Interval Notation: (description)                         (diagram)
Open Interval: (1, 5) is interpreted as 1 < x < 5 where the
                  endpoints are NOT included.
                                                                           (1, 5)
(While this notation resembles an ordered pair, in this context it
      refers to the interval upon which you are working.)
   Closed Interval: [1, 5] is interpreted as 1 < x < 5 where the
                                                                            [1, 5]
                     endpoints are included.
 Half-Open Interval: (1, 5] is interpreted as 1 < x < 5 where 1 is
                                                                            (1, 5]
                not included, but 5 is included.
 Half-Open Interval: [1, 5) is interpreted as 1 < x < 5 where 1 is
                                                                            [1, 5)
                included, but 5 is not included.
  Non-ending Interval: (1, ∞) is interpreted as x > 1 where 1 is
  not included and infinity is always expressed as being "open"
                          (not included).
 Non-ending Interval: (−∞, 5] is interpreted as x < -5 where 5 is
 included and again, infinity is always expressed as being "open"
                          (not included).
Write the following descriptions using interval notation. Draw a number line if you need to.
1. 𝑥 ≤ 2                    2. 𝑥 > −9                     3. −4 ≤ 𝑥 ≤ −1              4. −3 ≤ 𝑥
5. 10 > 𝑥                   6. 0 < 𝑥 ≤ 8                  7. 𝑥 > −1 𝑎𝑛𝑑 𝑥 < 1
8. 𝑥 > 6 𝑜𝑟 𝑥 < −7          9. All real numbers           10. All real numbers except for 5
11. All real numbers except for 2 and -2                  12. All even integer
                                                                                                  1
All answers must be in interval notation, if possible.
Find the domain of the following relations and determine if it is a function.
1.                             2.                             3.                                 4.
      D:                       D:                                   D:                                 D:
      Function?                Function?                            Function?                          Functi
                                                                                                       on?
Find the range of the following relations.
            5.                             6.                                7.                               8.
Range:                          Range:                          Range:                                      Range:
Composition of Functions
                                                    NOT multiplication!
     ( f  g)(x)              Means find (f(g(x)), therefore g(x) will be your input for f(x))
                                                    ORDER MATTERS!
Let f(x) = x², g(x) = x – 1, h(x) = 2x + 5, j(x) = 6x, k(x) = x² + 2x + 1, and m(x) as shown in table. Find:
1)
     ( j  h)(12 )               2) g(k(4))                        3) (h  f )(−5)               4) (m  h)(−2)
5) k(h(–1))                              6) g(j(h(4))                                7) ( f  m)(3)
                                                                                                                     2
8) (h  g )(x)                     9) ( f  h )(x)                       10) ( j  h)(x)                    11) (k  j )(x)
12) (h  j )(x)                    13) ( f  g )(x)                      14) (h  h )(x)                    15) (g  f )(x)
Day 1 HW: Functions & Composite Functions
I. Find f(-2) for the following functions.
___________1. f(x) = 3x + 1                  ____________2. f(x) = 3x2                              __________3. 𝑥 − |𝑥|
                      x −5
                       2
___________4. f(x) = x                       ___________5. f(f(-2)), f(x) = x2 – 1                  _______6. f(x) = 3x2 + 5x + 3
II. Give the range of each function with the given domain.
____________________7. g(x) = 5 – 2x, D = {-1,0,1}                       ____________________8. h(x) = 2x2 + 1, D = {0,1,2}
____________________9. d(x) = x3, D = {–2,–1,0,1,2}                      ____________________10. j(x) = |x – 3| , D = {–5,–3,–1,1}
III. Given four functions t, s, f, and g, where:
t = {(7,5), (4,-6), (-3, -2), (5,7)}       f(x) = 2x          s = {(5,-6), (-6,5), (4,-3) (-3,8)}           g(x) = x + 3
Find each value if it exists.
11. s(t(4)) _______        12. t(s(4)) _______        13. t(t(7)) ________        14. s(s(4)) _______       15. g(f(4)) _______
16. f(g(4)) _______        17. g(f(0)) _______        18. g(g(10)) _______        19. s(f(-3)) _______      20. f(g(x)) ________
