N4 Mathematics Lecturer Guide
N4 Mathematics Lecturer Guide
MATHEMATICS
N4
Mathematics
Lecturer Guide
Nigel Solomon and Jolandi Daniels
Additional
resource material
for this title
includes:
• PowerPoint
presentation
• Interactive toys
• Past exam
papers
• Posters.
• Electronic
Lecturer Guide.
All rights reserved. No part of this book may be reproduced in any form, electronic, mechanical,
photocopying or otherwise, without prior permission of the copyright owner.
ISBN 978-0-6391-0708-0
To copy any part of this publication, you may contact DALRO for information and copyright
clearance. Any unauthorised copying could lead to civil liability and/or criminal sanctions.
Telephone: 086 12 DALRO (from within South Africa); +27 (0)11 712-8000
Telefax: +27 (0)11 403-9094
Postal address: P O Box 31627, Braamfontein, 2017, South Africa
www.dalro.co.za
Every effort has been made to trace the copyright holders. In the event of unintentional omissions
or errors, any information that would enable the publisher to make the proper arrangements would
be appreciated.
Published by
Future Managers (Pty) Ltd
PO Box 13194, Mowbray, 7705
Tel (021) 462 3572
Fax (021) 462 3681
E-mail: info@futuremanagers.com
Website: www.futuremanagers.com
Answers 1
Module 1: Determinants 1
Activity 1.1 2
Activity 1.2 2
Activity 1.3 5
Activity 1.4 7
Activity 1.5 8
Activity 1.6 10
Summative assessment: Module 1 17
Glossary 292
1. Subject aims
1.1 General subject aims
Mathematics N4 aims to provide students with the skills to identify and calculate
mathematical problems in N4 and the content forms part of engineering
calculation problems from industry.
Furthermore, Mathematics N4 will equip students with relevant knowledge to
enable them to integrate meaningfully into their trade subjects and also form the
foundation for the N5–N6 syllabuses to finally achieve a National diploma.
Upon completion of this subject the student should be able to apply:
• the necessary knowledge of Mathematics to various engineering fields in
their respective working environments;
• higher cognitive skills pertaining to application, analysis, synthesis and
evaluation, logical and critical thought processes;
• their understanding in the interpretation of real world problems;
• promote Mathematics as a tool to be used to troubleshoot in different fields
of study; and
• certain theorems that are not examinable to be calculated.
2. Admission requirements
For admission to Mathematics N4, students must have passed:
• Grade 12 pure Mathematics
• NC(V) Level 4 Mathematics
• N3 Mathematics.
3. Duration of course
The duration of the subject is one trimester on full time, part time or distance
learning mode.
4. Evaluation
Students must be evaluated continually as follows:
4.1 ICASS trimester mark
• assessment marks are valid for a period of one year and are referred to
as ICASS trimester marks
• a minimum of 40% is required for a student to qualify for entry to the
final examination
• two formal class tests for full time and part time students (or two
assignments for distance learning students only).
4.2 Calculation of trimester mark will be as follows:
• weight of test or assignment 1 = 30% of the syllabus
• weight of test or assignment 2 = 70% of the syllabus.
5. Examination
A final examination will be conducted in April, August and November of each
year. The pass requirement is 40%.
The final examination will consist of 100% of the syllabus.
The duration of the final examination will be 3 hours.
The final examination will be a closed book examination.
Minimum pass percentage is 40%.
Assessments will be based on the cognitive domain of Bloom’s Taxonomy, that is
remember, understand, apply, analyse, evaluate and create.
The division of these aspects are as follows:
6. General information
Problems should be based on real-world scenarios allowing students to relate
theory to practice.
Emphasis of correct mathematical terminology should be encouraged and
promoted at all times.
A systematical approach to problem-solving should be adhered to.
Students should be encouraged to understand rather than memorise the basic
formulae applicable to Mathematics N4.
Calculators may be used to do mathematical calculations.
Answers to all calculations must be approximated correctly to three decimal
places, unless otherwise stated. Unless otherwise stated, approximations may
not be done during calculations. The final answer must be approximated to the
stipulated degree of accuracy.
The weight value of a module gives an indication of the time to be spent
on teaching the module as well as the relative percentage of the total marks
allocated to the module in the final examination (1 mark = 1,8 minutes).
