0% found this document useful (0 votes)
32 views10 pages

Footing Design

Uploaded by

orpheusivan03
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
32 views10 pages

Footing Design

Uploaded by

orpheusivan03
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 10

DESIGN

OF
FOOTING
Square Footing # 1:
Column 1: 250mm x 250mm
PDL = 33.57 kN f’c = 21 MPa
PLL = 10.97 kN
PE = 359 kN fy = 415 MPa
q a = 180 kPa

A. Proportion footing dimensions


a. Unfactored Column load
P = DL + LL + E = 33.57 + 10.97 + 359 = 403.54 kN
b. Assume weight of footing to be 20% of column load
W = 0.20(403.54) = 80.708 kN
c. Total load supported by soil
R = 403.54 + 80.708 = 484.25 kN
d. Required footing area
R 484.25 2
A= = =2.69 m
qa 180
e. Footing dimension
B=√ A=√2.45=1.64 m
Use 2m x 2m footing
f. Required footing area
2
A=(2 m)( 2m)=4 m
g. Factored column load
Pu=1.2 ( DL )+1.0E+ f 1 L=1.2 ( 33.57 )+ 1.0 ( 359 )+ 1.0 (10.97 )=410.25 kN
h. Net ultimate upward pressure
P u 410.25
q u= = =¿102.56 kPa
A 4

B. Compute "d" for beam shear


a. Factored shear
V u=(net ultimate upward pressure)(tributary area)
V u=(102.56)(2)(0.85−d)
V u=(205.12)(0.85−d) kN
b. Shear capacity at critical section

∅ V u=∅ ( 16 ) √ f c bd=0.85( 16 ) √ 21(1000)d


'

∅ V u=¿ 649.20d kN

c. Equate factored shear to shear capacity and compute "d"


Vu≤ ∅V u
(205.12)(0.85−d)=¿649.20d kN
d = 0.204
C. Compute "d" for punching shear
a. Factored shear
V u=(net ultimate upward pressure)(tributary area)
2 2
V u=(102.56)[2 −( 0.3+ d ) ]
V u= (102.56 ) [3.91−0.6 d−d 2 ] kN
b. Shear capacity at critical section

∅ V u=∅( 31 ) √ f c b d'
0

∅ V =0.85 ( ) √ 21(1000)(0.3+ d)(d )


1
u
3
∅ V u=¿ 1298.40(0.3d+d2) kN

c. Equate factored shear to shear capacity and compute "d"


Vu≤ ∅V u
( 102.56 ) [ 3.91−0.6 d−d 2 ]=¿ 1298.40(0.3d+d2)
d = 0.38 (controls)
Therefore, use d = 400 mm

D. Compute flexural steel


a. Factored moment
M u=( 102.56 )( 0.85 )( 2 ) ( 0.435 ) =75.84 kN . m
b. Moment resistance coefficient
Mu 75.84 x 10
6
R u= 2
= 2
=0.26
φb d 0.9(2000)( 400)
c. Strength ratio
fy 415
m= '
= =23.25
0.85 f c
0.85(21)
d. Required steel ratio

e.
ρ=
1
m [ √
1− 1−
2 Rum
fy
Minimum steel ratio
=
1
23.25
1− 1− ]
2(0.26)(23.25)
415 [ √ ] = 0.00558

0.25 √ f 'c 0.25 √21


ρmin =
fy
=
415
=0.00276 ≤
1.4
fy
=0.00337
( )
ρmin =0.00337 < ρ=0.0058

Therefore, use ρ ¿ 0.00337

f. Steel area
2
A s=ρbd=0.00 337 ( 2000 ) ( 400 )=42696 mm
π
Ab = ¿mm2
using 10 mm  bars:
4
A s 2696
n= = =34.33,
A b 78.54
use 34-10 mm  bars (2 layers – 17-10 mm  bars)
g. Check spacing of bars
b−n φ b−2 pc 2000−17 (10)−2(75)
s= = =105 mm
n−1 17−1
desirable spacing, 75 < s < 200mm, OK!!
h. Check development length
α =1.0 β=1.2 γ =1.0 λ=1.0
Ld 3 fyαβγ λ 3(415)(1)(1.2)(1)(1)
= = =65.20
db 5 √f ' c 5 √ 21
Ld =65.20 ( 10 )=652 mm, min Ld =300 mm
Ld =850−75=775 mm>¿ 652 mm, OK!!

E. Check weight of footing


a. thickness of footing
t = 400 + 100 = 500 mm
b. volume of footing
3
V f =2 ( 2 ) ( 0.5 )=2 m
c. weight of footing
W f =24 kN /m3 ( 2 m3 ) =¿48 kN < 80.708 kN, OK!!