IV. Given f(x) = 5 – 3x and g(x) = x2 + 2, find each of the following:
                                                                                1 
                                                                            f f   
21. g(f(-3)) ________              22. f(g(0)) ___________               23.   3   ____________
24. f(g(a)) _________              25. g(g(-a)) ___________              26. g(f(x + h)) ___________
V. Given f(x) = 3x –5 , g(x) = x2 + 2, h(x) = x2 + 4x, and t(x) = –2x + 3
27. (f  g )(x) ____________                                             28. (g  f)(x) _____________
29. (t  h)(x) ____________                                              30. (h  t)(x) _____________
                                                                                                                                     3
                                                                 x +6
VI. Given f(x) = 2x – 6 , g(x) = 5x + 2, h(x) = 4 – x, and r(x) = 2
31. g(r(c+d)) ________________________        32. f(g(h(a))) ________________            33. h  g  f ______________________
Find the domain and range of the following relations and determine if it is a function.
1)                             2)                               3)                                             4)
                                                                             D:                                     D:
     D:                                  D:
                                                                             R:                                     R:
     R:                                  R:
                                                                             Function?                              Function?
     Function?                           Function?
5)                                 6)                                   7)                                    8)
     *Periodic*                               D:                             D:                                     D:
     D:
                                              R:                             R:                                     R:
     R:
                                              Function?                      Function?                              Function?
     Function?
Day 2 Warm up:
Let f(x) = 3x; g(x) = x2 + 4; h(x) = 2x – 3; and k(x) and j(x) be defined by the charts shown.
      x   k(x)     x        j(x)
     -4    8      -2          1           1) ( f  g)(5)          2) (h  g)(x)              3) j (k (2))                4) f (h(x ))
     -2    2      0          -4
     0     3      1          12
     2     0      2           0
                                              5) (g  f )(6)       6) k (k (2))               7) (h  h)(x)               8) f (g( j (1)))
           9) (h  g)(−2)
                                                10) (g  h)(x)           11) h(g( f (x )))                                      ( ( ))
                                                                                                                                 −1
                                                                                                                         12) k h 2
 Answers -4 2x² + 5 3 4x−9 4x²−12x+13 6x−9 8 16 18x²+5 87 328 444                                              13
                                                                                                                                             4
                                              1
13: Given: 𝑟(𝑥) = 3𝑥 + 1 𝑎𝑛𝑑 𝑠(𝑥) =             𝑥   − 3. Answer the following: Find the following:
                                              2
a) r(s(0))=     b) (r∘s)(-4)=           c) (s∘r)(-1)=              d) r(r(-2))=     e) (r∘s)(16)=              f) s(r(-4))=
14. Given: f(x) = -x2 + 8 and g(x) = √𝑥 + 5
a) 𝑓(𝑔(−1)) =            b) (𝑓 ∘ 𝑔)(−3) =       c) (𝑔 ∘ 𝑓)(−3) =           d) 𝑓(𝑓(1)) =              e) (𝑓 ∘ 𝑔)(11) =
Day 2 CW: Solving Absolute Value Equations
Absolute Value: the distance a number is from ___________ on a number line.
Describe each solution intuitively.
Example 1: |x| = 4                      Example 2: |x + 2| = 3                      Example 3: |x – 7| = 4
Solve and write the solution in set or interval notation. Check for extraneous solutions!
1) |2𝑥 − 1| + 7 = 14                       2) −2|𝑥 + 3| − 1 = 5                    3) −2|7 − 3𝑦| − 6 = −14
4) |𝑥 + 6| = 2𝑥                         5) |𝑥 + 1| + 1 = 2𝑥                         6) |𝑥 + 5| = |2𝑥 − 1|
7) |𝑥 2 − 3𝑥| = 4𝑥 − 12                                    8) |𝑥 − 1| = 𝑥 2 + 4𝑥 − 5