7. Subject matter
Mathematics N4 strives to assist students to obtain trade-specific calculation
knowledge. Students should be able to acquire in-depth knowledge of the
following content:
1. Determinants 8
2. Complex numbers 12
3. Sketch graphs 10
4. Trigonometry 20
5. Differential calculus 25
6. Integral calculus 25
Total 100
8. Workschedule
Week Module Topic Activities Hours
MODULE
1 Determinants
After they have completed this module, students should be able to:
• convert equations with either two or three variables into a determinant;
• calculate second and third order determinants using row elimination, followed
by the application of Cramer’s rule;
• state and calculate the minor of a third order determinant; and
• determine the co-factor of the minor.
Introduction
In previous years students learnt how to solve simultaneous equations with two or
three variables by using the elimination or substitution methods. Many problems in
engineering can be described with systems of linear equations.
The standard form of a linear equation with two variables is ax + by = c and a linear
equation with three variable is ax + by + cz = 0.
Pre-knowledge
Solve for x and y in the following linear simultaneous equations:
3y − 2x = 11 … Equation (1)
y + 2x = 9 … Equation (2)
Solution
From (2): y = 9 − 2x • Subtract 2x from both sides
Substitute this y-value into (1): • Substitution method
∴ 3(9 − 2x) − 2x = 11
27 − 6x − 2x = 11
27 − 8x = 11
− 8x = 11 − 27
− 8x = − 16
∴x=2
1. | 23 35 | = (3)(3) – (2)(5) = –1 2. | –2 5|
–5 12 = (–5)(5) – (–2)(12) = – 1
1. | |
D = 3 –5 = (3)(–3) – (4)(–5) = 11
4 –3
D = | 12 –5 | = (12)(–3) – (15)(–5) = 39
D
∴ x = __ 39 6
D = 11 = 3 11
x __ __
x 15 –3
D = | 3 12 | = (3)(15) – (4)(12) = – 3
D
∴ y = __ –3 3
D = 11 = – 11
y __ __
y 4 15
2.
3 4 | |
D = 5 2 = (5)(4) – (3)(2) = 14
3. | |
D = 3 4 = (3)(–6) – (2)(4) = – 26
2 –6
D = | 5 4 | = (5)(–6) – (–1)(4) = – 26
D
∴ k = __ –26
D = –26 = 1
k ___
k –1 –6
D = | 3 5 | = (3)(–1) – (2)(5) = – 13
D
∴ l = __ – 13 _ 1
D = – 26 = 2
ℓ ___
l 2 –1
4. | |
D = 2 3 = (2)(–4) – (1)(3) = – 11
1 –4
D = | 4 3 | = (4)(–4) – (5)(3) = – 31
D
∴ r = __ – 31 9
D = – 11 = 2 11
r ___ __
r 5 –4
D = | 2 4 | = (2)(5) – (1)(4) = 6
D
∴ s = __ 6 6
D = – 11 = – 11
s ___ __
s 1 5
5. | |
D = 9 –15 = (9)(–15) – (3)(–15) = – 90
3 –15
= | 9 8 | = (9)(–2) – (3)(8) = – 42
D
Dx ∴ x2 = ___ – 42 __ 7
D = – 90 = 15
x 2___
2 3 –2
6. | |
D = 2 –1 = (2)(–5) – (6)(–1) = – 4
6 –5
D = | 8 –1 | = (8)(–5) – (32)(–1) = – 8
D
∴ x = __ –8
D = –4 = 2
x __
x 32 –5
D = | 2 8 | = (2)(32) – (6)(8) = 16
D
∴ y = __ 16
D = – 4 = –4
y __
y 6 32
7.
