0 ratings0% found this document useful (0 votes) 60 views46 pagesProbability 1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Poe bali
pudta, on Pa pwatsatnd
Saunple Space: A Beto} poral
se dwt
be Totstag a Cota
Totstng 98 Coto, Taw. v4 atl
ce Vi aa, te Of
thoovoty ade §
ae Prr{ermane tr a reamdona eayeten ow
Event: A non- tonpty Subnet @ Sanne Kate.
Exhauative vents An woe Conarsttng a, ww lhe vOrehous,
Powibiltia 4 Catted an eirhoussive ain.
Be. Ta tossing O Coto Math
exelurive
Two G saose wds CHL
Mutual Crhocumttve Wels
Said +o be nkuat ly exclusive
prevent tbe ctmuttemeous “hay
Jrod amd fost age mutual
ak % teod a
, A the haapprelng q one
iweat praia a th olhind.
fx* In tosstug a Coin, ayetttng
Pxilugive tn view 1 ibe ou
“4 fot & vol porattole
Ale wants Comnel be
fo omotlos than Such
Abe tuan outs Gert
Equatiy Meet events! Th one a
Expected to happen tm prehrrene
pont pseghows to be teal Ledy.St: Tu Aoeating Q Coxn, “teow G Ake head @ the
tofi uy Gually Led.
bebelity :
Pobabittiy : Ly the oukgome aa Lviad Conatiia "! ethautsive,
waudastdy erelurive , Squat ‘poast ble cages, ah, winieh on a thea
ase fovoratle Casey to am event &- oer precousttty
o% “happening tke wok € 4
ee
n
Nuwles dA possible Cases
the probably Com at sont be Guat +0 4, because te
Jovorable (aaa aud te number 4
rot eae other.
ee posstole Cones
Cam at wot Coiuctde
Th a & probabity % not Hogting & ©
te, hagpenting 4 E then
dy wvaleay pe) + PE) = => praet:
Exo ples !
) the probabtly quiteg head’ tm tossing |
= “the porstole gudtoes ase
“poss the (enchoustve J corer (0) = a
hang awd toh:
Nuwher
Nuwbhs 4 jovousable case (mm) =!
1
Dpobobitey a qerrg hal CP) = Te»
the Peoboilty oy qe ca) & numbys qveadlin tam 9.
tb) om odd number
> Nuvker oj porstble Cases | guttomnes (a) =6
(© Nuwloer of fowurable suttomes ek,
age owousscle do Hee ever
Sluce 3, ey 6 6 -Turmabtas
Probate itty oO geuy a sumbsr qpocatew greater
thaw 9 Cp) = #2
Cb) Numbes af fovouralsbe uk Comes (on) = 3,
cone Yovouratle to lhe evn
giwe b 3
\
preobabtttly quit oad number (DW =2 =e
Ce) Stetlady we hove tp) = 2h,
Shute & & 6 ame Jowourable fo eo dune
_
ety
Additton ramen 1 prooaksltty
puting a one OF
Shake ment ‘ ae othe
a other wauk watt
Sum oy te
tf A, & age Hoo waka
pla o 8) = PW +
Le,-s00{ ate
Proof fet la otak number of grchaurtive, meuduabty, Prelustve
and equatly possible Cases In the tvtats be n.
out q tage Let omy Cary be ferousable do the wink A
curd “ma Cag be Jovouratle do 8.
Henee dhe viumbts GQ Crs fovouranle +0 ether Ao &
Awe) - meme | ms
Phere) = MEME. M4 HE —3O
Stace TH Case ane Fovourable tok, PA) = EE
Sluice ma Cas axe forvousuole to 8 P@= ma
Submitting disse tn te ns 4 ®
we gr PCR or B= PLA)+ pce)
this provy le additon dhscrm Of potoability
Axtows g Probably
mio ute Sample Spore awd & us the Set | ast eves
E. We Quecfate a unique Keak
number p= pla) Frown le profoaki lity Oy be Went A
PL Ake following oretorns One Sorbtafted
w) plo=l
Wwe) 4a wey Toe 4A ee
Cw Th AD Ra, Asie Ate Oe wautualiy e xtlusive
AyUAg.- An) = PCD PCAS) + + 9(An)
dor +o each event A fa
0 2He!
evints a E diem pC6 . :
Prove ok pC AUB) = Peale PCE) — PLANE), whine A ond
one at un duets.
Powoh Casecty 24 A Gd B OMe wauduaiiy excletive events
Nese, Angad thm pane) =0
(ym nn 9 pty)
Cased) + TL A od B one omy 0? wos.
Huse, ANG > 7 .
