0% found this document useful (0 votes)
18 views5 pages

Higher Derivatives

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views5 pages

Higher Derivatives

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Higher Derivatives

Higher order derivatives – the derivatives other than the first derivative.
For the function 𝑦 = 𝑓(𝑥)
𝑑𝑦
𝑑𝑥
= 𝑦 ′ = 𝑓′(𝑥) – first derivative
𝑑2 𝑦
𝑑𝑥 2
= 𝑦 ′′ = 𝑓′′(𝑥) – second derivative
𝑑3 𝑦
= 𝑦 ′′′ = 𝑓′′′(𝑥) – third derivative
𝑑𝑥 3
𝑑4 𝑦
𝑑𝑥 4
= 𝑦 (4) = 𝑓 (4) (𝑥) – fourth derivative

1. 𝑦 = 𝑥 5 − 𝑥 −3 − 5𝑥 + 7 , find 𝑦′′′ .
𝑦 ′ = 5𝑥 4 + 3𝑥 −4 − 5
𝑦 ′′ = 5(4)𝑥 3 + 3(−4)𝑥 −5 − 0
𝑦 ′′ = 20𝑥 3 − 12𝑥 −5
𝑦 ′′′ = 20(3)𝑥 2 − 12(−5)𝑥 −6
𝑦 ′′′ = 60𝑥 2 + 60𝑥 −6

2. 𝑦 = (𝑥 2 − 2)3 , find 𝑦′′ .


𝑛=3
𝑢 = 𝑥2 − 2
𝑑𝑢
= 2𝑥
𝑑𝑥
𝑑 𝑑𝑢
(𝑢𝑛 ) = 𝑛𝑢𝑛−1
𝑑𝑥 𝑑𝑥
′ 2 3−1
𝑦 = 3(𝑥 − 2) (2𝑥)
𝑦 ′ = 6𝑥(𝑥 2 − 2)2
𝑑𝑢
𝑢 = 6𝑥, 𝑑𝑥 = 6
𝑑𝑣
𝑣 = (𝑥 2 − 2)2 , 𝑑𝑥
= 2(𝑥 2 − 2)2−1 (2𝑥)
𝑑𝑣
𝑑𝑥
= 4𝑥(𝑥 2 − 2)
𝑑 𝑑𝑣 𝑑𝑢
(𝑢𝑣) = 𝑢 𝑑𝑥 + 𝑣 𝑑𝑥
𝑑𝑥
′′ 2 (𝑥 2 2
𝑦 = 6𝑥[4𝑥(𝑥 − 2)] + − 2) (6)
𝑦 ′′ 2 2
= 6(𝑥 − 2)[𝑥(4𝑥) + (𝑥 − 2)]
𝑦 ′′ = 6(𝑥 2 − 2)(4𝑥 2 + 𝑥 2 − 2)
𝑦 ′′ = 6(𝑥 2 − 2)(5𝑥 2 − 2)

4𝑥+5
3. 𝑦 = 3−2𝑥 find 𝑦 ′′
𝑑𝑢
𝑢 = 4𝑥 + 5, 𝑑𝑥
=4
𝑑𝑣
𝑣 = 3 − 2𝑥, = −2
𝑑𝑥
𝑢 𝑑𝑢 𝑑𝑣
𝑑( ) 𝑣 −𝑢
𝑣 𝑑𝑥 𝑑𝑥
𝑑𝑥
= 𝑣2
′ (3−2𝑥)(4)−(4𝑥+5)(−2)
𝑦 = (3−2𝑥)2

Prepared by:
Engr. Rosalinda B. Mole𝐧̃o
Engr. Ma. Yvonne C. Bangero
Engr. Cristina A. Vale
1
12−8𝑥+8𝑥+10
𝑦′ = (3−2𝑥)2
22
𝑦′ = (3−2𝑥)2
𝑐 = 22
𝑑𝑣
𝑣 = (3 − 2𝑥)2 , 𝑑𝑥 = 2(3 − 2𝑥)(−2)
𝑑𝑣
𝑑𝑥
= −4(3 − 2𝑥)
𝑐 𝑑𝑣
𝑑( ) −𝑐
𝑣 𝑑𝑥
𝑑𝑥
= 𝑣2