5 2 | |
D = 2 –1 = (2)(2) – (5)(–1) = 9
= | 7 –1 | = (7)(2) – (4)(–1) = 18
D
Da ∴ a = __ 18
D = 9 =2
a __
4 2
= | 2 7 | = (2)(4) – (5)(7) = – 27
D
Db ∴ b = __ – 27
D = 9 = –3
b ___
5 4
8. | |
D = 3 –4 = (3)(1) – (2)(–4) = 11
2 1
D = | –5 –4 | = (–5)(1) – (4)(–4) = 11
D
∴ k = __ 11
D = 11 = 1
k __
k 4 1
D = | 3 –5 | = (3)(4) – (2)(–5) = 22
D
∴ l = __ 22
D = 11 = 2
ℓ __
l 2 4
9.
| |
D = –1_3 1 = (–1)(1) – (–_32 )(1) = _12
–2 1
–1 1 | |
Dr = –3 1 = (–3)(1) – (–1)(1) = – 2
D
∴ r = __ –2
D = 1 = –4
r __
_
2
– 2 –1 | |
Ds = –1_3 –3 = (–1)(–1) – (–_32 )(–3) = – _72
D
∴ s = __
– _7
D = 1 = –7
s __2
_
2
10.
–1 2 | |
D = –1 3 = (–1)(2) – (–1)(3) = 1
= | 2 3 | = (2)(2) – (0)(3) = 4
D
Dx ∴ x1 = ___ 4
D =1=4
x _
1
1 0 2
= | –1 2 | = (–1)(0) – (–1)(2) = 2
D
Dx ∴ x2 = ___ 2
D =1=2
x _
2
2 –1 0
11. 1 = 3 + 1_
_
x y
1_ – 6 = – _1
x y
1 – _1 = 3
_
x y
1 + _1 = 6
_
x y
Let a = 1_x and b = 1_y
∴a–b=3
a+b=6
|
|D| = 1 – 1
1 1 |
= 1(1) – (1)(– 1)
=1+1
=2
|D a| = 6 1 |3 –1
|
= 3(1) – 6(– 1)
=3+6
=9
|D b| = 1 6 |1 3|
= 1(6) – (1)(3)
=6–3
=3
∴_
a _
b _1
D = D = |D|
| a| | b|
a = 1_
_ b = 1_
_
9 2 3 2
∴ a = _92 ∴ b = _32
∴ x = 2_9 ∴ y = 2_3
12. _53 a + b = 3
a = 6 + 3_2 b
5a + b = 3
_
3
a – 3_2 b = 6
| |
5_ 1
|D| = 3
1 – _32
|D a| = 6 – _3
2
|3 1 |
= 3(– 3_2) – 6(1)
= – 9_2 – 6
– 9 – 12
=_ 2
= – 21
_
2
|1 6|
5 3
_
|D b| = 3
= _35(6) – 1(3)
= 10 – 3
=7
∴_1 _
a ∴_1 _
b
|D| = D | a| |D| = D
| b|
1 =_
_ a 1 = b_
_
– 7_2 – 21
_
2 – 7_2 7
– 21
_
1
∴a=_2
7_ ∴b=7×_7_
–2 –2
= – 21
_ × –2
_ 7 = 7 × – 2_
=_
2 7 7_
–2 7
=3 = –2
1.
2 –4 1
1.1 1 –2 3
5 1 –1
| |
a) M11 = –2 3|
1 –1 | | |
b) M32 = 2 1
1 3
= (–2)(–1) – (1)(3) = (2)(3) – (1)(1)
M11 = – 1 M32 = 5
c) M22 = 2 1 |
5 –1 |
= (2)(–1) – (5)(1)
M22 = – 7
3 –2 1
1.2 4 –1 2
5 6 7
| |
a) M13 = 4 –1
5 6 | | |
b) M31 = –2 1
–1 2 |
= (4)(6) – (5)(–1) = (–2)(2) – (–1)(1)
M13 = 29 M31 = – 3
c) M23 = 3 –2
5 6 | |
= (3)(6) – (5)(–2)
M23 = 28
1.3 | 1 2 3
4 –1 –2
–3 –4 –5
|
a) M12 = | –34 –2
–5 | |
b) M33 = 1 2
4 –1 |
= (4)(–5) – (–3)(–2) = (1)(–1) – (4)(2)