Ls @-A
=> ave = Avls-A)
ANB
= pCave) = Pp (eves)
AS RA OHH drajotaks
(uduatry erndusve )
BA = B-(ANB)
> pce-a) = PB) - PCANe)
= pw + ple
=> PCALB= P(A) + PB) - plans)
pave) = PChd+ PCa) - PLArB)
fn Ge 9 wurhuatty TecluaVe Wks them
Note WI} Ay, fas -
4p {pceoe.) =
PlAhav--
QW TL A, @ & 6 aoe ou thee
PCA) + PCB) + PCO = PCANB) — P (Bac)
— pcan +? (Anzac)
@)
- OBhn) = PCPa) CAR) > + 9(A)
2 wit, then
P @oBvd =D A box Conlain, 2 whtte, 5 black avd 6 ved baw.
TL a boll u drawn ak vondem cdrod & Alo proloabt Hy
jhat th Lo Either sed @ whe #
Sol. Tolod mumber a bal inthe bow = iy.
p C gene Sau)
Chamiey) ol the x) 7
P Ca etttag a wlite bot -2
b Cgqerkug 0 ee
sty Hee equrfrecl probability 4 Uy,
a A bexr-t Contain a rite and @ black bath ond a
Q White avd & lolack boats. TE me
Cath woes hot uthe
Colour *
Second loox Conteins
boat & drroron oF Famdem from
Probodetlity sfrok Hoy ose Ate Aarme
% bey wm te Airdt box = QW4 2B= uy
So: —Tofak Mumaloers
Toad newer a baly Mw da S2Cond bot = QWEUB=6
Case @) : Suppehe brortts “He bails oe valdte » tum tbo
7 22
paddalot ly u —* 2. +
Suppose both tle poy aou bloek, htm the
60: u 2 ao
probab Cty u E x 2S
Rate etlher GL Hose tro Casy ase Joveusatlle +0 te
event, dle wequixed poobabt ity Vere Ya
—® - .
The b prebatsitiny thot a Gludeat pasted 0 pliyter 1
ny 8
Zand dhe pockabitty hat dos pase belt o phapics 4
tad :
aye ool UL nthe probability bed He perso
Least ene beg Be. what tu the probability ‘ha4
Ss
We poems Ale English bot ?
SOP. As le Studete pana a pheysics test
Bi le gludat pasa @ Euelith tal.
aa Pass pans) = a penve= &
Pple=?
By Additon Jaw of psobolotlty
PCALB) = pray + P(B~- plans)
= 2 _ Sh
Se. genet
> prem. + - By,
eo . ue
ee
> [eres =
ane tossed ff
© -ro dice a dle be probe A
qetng au
tela A 8.
t le Space
Soh: In a epamdoen tots H Guo Atce Songle Se
by 9,324,664 * \ Us
wm(c)= 6xb= 36
g, 3,4, 616
Su 3%, S65A Cyetttng Ou even maumbes on dla teen die
= 4 auch x Ay as & 3 65
(A= 3x6 = 18
ptay = 0 . 1 ot
mas) as 2
RB: tle Sum aq Ke Poier on Hla two Atte U &.
Be § @o, (69, BIS Ke)
acess
pca)= ae - &
ns) ac
Al‘o ANB = 1 (a,c) aA”, (es us}
- AANR) = 3
pang) =
sats) as \
Now pequived peobabs try u
pave) = PCA) + PCB) ~ pcace)
= Wy S.-3 = Boe SsAddittom ow of probabilny ;
{
W PpCav® = Pea) « PIB) - png)
ae
D pCaue = pra + PO ThE A,B ane tn0 mutually”
Gulustve wets @
AFB We wurkualey
Atagolut.
Multiplication Jao of proloalot Hy :
plans) = PCH. P(B/A)
(t) pCans) = play. Pls)
Th Oh aud B aH
(pane) = PCA): PCR)
fr dependent weds
Conditenak probabtlity ¢
kek K and & be te Hee events. Proloalet ty Q tee
happening q Hie covet @ taken te ewe ATS!
Crvendtiy heppied! happened is Catted toe Conditional
prbabitty deoted yp (BIA).
plela) & the probability of 8 Y
uty 4 dhe occunente OL both B dud A
fvin Ae
Probalt
P (BIA) =
Probability the ocesence OY dle given
Qwik fe
fe, plBfay = PUAOB) ayo plarg) = POAC
PLA) Re,4
Bayes fitosem on Conctfional povbabstry
Sdokernet fat Ay, Ap, An be @ See ql exhaustive
wots o the Sample Space $
ond Mudusly exclusive
rth PCAt) to for each Om | olhes work
asotard wth Mm, (AC Om) vsti CA) to then
at
P UtcJa) = BEAD) PIAL)
é pear) P Mar)
Prod. ite Rave $= AUARU-- VAn owel Acs
A= SAA = (Avaav.-. DA) ah
Using debiousve Larwo whe Rus we bave
. (Anda)
Stace AAA tes TI fon aoe mutually exclusive.
pe hove boy agpiying, the addition vube A prodabtlsty.
