’analyses des [43] Labuza T.P., Kaanane A., Chen J.Y., Effect of
produits laitiers déshydratés, Niro A/S, Copen- temperature on the moisture sorption isotherms
hagen, Denmark, 1978. and water activity shift of two dehydrated foods,
[27] Holsinger V.H., McAloon A.J., Onwulata C.I., J. Food Sci. 50 (1985) 385–391.
Smith P.W., A cost analysis of encapsulated [44] Le Graët Y., Maubois J.L., Fabrication de
spray-dried milk fat, J. Dairy Sci. 83 (2000) fromages à pâte fraîche à partir de poudres de
2361–2365. rétentat et de préfromage, Rev. Lait. Fr. (1979)
[28] Ilari J.L., Loisel C., La maîtrise de la 23–26.
fonctionnalité des poudres, Process 1063 (1991) [45] Loisel C., Contribution à l’étude des propriétés
39–43. rhéologiques de quelques poudres alimentaires.
[29] Jeantet R., Schuck P., Famelart M.H., Maubois Influence des conditions hygrométriques,
J.L., Intérêt de la nanofiltration dans la produc- Thèse, ENITIA, Nantes, France, 1988.
tion de poudres de lactosérum déminéralisées, [46] Madsen R.F., Bjerre P., Production of cheese-
Lait 76 (1996) 283–301. base, Nordeuropaeisk Mejeri Tidsskrift (1981)
[30] Jouppila K., Roos Y.H., Water sorption and time- 135–139.
dependent phenomena of milk powders, J. Dairy [47] Mahaut M., Jeantet R., Brulé G., Schuck P., Les
Sci. 77 (1994) 1798–1808. produits industriels laitiers, Tec et Doc,
[31] Jouppila K., Roos Y.H., Glass transitions and Lavoisier, Paris, France, 2000.
crystallization in milk powders, J. Dairy Sci. 77 [48] Masters K., Spray Drying, Longman Scientific
(1994) 2907–2915. & Technical and John Wiley & Sons Inc., Essex,
[32] Jouppila K., Kansikas J., Roos Y.H., Glass transi- UK, 1991.
tion, water plastacization, and lactose crystalli- [49] Maubois J.L., New applications of membrane
zation in skim milk powder, J. Dairy Sci. 80 technology in the dairy industry, Aust. J. Dairy
(1997) 3152–3160. Technol. 46 (1991) 91–95.
[33] Keogh M.K., Okennedy B.T., Milk fat [50] Maubois J.L., Pierre A., Fauquant J., Piot M., In-
microencapsulation using whey proteins, Int. dustrial fractionation of main whey proteins,
Dairy J. 9 (1999) 657–663. Bull. Int. Dairy Fed. 212 (1987) 154–159.
[34] Kessler H.G., Drying – Instantizing, in: Kessler [51] McCluskey S., Connolly J.F., Devery R.,
V.A. (Ed.), Food engineering and dairy technol- O’brien B., Kelly J., Harrington D., Stanton C.,
ogy, Freising, Germany, 1981, pp. 269–328. Lipid and cholesterol oxidation in whole milk
[35] Kessler H.G., Energy aspects of food powder during processing and storage, J. Food
preconcentration, in: Mac Carthy D. (Ed.), Con- Sci. 62 (1997) 331–337.
centration and drying of food, Elsevier, London, [52] Mistry V.V., Hassan H.N., Delactosed, high milk
UK, 1986, pp. 147–163. protein powder. 1. Manufacture and composi-
[36] Kjaergaard J.G., Ipsen R.H., Ilsoe C., Function- tion, J. Dairy Sci. 74 (1991) 1163–1169.
ality and application of dairy ingredients in dairy [53] Mistry V.V., Hassan H.N., Delactosed, high milk
products, Food Technol. 41 (1987) 66–71. protein powder. 2. Physical and functional prop-
[37] Knipschildt M.E., Drying of milk and milk prod- erties, J. Dairy Sci. 74 (1991) 3716–3723.
ucts, in: Robinson R.K., (Ed.), Modern Dairy [54] Mistry V.V., Hassan H.N., Manufacture of non-
Technology. Advances in Milk Processing, fat yogurt from a high milk protein powder, J.
Elsevier, London, UK, 1986, pp. 131–233. Dairy Sci. 75 (1992) 947–957.
[38] Labuza T.P., Sorption phenomena in foods, Food [55] Onwulata C.I., Smith P.W., Cooke P.H.,
Technol. 22 (1968) 263–272. Holsinger V.H., Particle structures of encapsu-
[39] Labuza T.P., Sorption phenomena in foods: lated milkfat powders, Food Sci. Technol.
theorical and pratical aspects, in: Rha C.K. (Ed.), Lebensm. Wissenschaft Technol. 29 (1996)
Theory, determination and control of physical 163–172.
382 P. Schuck

[56] Pierre A., Fauquant J., Le Graët Y., Piot M., l’eau : séchage et réhydratation des bases
Maubois J.L., Préparation de phosphocaséinate protéiques laitières, in : Les Rencontres Agoral
natif par microfiltration sur membrane, Lait 72 (Ed.), Les Produits Alimentaires et l’Eau – L’eau
(1992) 461–474. dans l’Aliment – L’eau Matière Première, Tec et
[57] Piot M., Vachot J.C., Veaux M., Maubois J.L., Doc, Lavoisier, Paris, France, 1999, pp.