M12 = – 26 M33 = – 9
2. |
6 2 –3
2.1 2 3 –5
1 –1 1
|
a) |
M22 = 6 –3
1 1 | |
b) M23 = 6 2
1 –1 |
= (6)(1) – (1)(–3) = (6)(–1) – (1)(2)
M22 = 9 M23 = – 8
|
2 3 –1
2.2 3 5 2
1 –2 –3
|
a) |
M32 = 2 –1
3 2 | |
b) M31 = 3 –1
5 2 |
= (2)(2) – (3)(–1) = (3)(2) – (5)(–1)
M32 = 7 M31 = 11
c) M13 = 3 5|
1 –2 |
= (3)(–2) – (1)(5)
M13 = – 11
2.3 | –1 –2 1
3 1 1
1 –1 2
|
a) M21 = –2 1
–1 2 | | | |
b) M12 = 3 1
1 2
= (–2)(2) – (–1)(1) = (3)(2) – (1)(1)
M21 = – 3 M12 = 5
c) M33 = –1 –2
3 1 | |
= (–1)(1) – (3)(–2)
M33 = 5
1. | 2 –1 3
1 –6 –1
3 6 2
|
1.1 C 21 = (– 1) 2 + 1 – 1 3
6 2 | | |
1.2 C23 = (–1)2 + 3 2 –1
3 6 |
3 5
= (– 1) [(– 1)(2) – (6)(3)] = (–1) [(2)(6) – (3)(–1)]
= –20 C23 = – 15
2. | –2 0 1
–3 2 –5
4 –2 6
|
2.1 C21 = (–1)2 + 1 0 1
–2 6 | | |
2.2 C11 = (–1)1 + 1 2 –5
–2 6 |
3 2
= (–1) [(0)(6) – (–2)(1)] = (–1) [(2)(6) – (–2)(–5)]
C21 = – 2 C11 = 2
3. |
3 2 –1
3.1 3 –2 1
4 –5 –1
|
a) C32 = (–1)3 + 2 3 –1
3 1 | | |
b) C23 = (–1)2 + 3 3 2
4 –5 |
= (–1)5[(3)(1) – (3)(–1)] = (–1)5[(3)(–5) – (4)(2)]
C32 = – 6 C23 = 23
c) C12 = (–1)1 + 2 3 1
4 –1 | |
3
= (–1) [(3)(–1) – (4)(1)]
C12 = 7
3.2 | 1 1 4
2 –3 –1
–4 2 2
|
a) C22 = (–1)2 + 2 | –41 42 | b) C31 = (–1)3 + 1 | –31 –14 |
= (–1)4[(1)(2) – (–4)(4)] = (–1)4[(1)(–1) – (–3)(4)]
C22 = 18 C31 = 11
c) |
C13 = (–1)1 + 3 2 –3
–4 2 |
= (–1)4[(2)(2) – (–4)(–3)]
C13 = – 8
|
3 1 –2
3.3 4 –1 1
1 –3 –4
|
a) |
C11 = (–1)1 + 1 –1 1
–3 –4 | b) C21 = (–1)2 + 1 | –31 –2
–4 |
= (–1)2[(–1)(–4) – (–3)(1)] = (–1)3[(1)(–4) – (–3)(–2)]
C11 = 7 C21 = 10
c) |
C33 = (–1)3 + 3 3 1
4 –1 |
6
= (–1) [(3)(–1) – (4)(1)]
C33 = – 7
| |
1.5 –5 –3 = (–5)(–2) – (2)(–3) = 16
2 –2 | |
1.6 1 –2 = (1)(4) – (3)(–2) = 10
3 4
2. 2.1 |3 −1 2
1 −1 2
−2 3 1
| |
0 1 −3
2.2 2 4 − 1
4 −2 5
|
| | |
= 3 − 1 2 − (− 1) 1 2 + 2 1 − 1
3 1 −2 1 −2 3 | | | | |
= 0 − 1 2 − 1 + (−3) 2 4
4 5 4 −2 | |
= 3(− 1 − 6) + 1(1 + 4) + 2(3 − 2) = 0 − 1(10 + 4) − 3(− 4 − 16)
= 3(− 7) + 1(5) + 2(1) = –14 – 3(–20)
= –21 + 5 + 2 = –14 + 60
= –14 = 46
2.3 |4 −4 5
3 1 4
−3 4 1
|