PCA) = P CAMA) + PCARIA)*
autliplicalton cule orto
Az (AOA) U@ana) O--
+ PCANAA)
Now Applying cath tysrm inthe
Rus we twwe,
PCA) = PCAD PIAIA) + plAa) p(AL Aa): °° + P(An)? (AIAN)
chek &, PCAs S. PCANP MIA) @
4q=1Me Condifenad probalsttty of At tor omy t give Ay
wo defined by
Pea) = PLMOAL «pean P(A He)
— Pla) PCA)
Uatng @ Qa thy demominates a le RAS we have,
pletla) = PLM) AALAND
Oy
& 7000) val a)
=
this pros Raye’ teaeeen hen Condition potty
—_————
Note:
AM
W PD) =0
Wd PA) = t= PCA) rdw A Be Complinunk A A
Pardlolowns :
oo | Uk
STE Ar @ we dap wks honing Uae: a
awd pland)> Vie» Conagrke the jee
w plrss) td PEIN csi) PIB) re)
Sl? pipig) = PAs) _ a
rane). Me = B
9 is *
pcpin . PBN . Me Lk ee
ptr) —
pin) = 2eaew
pies
AeBul
Us PTB) = I- pep) = 1- (Ya) = %
ie hove De- Mergen’ Lavo (Rue) = AOE
a (Raw) = p(Aue) = 1- 7? Ave)
= 1- fw + Me) - PNB]
LO, plR as) = I1- (e+ Ya Yu) 2
PiRig) = PCAN®) . Sie s
18) % | *
thus pCR IB) = S/e
Ao p(B/a) = P Baa) _ shiz Sfuce
Pra) “Ya Pact PIA)
PWIA) = Sle
a eee
@ Tra Schel ach q ite Stuslenks failed tr {tH
Nonguage, Ist @ Hla Stoduelt failed tm Second Language
ndleuts patted & both. Tha tual nt
ond es
iy Actecte ak giao find Hie probattl
a) he fated fe Hoe Janquage 1 fe tod fatled
tu Hla Setend angen
senna fonpnge he be totes
ty) he fasted fn
fe an Honk Jogeng®itt
MAD Ne fatled tm efter Othe fie
So: fk WW be dhe Sel qQ Stuolenls fail te the
tient domquage ode ae See aed
fasted te fla Setond Language.
toe oe by ie
PLW = 28 =
a ee ise
oo PLB? es, PAg) = foe
4
b>
® pare) = 2008) _ le. x
no) 3/a0
@) PBA = pane) Vio :
oe
Peay Ve
GH) -P ve) = PCA) + PLB) - PLAAR)
Pfave)
"
eee
be 1 Io
Oothree machtas Ar B awd C proditce ouspeetively Gor, Zot,
§ lot a the cole runbes 07 tems occteny wthe
percentag a qa del cetive output q Huse mrachinys A
asap etiveltt ai, at and et.
ganders amd found defective, find le probate Hy flock
lie fem WOs produced by woking ©
An ttum & Suecked atX
Sal:
So tee A, B,C Sland for tle wets q Selection of
au tem from machtne Ar B ¢
ale $2 20. = 32 co = 10 con.
PCA) en OO PCB)= ao Oe PCc)= =O
Suppose “BB Ha wut a Sdeoton YO defective Hem
ua.
8
P (DIa) = = 008, p(D/s) = 455 =° 08,
P (Die) = H= ook.
loo
a Selected Qe
nd He probability rot
woe need to Hud U(C/0) t
sia woulsue Go
Te +8
poodsced from
we howe by Bayes cose
ple) pried
p(cio) =
pea). POIA) + PCB) p(d/s) + Pw). POI)
(ort) (0-04)
(0.6) (0.02) + (0-3) (0-63) +(0:') (0.04%)
thus 9 (e1d)= ols@1
BG lei factory He dou four warhfus Ar B C+D
Wan.
{aetutag Tespectively 20%. isthe, ast, Hop OQ the +ota?
v ocks
Production. out oy frese Sih, Kr, 3h, gtr one Athectve
Ta bore drown af Santon was fourd defective robot 4
“ha probably tat 108s wamugatused by Ao Dt
Gol ey date A, BoD wanupockrore Sof, 15%, asi and 40H
Of ue dolar production.