Brinkman G.E., Écrémage et épuration 337–342.
bactérienne du lait entier cru par microfiltration [72] Schuck P., Briard V., Méjean S., Piot M.,
sur membrane en flux tangentiel, Tech. Lait. Famelart M.H., Maubois J.L., Dehydration by
1016 (1987) 42–46. desorption and by spray drying of dairy proteins:
[58] Pisecky J., Bulk density of milk powders, Aust. J. Influence of the mineral environment, Drying
Dairy Technol. 35 (1980) 106–111. Technol. 17 (1999) 1347–1357.
[59] Pisecky J., Technology of skimmed milk drying, [73] Schuck P., Davenel A., Mariette F., Briard V.,
J. Soc. Dairy Technol. 34 (1981) 57–62. Méjean S., Piot M., Rehydration of casein pow-
[60] Pisecky J., Technology advances in the produc- der: effects of added mineral salts and salt addi-
tion of spray dried milk, J. Soc. Dairy Technol. tion methods on water transfer, Int. Dairy J. 12
38 (1985) 60–64. (2002) 51–57.
[61] Pisecky J., Standards, specifications and test [74] Slade L., Levine H., Beyond water activity: re-
methods for dry milk products, in: Mac Carthy cent advances based on an alternative approach
D. (Ed.), Concentration and drying of food, to the assessment of food quality and safety, Crit.
Elsevier, London, UK, 1986, pp. 203–220. Rev. Food Sci. Nutr. 30 (1991) 115–360.
[62] Pisecky J., 20 years of instant whole milk pow- [75] Sougnez M., L’évolution du séchage par
der, Scand. Dairy. Inf. 4 (1990) 74. atomisation, Chim. Mag. 1 (1983) 1–4.
[63] Pisecky J., Water activity of milk powders, [76] Straatsma J., Vanhouwelingen G., Steenbergen
Milchwissenschaft 47 (1992) 3–7. A.E., Dejong P., Spray drying of food products:
[64] Pisecky J., Handbook of milk powder manufac- 1. Simulation model, J. Food Eng. 42 (1999)
ture, Niro A/S, Copenhaguen, Denmark, 1997. 67–72.
[65] Roos Y.H., Water in milk products, in: Fox P.F. [77] Straatsma J., Vanhouwelingen G., Steenbergen
(Ed.), Advanced Dairy Chemistry Volume 3, A.E., Dejong P., Spray drying of food products:
Lactose, water, salts and vitamins, Chapman & 2. Prediction of insolubility index, J. Food Eng.
Hall, London, UK, 1997, pp. 303–346. 42 (1999) 73–77.
[66] Schuck P., Appréhension des mécanismes de [78] Trouvé E., Maubois J.L., Piot M., Madec M.N.,
transfert d’eau lors du séchage par atomisation Fauquant J., Rouault A., Tabard J., Brinkman G.,
de bases protéiques laitières et lors de leur Rétention de différentes espèces microbiennes
réhydratation. Effet de l’environnement lors de l’épuration du lait par microfiltration en
glucidique et minéral, Thèse ENSAR, Rennes, flux tangentiel, Lait 71 (1991) 1–13.
1999. [79] Tuohy J.J., Some physical properties of milk
[67] Schuck P., Piot M., Méjean S., Fauquant J., powders, Irish J. Food Sci. Technol. 13 (1989)
Brulé G., Maubois J.L., Déshydratation des laits 141–152.
enrichis en caséine micellaire par microfiltration ; [80] Vincens D., Tabard J., L’élimination des germes
comparaison des propriétés des poudres bactériens sur membranes de microfiltration,
obtenues avec celles d’une poudre de lait ultra- Tech. Lait. 1033 (1988) 62–64.
propre, Lait 74 (1994) 47–63. [81] Voiley A., Moyne C., Le séchage, in: Le Mestre
[68] Schuck P., Piot M., Méjean S., Le Graët Y., M., Colas B. (Eds.), L’Eau dans les procédés de
Fauquant J., Brulé G., Maubois J.L., transformation et de conservation des aliments.
Déshydratation par atomisation de phospho- Cah. ENSBANA no 7, Tec et Doc, Lavoisier,
caséinate natif obtenu par microfiltration sur Paris, France, 1990, pp. 149–170.
membrane, Lait 74 (1994) 375–388. [82] Vuataz G., Preservation of skim milk powders:
[69] Schuck P., Roignant M., Brulé G., Méjean S., role of water activity and temperature in lactose
Bimbenet J.J., Caractérisation énergétique d’une crystallization and lysine loss, in: Seow C.C.
tour de séchage par atomisation multiple effet, (Ed.), Food preservation by moisture control,
Ind. Alim. Agric. 115 (1998) 9–14. Elsevier Applied Science, London, UK, 1988,
[70] Schuck P., Brulé G., Maubois J.L., Séchage et pp. 73–101.
réhydratation de la caséine micellaire : influence [83] Vuataz G., Prévention des transitions de phases
des glucides, in : Société Française de Génie des dans les systèmes déshydratés pendant le
Procédés (Ed.), Matériaux divisés et poudres en traitement et le stockage, in: Les Rencontres
industries alimentaires, Tec et Doc, Lavoisier, Agoral (Ed.), Les Produits alimentaires et l’eau -
Paris, France, 1999, pp. 177–182. L’eau dans l’Aliment - L’eau matière première,
[71] Schuck P., Briard V., Méjean S., Piot M., Davenel Tec et Doc, Lavoisier, Paris, France, 1999,
A., Brulé G., Maubois, J.L., Dynamique de pp. 75–86.

You might also like