F. Details
Square Footing # 2:
Column 2: 275mm x 275mm
PDL = 111.91 kN f’c = 21 MPa
PLL = 36.51 kN
PE = 718 kN fy = 415 MPa
q a = 180 kPa

A. Proportion footing dimensions


a. Unfactored Column load
P = DL + LL + E = 111.91 + 36.51 + 718 = 866.42 kN
b. Assume weight of footing to be 20% of column load
W = 0.20(866.42) = 173.28 kN
c. Total load supported by soil
R = 866.42 + 866.42 = 1039.7 kN
d. Required footing area
R 1039.7 2
A= = =5.78 m
qa 180
e. Footing dimension
B=√ A=√ 5.78=2.4 m
Use 2.6m x 2.6m footing
f. Required footing area
2
A=(2.6 m)(2.6 m)=6.76 m
g. Factored column load
Pu=1.2 ( DL )+1.0E+ f 1 L=1.2 ( 111.91 ) +1.0 ( 718 ) +1.0 ( 36.51 )=888.8 kN
h. Net ultimate upward pressure
P u 888.8
q u= = =¿131.48 kPa
A 6.76

B. Compute "d" for beam shear


a. Factored shear
V u=(net ultimate upward pressure)(tributary area)
V u=(131.48)(2.6)(1.05−d)
V u=(341.85)(1.05−d) kN
b. Shear capacity at critical section

∅ V u=∅ ( 16 ) √ f c bd=0.85( 16 ) √ 21(1000)d


'

∅ V u=¿ 649.20d kN

c. Equate factored shear to shear capacity and compute "d"


Vu≤ ∅V u
(341.85)(1.05−d)=¿649.20d kN
d = 0.36
C. Compute "d" for punching shear
a. Factored shear
V u=(net ultimateupward pressure)(tributary area)
2 2
V u=(131.48)[2.6 −( 0.5+ d ) ]
V u= (131.48 ) [ 6.51−d−d2 ] kN
d. Shear capacity at critical section

∅ V u=∅( 31 ) √ f c b d'
0

∅ V =0.85 ( ) √ 21(1000)(0.5+ d)(d )


1
u
3
∅ V u=¿ 1298.40(0.5d+d2) kN

e. Equate factored shear to shear capacity and compute "d"


Vu≤ ∅V u
( 131.48 ) [ 6.51−d−d 2 ]=¿ 1298.40(0.5d+d2)
d = 0.55 (controls)
Therefore, use d = 550 mm

D. Compute flexural steel


a. Factored moment
M u=( 131.48 )( 1.05 ) ( 2.6 ) ( 0.525 ) =188.44 kN . m
b. Moment resistance coefficient
Mu 188.44 x 10
6
R u= 2
= 2
=0.27
φb d 0.9(2600)(550)
c. Strength ratio
fy 415
m= '
= =23.25
0.85 f c
0.85(21)
d. Required steel ratio

e.
ρ=
1
m [ √
1− 1−
2 Rum
fy
Minimum steel ratio
=
1
23.25
1− 1− ]
2(0.27)(23.25)
415 [ √ ] = 0.00656

0.25 √ f 'c 0.25 √21


ρmin =
fy
=
415
=0.00276 ≤
1.4
fy (
=0.00337
)
ρmin =0.00337 < ρ=0.00656

Therefore, use ρ ¿ 0.00337

f. Steel area
2
A s=ρbd=0.00 337 ( 2600 ) ( 550 )=4819.1 mm
π
using 10 mm  bars: Ab = ¿mm2
4
A s 4819.1
n= = =61.36,
A b 78.54
use 60-10 mm  bars (3 layers – 20-10 mm  bars)
g. Check spacing of bars
b−n φ b−2 pc 2600−20 (10)−2(75)
s= = =118.42 mm
n−1 20−1
desirable spacing, 75 < s < 200mm, OK!!
h. Check development length
α =1.0 β=1.2 γ =1.0 λ=1.0
Ld 3 fyαβγ λ 3(415)(1)(1.2)(1)(1)
= = =65.20
db 5 √f ' c 5 √ 21
Ld =65.20 ( 10 )=652 mm, min Ld =300 mm
Ld =1050−75=975 mm> ¿ 652 mm, OK!!

E. Check weight of footing


a. thickness of footing
t = 550 + 100 = 650 mm
b. volume of footing
3
V f =2.6 ( 2.6 )( 00.65 )=4.39 m
c. weight of footing
W f =24 kN /m3 ( 4.39 m3 )=¿105.46 kN < 173.28 kN, OK!!