Huue we hwe
pcnpso
plays 02, PCB)= 1S = ols, pce) =028,
0
Lue “we be the Cunt qf Selecton of O defective Loelt
shim _s aa
PO&/A) = aE 2008, pix/g) = eke
Pole) = 8-008, Pico) = B= eR
toe eed to Compute P (ave Ix)
we howe,
Stace A Oud D OMe wkuat enolusive
P (aud/x) = pla) + 9 O/x)
Baye’ # Hheosesn
PA). P&/A
Pam PAIX) = oe ee
Pla. PCRIA) + pte). PUB) + Re) Pec)
4 pep Pel?)
toe have oy
1 as plalx) 2 02 ® 01 0F
0.8 KOS + ONS % 00% 0.85 % 0:03
+ 0-4 R008shy Pls) = _O% 2 o3i9s
0. 031S
Alo Plole) = pep Pb !P) © u) (0.08)
0.0315 ersecicia a oasl
bey, p vn /*) = panes oack = OSHS
has yw Secrebassts thamdding auuspectively
Q the fila Q ow govecesoent
epost. The prolcaatlty thot hey Wishile Gur Teport He
orl, acl 6:08 find the preebraty
blared on He first
@ An office
Qo, Corh, 16 aud sth
gesgeetivety, O.0S, O-),
cok He nifagi led suport Cau be
Seovetaxy.
Ars! ONKS
qoronuta (A [E) = Prad ple /ay)
pea) PIE/M) + PCA) PIE/Aa) + plas) PEIAs)
+ pls) pe /Au)
OA Stadert A Cow Solve 45h A, Hn prblews given
fa tay book awd 2 efudert & Con Solve todl-.
volo 4 fie probability sok ethos Ao QB Com Sole
g
A problem Chosen ad Ran gan dow
Ans: O0.4asq
Rowden vantable
To Teak variable is assoctale
Tea Sandon Expestmont ,
both wvery eudcornd dun Ue WU Catted a Aaudor vastable.
Random Variables one Usually leoroled fou XY 2°
rot tte volur 1
Suppose
ER? olde tossing O Coin,
Wrad? auc 0 for te
cteted for te outCorme
ft Sasa!
by Han gumdorn vortable
Ww asso
(2 Space
@uttome tail.
se tuth owt HO
drum x WW) 24 ad XE) =0-
Pompe 4 xe fo, % .
DPscvete aud Contivirerss rorioon vartables *
Disevere Ce
loka fut @ Counntady
cated & dt crete
fufiutte sumboes
Hordes, Vortable.
duvole yartable Hotll
namgqe
LE WToMIng & coin amd ebsertug la out tome,
at) Toss
Wty Toastasy 0 Cotas and observing dhe rumbes of head
cLusucting up
Iho gordon Varkalle tak on Courtable tngintte
nawber of value Shon Hh G Cae & Won- discrete @
Conttrucus gaudemn varia e, A Continuous Queda variableCorn essere amy value tn the enlesvas oO} oUt netmboss,
fx: Hae tylak OL cverl¥cles.
clonevto ste potwlus on a Speedomelys .
Discrete — proehabslely Atitsflutton :
ce eee! oe
TL] fos each Volue Xt OL & dtsveete Nomdora Variable
ch -lbak
¥, We amign a out number p%t), Su
@) Plax) Zo an < be) =!
wthun ae fumetion po Yu cated a poebabilty functton,
Ty te protoalat ty stot % take elt Values 21 4 Pio
pk ead she @ POW
Ale Set oy values Xr, Pou] 4 Caled 0 Jsvaete (Yratte)
prob ality dtybi button q the discwele Hondeorn vasiatle x.
ile function pls) 4 Cabted the prcoabot Ute density
ureston (P44) @ the paca th waa function (p. mm.)
a dibtributton untst on 4) depts boy
4H) = pix s2) = & Kx), % bung an frteger
qe)
digtetloutive fut en (ed
awe
—lhen
is Cartel the Cumula tye
ti, He deftattens oh
we ase abuaty ourtltar 9
(az) awd Vartante (=) fora querat ireaen
e_ Edler ®)
Aravatuten, that Hogs EBM go
Zh Th
mlnWe Cam 05 woe deftur die menu avd vartance a be to
Ate evete probalet uy Atsetbuston,
Tn ab Care boex) Cewscspondter 10 Si aud toe hove
SACs SF pen as.