−(22)(−4)(3−2𝑥)
𝑦 ′′ =
[(3−2𝑥)2 ]2
88(3−2𝑥)
𝑦 ′′ = (3−2𝑥)4
88
𝑦 ′′ = (3−2𝑥)3

4. 𝑦 2 = 𝑥 2 + 2𝑥, find 𝑦 ′′ .
𝑑 𝑑 𝑑
(𝑦 2 ) = (𝑥 2 ) + (2𝑥)
𝑑𝑥 𝑑𝑥 𝑑𝑥
2𝑦𝑦 ′ = 2𝑥 + 2
2𝑥+2
𝑦 ′ = 2𝑦
2(𝑥+1)
𝑦′ =
2𝑦
𝑥+1
𝑦′ =
𝑦
𝑑𝑢
𝑢 = 𝑥 + 1, 𝑑𝑥
=1
𝑑𝑣
𝑣 = 𝑦, = 𝑦′
𝑑𝑥
𝑢 𝑑𝑢 𝑑𝑣
𝑑( ) 𝑣 −𝑢
𝑣 𝑑𝑥 𝑑𝑥
𝑑𝑥
= 𝑣2
′′ (𝑦)(1)−(𝑥+1)(𝑦 ′) 𝑥+1
𝑦 = but 𝑦 ′ =
(𝑦)2 𝑦
𝑥+1
𝑦−(𝑥+1)( )
′′ 𝑦
𝑦 = 𝑦2
𝑦2 −(𝑥+1)2
𝑦
𝑦 ′′ = 𝑦2
𝑦 2 −(𝑥+1)2 1
𝑦 ′′ = 𝑦
∙ 𝑦2
𝑦 2 −(𝑥+1)2
𝑦 ′′ = 𝑦3

5. 𝑥 = 𝑦 5 (3𝑦 2 − 7), find 𝑥′′


𝑥 = 3𝑦 7 − 7𝑦 5
𝑥 ′ = 3(7)(𝑦 7−1 ) − 7(5)(𝑦 5−1 )
𝑥 ′ = 21𝑦 6 − 35𝑦 4
𝑥 ′′ = 21(6)𝑦 6−1 − 35(4)𝑦 4−1
𝑥 ′′ = 126𝑦 5 − 140𝑦 3

Prepared by:
Engr. Rosalinda B. Mole𝐧̃o
Engr. Ma. Yvonne C. Bangero
Engr. Cristina A. Vale
2
1
6. 𝑥 = (2𝑦 − 1)2 , find 𝑥′′′.
1 𝑑𝑢
𝑛 = , 𝑢 = 2𝑦 − 1, =2
2 𝑑𝑦
𝑑 𝑑𝑢
(𝑢𝑛 ) = 𝑛𝑢𝑛−1
𝑑𝑦 𝑑𝑦
1
′ 1 −1
𝑥 = 2 (2𝑦 − 1)2 (2)
1
′ −
𝑥 = (2𝑦 − 1) 2
1
1
𝑥 ′′ = − 2 (2𝑦 − 1)−2−1 (2)
3
𝑥 ′′ = −(2𝑦 − 1)−2
3
3
𝑥 ′′′ = −(− 2)(2𝑦 − 1)−2−1 (2)
5
𝑥 ′′′ = 3(2𝑦 − 1)−2

7. 𝑥 2 − 𝑦 2 = 6, find 𝑥′′.
𝑑 𝑑 𝑑
(𝑥 2 ) − (𝑦 2 ) = (6)
𝑑𝑦 𝑑𝑦 𝑑𝑦
2𝑥𝑥 ′ − 2𝑦 = 0
2𝑥𝑥 ′ = 2𝑦
2𝑦
𝑥 ′ = 2𝑥
𝑦
𝑥′ = 𝑥
𝑑𝑢
𝑢=𝑦 =1
𝑑𝑦
𝑑𝑣
𝑣=𝑥 𝑑𝑦
= 𝑥′
𝑢 𝑑𝑢 𝑑𝑣
𝑑( ) 𝑣 −𝑢
𝑣 𝑑𝑦 𝑑𝑦
𝑑𝑦
= 𝑣2
𝑥(1)−𝑦(𝑥 ′ ) 𝑦
𝑥 ′′ = but 𝑥 ′ =
𝑥2 𝑥
𝑦
𝑥−𝑦( )
𝑥 ′′ = 𝑥
𝑥2
𝑥2 −𝑦2