F. Details
Square Footing # 3:
Column 3: 375mm x 375mm
PDL = 223.82 kN f’c = 21 MPa
PLL = 73.02 kN
PE = 1436 kN fy = 415 MPa
q a = 180 kPa

A. Proportion footing dimensions


a. Unfactored Column load
P = DL + LL + E = 223.82 + 73.02 + 1436 = 1732.84 kN
b. Assume weight of footing to be 20% of column load
W = 0.20(1732.84) = 346.57 kN
c. Total load supported by soil
R = 1732.84 + 346.57 = 2079.41 kN
d. Required footing area
R 2079.41 2
A= = =11.55 m
qa 180
e. Footing dimension
B=√ A=√ 11.55=3.4 m
Use 3.4m x 3.4m footing
f. Required footing area
2
A=(3.4 m)(3.4 m)=11.56 m
g. Factored column load
Pu=1.2 ( DL )+1.0E+ f 1 L=1.2 ( 223.82 ) +1.0 ( 1436 )+1.0 ( 73.02 )=1777.6 kN
h. Net ultimate upward pressure
P u 1777.6
q u= = =¿153.77 kPa
A 11.56

B. Compute "d" for beam shear


a. Factored shear
V u=(net ultimate upward pressure)(tributary area)
V u=(153.77)(3.4)(1.4−d)
V u=(522.82)(1.4−d) kN
b. Shear capacity at critical section

∅ V u=∅ ( 16 ) √ f c bd=0.85( 16 ) √ 21(1000)d


'

∅ V u=¿ 649.20d kN

c. Equate factored shear to shear capacity and compute "d"


Vu≤ ∅V u
(522.82)(1.4−d )=¿649.20d kN
d = 0.62
C. Compute "d" for punching shear
a. Factored shear
V u=(net ultimateupward pressure)(tributary area)
2 2
V u=(153.77)[3.4 − ( 0.6+d ) ]
V u= (153.77 ) [11.2−1.2 d−d2 ] kN
b. Shear capacity at critical section

∅ V u=∅( 31 ) √ f c b d'
0

∅ V =0.85 ( ) √ 21(1000)(0.6+ d)(d)


1
u
3
∅ V u=¿ 1298.40(0.6d+d2) kN

c. Equate factored shear to shear capacity and compute "d"


Vu≤ ∅V u
( 153.77 ) [ 11.2−1.2 d−d 2 ] =¿1298.40(0.6d+d2)
d = 0.81 (controls)
Therefore, use d = 800 mm

D. Compute flexural steel


a. Factored moment
M u=( 153.77 )( 1.4 )( 3.4 ) ( 0.7 )=512.36 kN . m
b. Moment resistance coefficient
Mu 512.36 x 10
6
R u= 2
= 2
=0.26
φb d 0.9(3400)(800)
c. Strength ratio
fy 415
m= '
= =23.25
0.85 f c
0.85(21)
d. Required steel ratio

e.
ρ=
1
m [ √
1− 1−
2 Rum
fy
Minimum steel ratio
=
1
23.25
1− 1− ]
2(0.26)(23.25)
415 [ √ ] = 0.0065

0.25 √ f 'c 0.25 √21


ρmin =
fy
=
415
=0.00276 ≤
1.4
fy
=0.00337
( )
ρmin =0.00337 < ρ=0.00656

Therefore, use ρ ¿ 0.00337

f. Steel area
2
A s=ρbd=0.00 337 ( 3400 ) ( 800 ) =9166.4 mm
π
using 20 mm  bars: Ab = ¿mm2
4
A s 9166.4
n= = =29.18,
A b 314.16
use 30-10 mm  bars both ways
g. Check spacing of bars
b−n φ b−2 pc 3400−30 (20)−2(75)
s= = =91.38 mm
n−1 30−1
desirable spacing, 75 < s < 200mm, OK!!
h. Check development length
α =1.0 β=1.2 γ =1.0 λ=1.0
Ld 3 fyαβγ λ 3(415)(1)(1.2)(1)(1)
= = =65.20
db 5 √f ' c 5 √ 21
Ld =65.20 ( 20 )=1304 mm, min Ld =300 mm
Ld =1400−75=1325 mm>¿ 1304 mm , OK!!

E. Check weight of footing


a. thickness of footing
t = 800 + 100 = 900 mm
b. volume of footing
3
V f =3.4 ( 3.4 ) ( 0.9 )=10.40 m
c. weight of footing
W f =24 kN /m3 ( 10.4 m3 )=¿ 249.70 kN < 346.57 kN, OK!!

F. Details

You might also like