“tle mean and Vartante ole dPusete proloalstlty
Attrtbutfon U def deffued of follows
nee oe cu)
7
Nartance (Y= So be-p). pees)
t
Standand deviakten (=) = VV
Holes vartante Can also be pak tn fa tr
2
ve & RE pees) — [Erbe]
Pe ‘oblewn4
D. A Cofn & tossed voice. A otamdow vartable X wepoesink
tha number of heads tring up. find fia dtsowete
probabsltty distetbution for X- Aldo pnd ty votam ond
Voustaace
So: Se PH, HT TH, TT,
qu asoctaiton oy re slomunrts QS to te Darders
Natale K are cw espeettvdy 8,1 0
Now pC&R) = < pad et, peep, POVELP(x =0, te, m0 ead ) = Prt) =e
Ple=t, fe, me 1 bead) = per UTH) = PRT) + POW)
= My te oa,
P(eee, Ce, ahd) = pad= Zr
4 dtstxibublen jor kK UU follow,
phe dteusete poobabttt
Mean (NW) = xt P Oi) = OF teh = KrtKet
Nostamte (Y= SOG - 4)? bee)
2
= o-et ate he @ue bed
shy, we have mam =4 and Variance = fy
==
pottoutng Attribution vepoesortd 2 escaete
@® Shoo fat tte
fend diy roean od Varsiamnce.
probability Atstrtlouticn .
x lo Qo 30 leo
Pe | Ye | 3a | 2a | %
poe olobenve Trak a) >0- for abt “x aud S plo) 21.
S pod: x = lo 4 Qo0-.3 3 a
- ee a
Sot
Mecva (p) =
B= lo + Gor Qvteo . 900 =2°5
8 3Nawtiance (NV) = § &- )® oo
Q
= tonash d wpe g + (eee +
3
2
(40 -as) “t
= goby 5
gt 25 Sy as3 + gest
3 €
V = G00 =
z co
thes Mum |W) =@s and Vartomee (V) = #5
D Feud the Volue oy & Such Arak foe fetteutng distribution
crepreamts a fintte probablitty droetoutten. Bente Hed
Ghd watan and Stardsod devtatfon- Als Hed pCxED>
b wr) and b W478).
x -3 -Q cl ° \ Q 3
dO) k ak 3k kk Bk ak ok
Sol: joe must hove poo 2° for au x
cieen ig Sodtayied
OK SO oud dre Seterd
Ke aks ke ERASE HEOKEK ST
S lek=l °° Tee Hel
gpobabt cq desiotbution U as
I Q 3
jhe desesete| tentte Jolicuch
xX -3 -2Q -) °
po Me She Fhe ‘te Fhe Me KeMean (WW) = Sx ho0 = “ye bP vont oF
So pro
Nartamte NW) = SL pw pe
PGP LAs OF
2 2 2 2
—(-3). -2). 2 -). 3 Ue
= (3) nicecaciee ie +) rot Gz)
e 2
+a) & 3
. (ome 16
_ uo 2S
aie fareasror arent = Fe 2
\6
shes, ket mew co. & Standand deviation
le, oie VSR
Also, ob (x21) = pea) + pGadt pe + Pts 6M
ety, S2yphey SR 2B
we *te* te +40 +e te
Pen = pla + pe = 2abl. 3
16 Ne Te
pU ” \ Ly &)-- (- oe") paar’
mn
_ Oe eR) C8) EY ao
xc ght .
i. 4 Ne
Buk NP em? a= (=p) = W m) -- 3)
gee
3eel” pee ek}
e aw man OF0
Jurthn % x ,
a =(ep) Si Aerated b->e.
Aldo te actos Z
odors OR). (= 2) St ana
Thuy, v0e qu
Graterbutien a the
sls & known 23 Te potdien
standom vastaile. pix) & alse cated persion probaly
Aunctton amd ew UW Carted patton voxtoke.
shu for Ws Ol 9, 3,-- was fhe
sta dthtet buen prsdabtlt
Ls © \ 2 3 -
7 7 arm
pw e™ lc ¢
tt at 7
loc howe paz &
oo 7 0 -89 5
SPW ema ME mee me
ub a} ay
ence PW uaVastanve (V) = 5. % POO ye 0
=o
x
Now Se Pp = 5 fecxd +3) pe
3) Oy
E me wre
wey
(x-a)! tx)!
x2
”
Sam
eet ae.
eo
[ix mu pata jem
_
2 mm Om
ow ¢.e%*™
ny
© ations ni, pe@ pe hve,
"
ge, Sx ptr)
Vatag This nasutk oo
Nustamce (0) 2 en ek em = SD(D= VWwev™
Meam amd Standoad Deviation q “he potzsen Disbibuton..-Problewm <
eee
» plex a Cota
ch exactly one
ty tosked b ties. Hod fe prvbabitiy q qeteg
haaat (71) abrrost 3 Meads C1) cxtleast & heads
Gras 3 mek.