𝑥 ′′ = 𝑥
𝑥2
𝑥 2 −𝑦 2 1
𝑥 ′′ = 𝑥
∙ 𝑥2
𝑥 2 −𝑦 2
𝑥 ′′ = 𝑥3
; 𝑥 − 𝑦2 = 6
2

6
𝑥 ′′ = 𝑥3

𝑑2 𝑦
8. 𝑦 = (𝑥 3 + 4𝑥 − 5)2 find 𝑑𝑥 2
𝑑𝑦
= 2(𝑥 3 + 4𝑥 − 5)(3𝑥 2 + 4 − 0)
𝑑𝑥
= 2(𝑥 3 + 4𝑥 − 5)(3𝑥 2 + 4)

𝑑𝑢
𝑢 = (𝑥 3 + 4𝑥 − 5) 𝑑𝑥
= 3𝑥 2 + 4

Prepared by:
Engr. Rosalinda B. Mole𝐧̃o
Engr. Ma. Yvonne C. Bangero
Engr. Cristina A. Vale
3
𝑑𝑣
𝑣 = (3𝑥 2 + 4) 𝑑𝑥
= 6𝑥
𝑑(𝑢𝑣) 𝑑𝑣 𝑑𝑢
𝑑𝑥
= 𝑢 𝑑𝑥 + 𝑣 𝑑𝑥
𝑑2 𝑦
𝑑𝑥 2
= 2[(𝑥 3 + 4𝑥 − 5)(6𝑥) + (3𝑥 2 + 4)(3𝑥 2 + 4)]
= 2(6𝑥 + 24𝑥 − 30𝑥 + 9𝑥 4 + 24𝑥 2 + 16)
4 2
𝑑2 𝑦
𝑑𝑥 2
= 2(15𝑥 4 + 48𝑥 2 − 30𝑥 + 16)

9. 𝑥 2 = 4𝑎𝑦 find 𝑦′′


2𝑥 = 4𝑎𝑦′
2𝑥
𝑦′ = 4𝑎
𝑥 Numerical coefficient
= 2𝑎
1
𝑦 ′ = 2𝑎 𝑥
1
𝑦′′ = (1)
2𝑎
1
= 2𝑎

10. 𝑥 2 = 4𝑎𝑦 find 𝑥′′


𝑑 𝑑
(𝑥 2 ) = (4𝑎𝑦)
𝑑𝑦 𝑑𝑦
2𝑥𝑥′ = 4𝑎
4𝑎
𝑥′ = 2𝑥
2𝑎
𝑥′ = 𝑥
𝑐 = 2𝑎 𝑣=𝑥
𝑑𝑣
𝑑𝑦
= 𝑥′
𝑐 𝑑𝑣
𝑑( ) −𝑐
𝑣 𝑑𝑦
=
𝑑𝑦 𝑣2
2𝑎(𝑥′)
𝑥′′ = −
𝑥2
2𝑎
but 𝑥′ = 𝑥
2𝑎
2𝑎( )
𝑥
𝑥′′ = − 𝑥2
′′ 4𝑎 2 1
𝑥 =− 𝑥 ∙ 𝑥2
4𝑎 2
=− 3
𝑥

Prepared by:
Engr. Rosalinda B. Mole𝐧̃o
Engr. Ma. Yvonne C. Bangero
Engr. Cristina A. Vale
4
Exercises:
Find the indicated derivative.
𝑑4 𝑦
1. 𝑦 = 2𝑦 −1 + 3𝑦 4 , 𝑑𝑥 4
2. 𝑦 = (5𝑥 3 − 4)2 , 𝑦′′′
3. 𝑦 = (4𝑥 + 1)(𝑥 − 2)2 , 𝑦′′
𝑑2 𝑦
4. 𝑥 2 + 2𝑦 2 − 4 = 0, 𝑑𝑥 2
5. 𝑦 = (3𝑥 + 2)(2𝑥 − 3)−1 , 𝑦′′
7 5 3
6. 𝑥 = 4𝑦 −4 + 3𝑦 −3 − 4𝑦 −2 + 10, 𝑥′′
𝑑2 𝑥
7. 𝑥 = 4 4√𝑦 − 2𝑦√𝑦 , 𝑑𝑦 2
3𝑦−4
8. 𝑥 = 1+2𝑦 , 𝑥′′
9. 𝑥 2 = 𝑦 2 − 4𝑦, 𝑥′′
𝑑2𝑠
10. 𝑠 = 𝑡 3 (𝑡 − 1)2 ,
𝑑𝑡 2

Prepared by:
Engr. Rosalinda B. Mole𝐧̃o
Engr. Ma. Yvonne C. Bangero
Engr. Cristina A. Vale
5

You might also like