9) Write an absolute value equation with the given solutions.      A) 4, -2                          B) 4, 10
Solving Absolute Value Inequalities             |𝑥| < 4                    versus                    |𝑥| > 4
10) |𝑥 − 4| ≥ 0                         11) |2𝑥 − 1| + 4 < 4                        12) −5 + |𝑥 + 1| ≤ −3
13) 6 ≤ |𝑥 − 2|                         14) |𝑥 − 2| < 2𝑥 − 7                        15) |2𝑥| > 𝑥 − 1
                                                                                                                              5
16) |2 − 𝑥| < 8                         17) 3|4𝑥 − 1| ≤ 9                        18) |𝑥 + 6| > 0
Write each compound inequality as an absolute value inequality.
19) 19 < 𝑥 < 37                                        20) −2.7 ≤ 𝑎 ≤ 5.5
Write an absolute value inequality and a compound inequality for each length x with the given tolerance:
18) a length of 4.5 m with a tolerance of 3 cm                  19) a length of 4 ft with a tolerance of 6 inches
20) Fountain pens must weigh between 8 g and 12 g (inclusive) in order to pass quality inspection. Write an absolute
value inequality for the weight w of the fountain pen.
Day 2 HW: Absolute Value Equations. Solve each equation. Check for extraneous solutions.
1) |4𝑥| = 28                         2) |3𝑥 + 6| = −12                     3) |𝑧 − 1| = 7𝑧 − 13
4) |𝑠 + 12| = 15                        5) |−3𝑥| = 63                            6) 2|5𝑥 + 3| = 16
7) |6𝑥 + 7| = 5𝑥 + 2                    8) |7𝑟 − 4| = 24                         9) |3𝑐| + 2 = 11
10) 5|𝑥 + 1| + 6 = 21           11) |3𝑥 + 5| − 2𝑥 = 3𝑥 + 4                       12) −|𝑑 + 2| = 7
13) |3𝑥 − 2| = |𝑥 − 6|          14) |𝑥 − 4| = |4 − 𝑥|            15) |𝑥 2 + 9𝑥 + 14| = 0
                                                                                                                       6
16) |𝑥 2 − 4| = −4                          17) |𝑥 2 + 1| = 2𝑥                     18) |𝑥 2 − 2𝑥| = 4𝑥 − 8
Write each compound inequality as an absolute value inequality:
1) 6.3 ≤ ℎ ≤ 10.3                                2) −2.5 ≤ 𝑎 ≤ 2.5                                  3) 22 < 𝑥 < 33
Solve each inequality. Write answers in interval notation.
4) |𝑥 + 5| > 12                         5) |𝑘 − 3| ≤ 19                            6) |𝑥 + 2| ≥ 0
7) 2|𝑡 − 5| < 14                            8) |3𝑥 − 2| + 7 ≥ 11                   9) 5|2𝑏 + 1| − 3 ≤ 7
10) |2 − 3𝑤| ≥ 4                            11) −3|7𝑚 − 8| < 5                     12) |2𝑎| > 6
Write an absolute value inequality and a compound inequality for each length x with the given tolerance:
13) a length of 4.2 cm with a tolerance of 0.01 cm             14) a length of 10 ft with a tolerance of 1 in.
15) Write an absolute value inequality and a compound inequality for the temperature T that was recorded to be as low
as 65⁰F and as high as 87⁰F on a certain day.
16) The weight of a 40-lb bag of fertilizer varies as much as 4 oz from the stated weight. Write an absolute value
inequality for the weight w of a bag of fertilizer.
17) The duration of a telephone call to a software company’s help desk is at least 2.5 minutes and at most 25 minutes.
Write an absolute value inequality and a compound inequality for the duration d of a telephone call.
Review: Find the values/expressions for each function.
1. f(x) = 1 – 2x         a) f(3)                    b) f(-5)             c) f( a + 1)                     d) f( 1 – x)
                                                          1
2. g(x) = x2 + 3          a) g(14)                   b) 𝑔 ( )            c) g (x – 4)                     d) g( - 5)
                                                          3
                                                                                                                         7
                                                          1
3. h(x) = 9 – x2          a) h(0)                   b) ℎ ( )                  c) h( a + 3)                d) h( -8)
                                                          2
4. f(x) = x2 – 1,         a) f[g(2)]                b) g[f(-3)]               c) f[g(x)]                  d) f(a +1) – f(a)
   g(x) = 1 – 2x
5. f(x) = x2 ,            a) f ° g                             b) g ° f
   g(x) = x – 3
Day 3 warm up: Find the domain/range of each graph in interval notation. Tell whether it is a function.
1.                                     2.                                             3.
                                                                                                          ●   °
Day 5 notes                                     Piecewise Functions
Piecewise functions: functions that have pieces
Graph lines, fit to domain
            3x + 2 if x  3
            