Sol,
Sol, Ae pe RNs Wer Os >
cucceny Ue BM
joe know shat he probalslty ‘a!
x
ta gue by piws= Nx prqn
WD pCrbeady = ple) = tec, tous) los) = 0-ac
p(x=o) 4 Pex + plxeart plxed)
(9) P Cat moa 3 heads) =
2
Pe Hegos) (OD)
= bey tostlos) +
4 Hog losyod
2 os)” (eu 6+ = 0-934
l- P (z-O+ per)
t jj
les ie ee, (0-8) (0-8)
&¢, (0:5):
(Rep Catdrast @ heads) =
= O68tS
—_—_
sty Arak 0 pm wenerfactusoal bag & fatory
TR Suhr pers ane womurfetusd ,
brat G7 uaetly 2 084 defective
4) nore Y-bowe ae defeotve.
D-le Probab
be defective B a,
tod U4 the probabtety
C1) attest 2 a9 clefective ct
Ag Ci) 02301
() 9 3KI
(KI 0 Og reeDIwa quia Cente Q emntioeatog ‘Yes! @'No Whal Y “he
Prooabrltly o quimivg auideast 6 ansilad Cormectty out
10 Questions asieed? Alte find the probabiltty othe Baume 4
sve ae & epttons for 2 Covseed Ansosrt«
Sol Yee 0° devote fe Covsect Answer aud We have fr
te 4rvst Case,
p= Ye > 47
o-% lo
pls Aly prgr™ 2 Mex (ye) (U5) = (x (A)
re Asve 0 fad P (x20)
- — lo lo lo lo lo
p(xz6) = 30 Cet yt “Cet G + co |
= t by uss
= So [2 (DDFS all (i 4 vq
Ay Jorma]
= 0-377
Tr He Gelond Shaws Care volun He ase 4 options
pe Ye. 45 Bly 2 NF10
poor = cq Yay Cle) = +b" rc, |
pence plape) = led + pea) + Pes) + p (a) + Pte)
ao i 7 . oc. x!
- 76 [2 log + 3 cats cg +B gt Ge
= > [fixate py xorg ace 3xior]
i
“
P(r) 9 ae
QWD 4eve dice rere Abamon 96 Lime aud ve wuuabes a 4
me)
an odd vuwbes actually uuid aul tr the erpertenerst a
given ft a Btwowslad Aepptbution 10 Thr dete and
Cabeedate te enpect frequindts.
No. oy dice shoo
0 1 2 3 & c
loa So "
obsenwed heweny we |
so.
= prbabtlty Q qesng 18 assert “V4
pose doe % — 7 kimu au odd
uber Lundy ouk
wt
Pmwe= Nox be 4 rdw neo
powce POD = O40 oe Cae L Sx
3s
ta a He binornkal prbesatcry diabdtaction perition.
Srepert ed sprequeaciy
ore Hrroem 46 then}
Lashes
on) Weare 7%
treme YC)= > Sc,73
te spelt (Hearted)
4) = 3 Sc, = aneels
4(r) = 3 S(3 = 3B ¥iw* 30 prequensy aed
Se ee 3,18, 303 \s,3
4-3:
_——
wre > Sou
Lreyeige OCs 2 3xl=Ou
r Cotvs ane tossed
l
are - Lem ond the follaotng sesusts
: a binomial dtotetlation
Yew He dade ond
Codewlode le Heovekcad prequarct
“ewe % 0 1 oe &
peu aq 36 as S
POS The sequlned pamnesical fpequeeneses OO
4, 26, 22,266
6 FA a porAsen Areteibulion oe Hoe otlocoting dato aud
Colowtate the Prrosekicod Fey.
x © \ aS &
ee Co
SO pye Shalt feetot Comnpute tue enews (PP) ate gum
ines batt on -
bes si 5 ot bor so OFF pe
st 122+ 6041S 4941
rye howe ener (pe or the por Aten ratot bation.
te potéson deetet ution os
wat og CA ADE 200" Poo
Os
pcwe=
xs a
qe, Y= 090- (os) €
xt
OS
Bub 20-6068SO) = labs les”
ae
uw tr 4am ~e delat “Ce ~Heovettca)
putting x20, |) & 3
Foequncta , “ey ase 08 fotlewos.
ies (os)? onc)!
