0% found this document useful (0 votes)
34 views14 pages

Analog Communication

Uploaded by

keerthi.luv6
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views14 pages

Analog Communication

Uploaded by

keerthi.luv6
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

fs=900;

fm=8;
am=0.7;
fc=80;
ac=1.7;
T=2/fm;
t=0:1/fs:T;
ma=am/ac;
message_signal=am*sin(2*%pi*fm*t);
subplot(3,2,1);
plot(t,message_signal);
xlabel("TIME");
ylabel("AMPLITUDE");
title("Message Signal");
cr_signal=ac*sin(2*%pi*fc*t);
subplot(3,2,2);
plot(t,cr_signal);
xlabel("TIME");
ylabel("AMPLITUDE");
title("Carrier Signal");
am_signal=(1+ma*message_signal) .*cr_signal;
subplot(3,2,3);
plot(t,am_signal);
title("Modulation Amplitude");
xlabel("TIME");
ylabel("AMPLITUDE");
fm=8;
Am=0.7;
fs=900;
T=2/fm;
t=0:1/fs:T;
em=Am*sin(2*%pi*fm*t);
subplot (3,1,1);
plot (t,em);
title ("Message_signal");
fc=80;
Ac=1.7;
ma=Am/Ac;
ec=Ac*sin(2*%pi*fc*t);
subplot (3,1,2);
plot (t,ec);
title ("Carrier_signal");
edsbsc=em .*ec;
subplot (3,1,3);
plot (t,edsbsc);
title ("DSBSC MODULATEDSIGNAL");
fc = 80;
fm =8;
fs = 900;
Am=0.7;
Ac =1.7;
t = 0:1/fs:2/fm;
b= 3.6;
em =Am*sin(2*%pi*fm*t);
ec = Ac*sin(2*%pi*fc*t);
efm= Ac*sin(2*%pi*fc*t- b*cos(2*%pi*fm*t));
subplot(3,1,1);
plot(t,em);
title("Messagesignal");
subplot(3,1,2);
plot(t,ec);
title("Carriersignal");
subplot(3,1,3);
plot(t,efm);
title("ModulatedFrequency");
clear;
clc;
clear;
//Mean Value
function X=f(x),
z=3*(1-x)^2,//Marginal Probability Density Function
X=x*z
endfunction a=0;
b=1;
EX=intg(a,b,f);//Mean value of X function Y=c(y)
z=3*(1-y)^2,//Marginal Probability Density Function
Y=y*z endfunction
EY=intg(a,b,c);//Mean value of Y disp(EX,"i)Mean of X =") disp(EY,"
Mean of Y =")

Variance

function X=g(x),
z=3*(1-x)^2,//Marginal Probability Density Function
X=x^2*z
endfunction a=0;
b=1;
EX2=intg(a,b,g);function Y=h(y)
z=3*(1-y)^2,//Marginal Probability Density Function
Y=y^2*z
endfunction EY2=intg(a,b,h);
vX2=EX2-(EX)^2;//Variance of X
vY2=EY2-(EY)^2;//Variance of Y
disp(vX2,"ii)Variance of X"); disp(vY2," Variance of Y")

Cross Correlation

x= input ("type in the reference sequence=");


y= input ("type in the second sequence=");
n1=max(size(y))-1;
n2=max(size(x))-1;
r=corr(x,y,n1);
plot2d3('gnn',r)
clc;
clear all;
t=0:0.01:2*%pi;
x=sin(2*t);
subplot(3,2,1);
plot(x);
au=xcorr(x,x);
subplot (3,2,2);
plot (au);
v=fft(au);
subplot(3,2,3);
plot(abs(v));
fw=fft(x);
subplot(3,2,4);
plot(fw);
fw2=(abs(fw)).^2;
subplot(3,2,5);
plot(fw2);
import numpy as np

import matplotlib.pyplot as plt

G = 20
sigma = 20

Pr_min = 1e-12

f = 3e9

c = 3e8

lambda_ = c / f

Pt_values = np.array([0.1, 1, 10, 100, 1000, 10000, 100000])

R_values = np.zeros(len(Pt_values))

for i in range(len(Pt_values)):

Pt = Pt_values[i]

R = ((Pt * G**2 * lambda_**2 * sigma) / ((4 * np.pi)**3 * Pr_min))**(1/4)

R_values[i] = R

print("Transmitter Power (W) Radar Range (m)")

for i in range(len(Pt_values)):

print(f"{Pt_values[i]:10.1f} {R_values[i]:10.2f}")

plt.figure(figsize=(10, 6))

plt.loglog(Pt_values, R_values, marker='o', linestyle='-', color='b')

plt.xlabel("Transmitter Power (W)")

plt.ylabel("Radar Range (m)")

plt.title("Radar Range vs Transmitter Power")

plt.grid(True, which="both", ls="--", linewidth=0.5)

plt.show()

You might also like