Ex.1 f(x) =  x − 1 if x  3
a) f(2) = _________
b) f(3) = _________
c) f(4) = _________
                                                                                                                              8
            x + 3 if x  −3
            
            − 2
                x − 5 if x  −3
Ex.2 f(x) =  3
a) f(9) = _________
b) f(-3) = _________
c) f(-8) = _________
Ex. 3 f(x) =
x + 2 if x  −1
 1       1
− 2 x − 2 if x  −1
a. f(-2) = _________
b. f(-1) = _________
c. f(0) = __________
d. f(1) = __________
Ex. 4. Write a piecewise function for the given graph to the right:
Evaluate the given function for the given value of x.
         1
          x − 10, if x  6
h (x ) =  2
         − x − 1, if x  6
                                  17. h(1) ______   18. h(10) _______   19. h(0) ________ 20. h(6) ________
Graph the function on GRAPH PAPER.
                                                       2x + 13, if x  −5
             2x if x  1                                                                   3x − 14, if x  4
                                              f (x ) =     1
    f (x ) =                                                                       f (x ) = 
                                                       x + , if x  −5
21.          − x + 3, if x  1           22.              2                   23.          − 2x + 6, if x  4
                                                                                                                   9
                                                                     − 1, if 0  x  1
                                                                     
             3,    if − 1  x  2                                   − 3, if 1  x  2
                                                                    
             5,    if 2  x  4                            f (x ) = − 5, if 2  x  3
    f (x ) =                                                        − 7, if 3  x  4
             8,    if 4  x  9                                     
             10,    if 9  x  12                                   − 9, if 4  x  5
24.                                                    25.
Day 5 HW
1.                                            2.                               3.
a) f(-1)                                      a) g(0)                                  a) h(-1)
b) f(0)                                       b) g(3)                                  b) h(4)
c) f(1)                                       c) g(6)                                  c) h(7)
Graph the following piecewise functions, (#4,5 have the given functions already graphed, bold according to domain)
4.                                       5.                                     6.
           x +3        if -4 ≤ x < -1
          
      y = 4            if x = -1
          x
7. 1)                  if x > -1
Domain: ________________________
Range:     ________________________
                                                                                                                     10
Evaluate the function for the given value of x. 𝑓(𝑥) = {5𝑥 − 1, 𝑓𝑜𝑟 𝑥 < −2 − 𝑥 − 9, 𝑓𝑜𝑟 − 2 ≤ 𝑥 < 3 2√𝑥 − 3 +
                           1
1, 𝑓𝑜𝑟 𝑥 ≥ 3 𝑔(𝑥) = { 𝑥 2 − 10, 𝑓𝑜𝑟 𝑥 < 6 − |𝑥 − 1|, 𝑓𝑜𝑟 𝑥 ≥ 6
                          2
8. f(-4) – g(6)                 9. 2f(-2) + 3g(0)               10. f(7) – g(-10)          11. f(15)
Day 5 HW: Writing Piecewise Functions
Directions: Write an equation for each of the following piecewise functions.
1.                                               2.
                                     𝑓(𝑥) = {                                       𝑓(𝑥) = {
                                       𝑓(𝑥) = {                                            𝑓(𝑥) = {
3.                                                        4.
5.
                                                        𝑓(𝑥) = {
6. Evaluate 2f(-3) + 3f(-6) – f(4)
if 𝑓(𝑥) = {−2𝑥 − 7        𝑓𝑜𝑟 𝑥 < −5 − (𝑥 + 2)2 + 6 𝑓𝑜𝑟 − 5 ≤ 𝑥 < 0 √𝑥 − 1          𝑓𝑜𝑟 𝑥 ≥ 0
7. Find 2h(-4) + 3h(2) +4g(-1) – g(-3)
if ℎ(𝑥) = {−2𝑥         𝑓𝑜𝑟 𝑥 < 1 3𝑥 + 5 𝑓𝑜𝑟 𝑥 ≥ 1        𝑔(𝑥) = {𝑥 2 + 4 𝑓𝑜𝑟 𝑥 < −2 𝑥 3        𝑓𝑜𝑟 𝑥 ≥ −2
                                                                                                                11
Day 7 CW:
Absolute Value Function (Desmos Demonstration)
https://www.desmos.com/calculator/rarxiatpip
Parent Function: _______________
Vertex: _______________________
Domain: ______________________
Range: _______________________
Increasing: _______________________
Decreasing: ________________________
Transformations/Graphing 𝑦 = 𝑎|𝑥 − ℎ| + 𝑘 Vertex (h, k)
Order of Transformations: From left to right: a,h,k
a: vertical stretch or compression           h: horizontal shift left or right    k: vertical shift up or down
-a: reflection over the x-axis
Graph each equation or inequality. Describe the transformations done to the parent graph 𝑦 = |𝑥| IN ORDER.
1) 𝑦 = 2|𝑥 − 4|                      2) 𝑦 = 3|𝑥 + 2| − 2                          3)      𝑦 = −2|𝑥 − 2| + 4
                                                                                             1
4)     𝑦 = −3|𝑥| + 3                 5) 𝑓(𝑥) < 2|𝑥 − 3| − 4                       6) 𝑓(𝑥) > 2 |𝑥 − 3|
                                                                                                                 12
 Graph the given function then find the value(s) of x for which:
    (a) 𝑓(𝑥) = 0                          (b) 𝑓(𝑥) > 0 (Positive)                                           (c) 𝑓(𝑥) < 0 (Negative)
                                                                       1
 7) 𝑓(𝑥) = 2|𝑥 + 3| − 4                                  8) 𝑓(𝑥) =       |𝑥   − 3|                          9) 𝑓(𝑥) = −3|𝑥 + 2| − 1
                                                                       2
 (a)                                               (a)                                                      (a)
 (b)                                               (b)                                                      (b)
 c)                                                c)                                                       c)
 Increasing:                                             Increasing:                                        Increasing:
 Decreasing:                                             Decreasing:                                        Decreasing:
 Day 7 HW
 Graph the function on GRAPH PAPER. Identify the vertex, and describe the transformations compared to y = |x|.
                                                         1
 1. y = 3|x|       2. f(x) = -3|x|                       3
                                                3. f(x) = |x|                 4. y = |x – 2|         5. y = |x| - 2
                                                       1
  6. y = |x + 2|   7. y = -|x + 9| + 3          8. y = 2 |x – 8| -1                    9. y = 2|x| - 7                10. y = -2|x + 5|
 Write an equation of the graph shown.
11.                                          12.
                                                                                               13.
                                                                                                                                          13
Review 1
State the domain and range. Is the relation a function?
1. {(-3,2), (-2,1), (-1,0), (-1, 1), (0,1)}
2.                                        3.                                            4.
5. Use the graph in #2
a. Write the equation for the graph .
   b. Find the x and y intercept(s).
   c. Interval(s) of increase:
d. Interval(s) of decrease:
   e. Interval(s) where the graph is positive:
   f. Interval(s) where the graph is negative:
Given f(x), find the following.
6. f(-3) if f(x) = 10x + 3x2                       7. f(x – 2) if f(x) = 5x2 – 8x
Graph on graph paper.
8. g(x) = |2x+4|                          9. f(x) = - |x| + 3       10. y = |3x|             11. -2x + 7  |y|
                  3x + 2, if x  3
                  