ne ©S) 61,
6
lal.3 (o-s)* 3
ee sis, la3 OD 43, 13 ost
a
EN rm
frequemct4 One
thats , the ququbeed Hrrcseecad
lat, 6 Is, 3.0
setorded MO
u Gees Fite
tu theosettcal
$) the wemrbes acetdowks por day (2) 4
fertile dudessto nn & posted oH 00 doup
petason Groper button qor He dota aud Caterlate
fronueme lS:
~ o ' @ 3 & S
4 ops tee 37 18S \
rcs etical prequencta ane 123, 143, 56 IS 3,0
ay. te
Date vawles F arctdonts Pra year te ani ceive fa a
ctiy qpttews o poteson dtabetbation wate Sr 3. ouk %
twwately ue vloys @G the
Joos tox asvos 4nd
aainesh
acctdert (? qe
with © 7°
> acctdak eam
®) wre hour
Sat. By dota, Treen (HL) = 3 >
ky have Yor tte petmen digtetoubon P= ™m=3.“te
pottten désivibutton i
am gir by pone we” ett
xt - at
Lez 4(x)= (000 P&)
= > $= \o00 we? x
= 50. 3— Ste 6 P2005
as
x
oth no acetdenk tra Yor
1) Nuwbes a] dsivess
2 Hlo)2 G0 2 250.
ol
(8) prebatott mose thaw 3 acefdunk ma 4
vr ay peat
1p (x89)
el [po pinr Ka * a]
Le,
o} i as 3
= [- [o.os (143 e bs ws) = 0-38
nunkes 4 dewuss out {ooo votth menvose thom
Ma qe
3 acetdenks
= lo0o x 0F8E = 380
—=Continuous probobttty fumttien :
el fee evey “ot lockouging 4o the sense a4 Continuous
Mowdom vastolle K, We asigqn
Aaokeiiy he de Conditions
tH) 40020 Ct) {300 2\
“ atttiey quwetion
dhs foo Y Carlet 2 cone nu9s PP 4 %
ton (P44)
@ padoalottity Aas 4 edt
a Keak numb 40
Y @b) & fie Subtutenol Q fe damage space O * then
hs proboabiliy ret % By te (ob) UY Segusd 0 be THe
awd b-
Gwe $09 between @
em ORGQ es a $Ooda
a
awd Vortoble rola protools
Hh > BG & Cukinu0
unezion FOO deptord by
uastty 4umetion 4oy ton he
Fo = PO 4X) = Fieve
—b
we Cabted te Cumudatve didtrtouson quuesion C44) q x.
Noles ay ca a omy Maat wane ben
a
@ Plz = s Yludx
+
1- play)
\- ( 4 Qode
7v
y
p az © Pte)
& pas)
”Mean avcl Vasdante
ee csaebescica a
stardom Variable roth Prcloaleility
cere, the men (Pp)
yx ba Condi uous
dunsity fue tion Yoo lw
@ expectation ECO and lhe Vasiomte (Vax 4
Aeyuud a5 follows
~
{a foods
bo
Meow we) =
vasiance (a8) = j (x- pe 409) ax
wate
Yudveduce too Continuo pobalet Gly Athteioutions
we NOW
cw (ea orenod aR
Mawwely dla exprewtial Atdkiouton
“Ee ponemtiod pistebusionS
=e eats tion howto
Tee Conti rnous probably Axa
density dunetion Yoo qies ey
= { ke** for %70
© otes0the whi &>0°
we known 0s te exporersod deatel bation.
tose awd we Aove .
vided
Faodee fee™ ole = [2 ML cede)
—k
-b
Thus i fodus b
- be
bye tools Le Condi Rood cseqpsoed fora
don Sart Ay
| Probabiltty duwssty fueron.
Coctinucns prebabiity tuncionOud Shavdord Deriokon o} tle mene DU GAS
to bo
Meow () = | aehods = \ x. he de
‘be
ped fp adn
Aprlytos, Reser? & out y oe “4
p- ‘Pe (SS) (4
at
(neve XX -y0 as Xoo ae u tow!
et
a
pa< Pe wee a? ol
paris we how
wus)
Vastamce (o-®) = Jiep: fo dx
~b
—®- of. fe p" on dan
: woe ones
Appying Bownoulleg aie 18 n ae
+ @
el [e-PS -ae-p[ rc +8
-« felewh BPO ewf- 56-9]ee
“Thx Jor the Expoumbiad daveioation
Maam () = + soviet
Novena “Diakstbution :
le Cowtinusns probably geatibubion hotug Hae pect
dowstty {uastton 49 ques b4
fy 2 ae (e- py /o#
o VaR
rahee -0 < X20 >»
Viewer didstsloution .
Evidently $2) 20
00 < pee aud w>0 B kmovon 03 fre
to re ;
j 40) doe = : { eo (a-pY/ae* 4,
bo o yan
a
puting t- CF @ 4: parm et, bochae dxaVied
var
& abe vats 5 —o te
te Pe
yunce [ 4lade = = fet prod
-e olan 2
my bo
-
tern [adres ae® | eo dt
wn
od °
4
wd “Pay = va qwuma famcon
& 5 e Roy 4&
[4 da = Le
OS
|.
iA Q
; oles! fea.
sts 400 mopeds O probousitny d
button *
awd Stamdand Deviation ats Kew
Mum
rr porn be? a
mun pls J tiodt = —— jee
os a VOR te
have dr-ido-4
po Zee Bee = @ wt pric t we oe
pasit Ua ee
safe Og a
Mam
v
\
3
>
wa
&
>
>
-
a
\a
a
QQ
+
Since oe
Vasiante Va oe
=—_——feeleen =
ot
v
find ditch of la Jplloroteg fumesions Uo prrbatttnty
cluasity, funtion,
M 4,@e= {
QX, 04%)
olhesvoise
G0 tag 2 ax, 44x!
C ottres ide
o
fore J soodr=
a
Sof +
SH Conditions for a peded oe
@) earty fase
bo 1 ! \
( 4.00 = [ oe E [ese e f°], o)
bo . ©
foo = oe gab
oT
Ct) he qs junseion Cou be asttten an tle feos
Qx, | exeo
talW =
Qx, oe xe!
° oles os
Tn A<%eo, aye an Y Lex thowx Boro
to 1 \
fuses i a f Soe oe] 20
dat 20 AX = AL = I.
ob 4
Roll He Conditions ase “el gastohed bade nota Pabb
aeO ARud the Comglant “Such thot ene yee 04743
oO Otheavofhe
A PAL. Algo Compute (f) p (14x48)
) pee Ui) Pfxsd (hy Moam OH) Vartan’
to
SI™ femso He Kr Aldo He us hone { peoe!
3
fey feo dae => P| a1 =>9kel 2 kel
Q = eel)
2 2
2
Wp (rexea) = wda = Ee 7 | atf{g- as
(renee) {ie {atone 2) sale da
\ 1
; \ !
Gi) ptree [sonar = [Ha {z) oo
4 ot), at
°
°
3 3
ad 2 Blea a fo |e
a) pas!) 2 f sors jee =] ns
1
3
wr pins) = |B 2°
3 3 3
edn [> good = fee aE gne | Bae 2
7D 7 36
— © Oo
sled
&
to 36 3
W) Vartante =V = fae g at &
Zax -( Pie fa® aor
3 ph = Jat Xo)
02
.
x
* SH - 3
a —l _ 38 al
be ~ wot -_l
Is le “3° ¢
2
—=
®
A
*amdosn Voxtobole “gt has ha eae
PO = / kek _gcxes
° AlRe treo.
“| desta fonction
Evaluate
Ko omd fend ® plisxsa) Ci) piesa)
GQ) p@a)
Avs:
el ket
2 , W® pQsxea) = +
ay plxse) =o Wy) poy = &
® the es
Klometse oun On drsusandds A Kem) notthou ously
Sosk
A Problem Im wespeck oO a Cestaim velida & o
Tandem Vastable Roma Pad
t —Xheo
tims) © 3 x20
° 5 X40
Akad the pooootilty Hnok 2 Vebscle is treclsh
4-vouble Hee
C1) atleast gs 25000 k. mh QTY) aboot fos Aveo &-md
GIR) betwerm (Gere 40 BaQo00 ky =Sat: apf
Sele Nese KR & the Bander Vasioble sepomting Klesnetee
Tr swattiple tooo Texting rouble ree sea toy Abe :
Nelacte-
a to ed PCR 2as)
P Sl ? (xeas)
as -% /yo
€ dx
= I- J we
2
P(x pag) = 08283
———.
aid
Wo fwd Pp Cx as)
as Hix :
peers) = f ty é ae
as
aalyo _ oe = 0 UCP
Se (- é a —
o
cat) 5 3° \ athe 4
Mw a. aber x
' ko
6 29
Me Ale
. -"] s-e +é
le
= 9-28)
—2) Tod & om Crowned Variade roth mem 3 fad
a) plod GI) PCx-Bd
So: Hla Pidk a te Paeportertiod ‘Atta busin & given by
%@ = { tee oexee
° otvoutte
wte ence of tris dtotstbutton 4 qe by Wk
By doko » mean = Yee 3 anh
-e%
Ye @ ane
trente wo { ae
©, o-thesust Ke 7
M) Piso = |- plxe¥)
if
\ 3
= 1- f sends el- jee dx
0
VIS 0) tone ade (Ose
3
Wp (x23) = f acodeDT WY an exponential Varhoke YON "wngan S 8"
O p(oer ei) at) p(-me% <10) CRY) PCx so ae
AB: ct) PCoexel) = OT8l3
AN) p(-moenany = 0-860
CM) PCxeo @ x1) = or aie