12. Given: f(x) =  x − 1, if x  3                        find 2f(0) – 3f(3) + 5f(6)
                                 2      2
                                  x+ ,              if x  2
                                 3      3
                                 
13. Graph on GRAPH PAPER: f(x) = − x + 1,          if x  2
Identify the vertex, direction of opening, describe transformations to y = |x|, and intervals of increasing and decreasing.
                                                                                     1
14. y = 6|x – 7|                     15. y = -|x + 8| -3                     16. y = 3 |x| + 7
                                                                                                                        14
Solve and write the solutions in interval notation if possible.
                                                                                 1
1. |2x + 8| + 2 = 1              2. |x + 4| - 1 =6x                         3.     |3𝑥   + 6| − 2 = 2
                                                                                 3
4. |4 + x| = 1 – 2x              5. |2 – 3x| - 5x = 4                       6. 8 ≤ |2𝑥 − 6|
7. |3𝑥 − 6| < 𝑥 − 4              8. |𝑥 − 7| = |2𝑥 − 2|
9. ℎ(6)         10. 𝑔(−5)                 11. 𝑓(2) + 𝑓(−4) − 2𝑔(0)                       12. 3ℎ(−4) + 5ℎ(−2) − ℎ(−1)
19. Graph: 𝑓(𝑥) = {1          − 2 ≤ 𝑥 < −1, |𝑥| − 2               − 1 < 𝑥 < 1,    − |𝑥 − 2| + 2          1<𝑥≤3
Find Domain, Range, intervals of increase and decrease.
For problems 20-29, graph each piecewise function.
                                                                                                                       15
              x + 3 if x  −1                                              x −1       if x  3
    f ( x) =                                                      f ( x) = 
20.          2 x − 1 if x  −1                                21.          2          if x  3
             −1        if x  0                                            4 − x if x  2
    f ( x) =                                                      f ( x) = 
22.          x − 3     if x  0                               23.          3x − 6 if x  2
             
             −2 x       if x  −1
                                                                           2 + x       if x  −2
    f ( x) = 3x − 1     if − 1  x  2
                                                                            
              1                                                   f ( x) = − x         if − 2  x  1
             − x        if x  2                                           0           if x  1
24.           2                                               25.          
              x       if x  −2                                            −2        if x  0
    f ( x) =                                                      f ( x) = 
26.          2 x      if x  −2                               27.           2        if x  0
                                                                            2 x − 1      if x  0
                                                                            
             2 x + 1     if x  −1                                f ( x) = 2 − x        if 0  x  3
    f ( x) =                                                               x +1
28.          2 x + 2     if x  −1                            29.                       if x  3
For problems 30-32, give the piecewise function that each graph represents.
30.                                       31.                                     32.
                                                                                                          16