| |
= − (− 4) 3 4 + (1) 4 5 − 4 4 5
−3 1 −3 1 3 4 | | | |
= 4(3 + 12) + (4 + 15) − 4(16 − 15)
= 4(15) + 19 – 4
= 60 + 19 – 4
= 75
|
2 3 −1
2.4 2 − 1 2
3 −1 1
|
| |
= 3 3 − 1 − (−1) 2 − 1 + 1 2 3
−1 2 2 2 2 −1 | | | |
= 3(6 − 1) + 1(4 + 2) + 1(−2 − 6)
= 3(5) + 1(6) + 1(− 8)
= 15 + 6 – 8
= 13
3. |
3 –1 3
| | |
3.1 4 1 5 = (3) 1 5 + (4) –1 3 + (2) –1 3
2 1 3 13 13 15 | | | |
= 3[(1)(3) – (1)(5)] – 4[(–1)(3) – (1)(3)] + 2[(–1)(5) – (1)(3)]
= –6 + 24 – 16
|
3 –1 3
4 1 5 =2
2 1 3
|
3.2 | –2 1 0
|
0 3 –1 = (5)
5 0 6
| |
1 0 + (0) –2 0 + (6) –2 1
3 –1 0 –1 0 3 | | | |
= 5[(1)(–1) – (3)(0)] + 0 + 6 [(–2)(3) – (0)(1)]
= –5 + 0 – 36
| –2 1 0
|
0 3 –1 = –41
5 0 6
|
3 –2 1
| |
3.3 2 1 –5 = (–2) 2 –5 + (1) 3 1 + (1) 3 1
1 1 –6 1 –6 1 –6 2 –5 | | | | |
= 2[(2)(–6) – (1)(–5)] + 1[(3)(–6) – (1)(1)] – 1[(3)(–5) – (2)(1)]
= –14 – 19 + 17
|
3 –2 1
2 1 –5 = –16
1 1 –6
|
|
1 4 2
3 2 1
| 31 | |
3.4 –1 2 –1 = (–1) 4 2 + (2) 1 2 + (–1) 1 4
21 32 | | | |
= 1[(4)(1) – (2)(2)] + 2[(1)(1) – (3)(2)] + 1[(1)(2) – (3)(4)]
= 0 – 10 – 10
|
1 4 2
–1 2 –1 = –20
3 2 1
|
1. 1.1 |
1 2 2
D = 3 −1 4
3 2 −1
|
| | | | |
= 1 −1 4 − 2 3 4 + 2 3 −1
2 −1 3 −1 3 2 |
= 1(1 − 8) − 2(− 3 − 12) + 2(6 + 3)
= − 7 − 2(− 15) + 2(9)
= –7 + 30 + 18
= 41
|
4 2 2
D x = 25 − 1 4
−4 2 −1
|
| | | | |
= 4 − 1 4 − 2 25 4 + 2 25 − 1
2 −1 −4 −1 −4 2 |
= 4(1 − 8) − 2(− 25 + 16) + 2(50 − 4)
= 4(− 7) − 2(− 9) + 2(46)
= –28 + 18 + 92
= 82
|
1 4 2
D y = 3 25 4
3 −4 −1
|
| | |
= 1 25 4 − 4 3 4 + 2 3 25
−4 −1 3 −1 | |3 −4 |
= 1(− 25 + 16) − 4(− 3 − 12) + 2(− 12 − 75)
= − 9 − 4(− 15) + 2(− 87)
= − 9 + 60 − 174
= –123
|
1 2 4
D z = 3 − 1 25
3 2 −4
|
| | | | |
= 1 − 1 25 − 2 3 25 + 4 3 − 1
2 −4 3 −4 3 2 |
= 1(4 − 50) − 2(− 12 − 75) + 4(6 + 3)
= − 46 − 2(− 87) + 4(9)
= –46 + 174 + 36
= 164
D
∴ x = __ 82
D = 41 = 2
x __
D
∴ y = __ –123
D = 41 = –3
y ____
D
∴ z = __ 164
D = 41 = 4
z ___
1.2 |
2 −3 5
D= 3 2 2
4 1 −4
|
| | |
= 2 2 2 − (− 3) 3 2 + 5 3 2
1 −4 4 −4 | | |
4 1
= 2(− 8 − 2) + 3(− 12 − 8) + 5(3 − 8)
= 2(− 10) + 3(− 20) + 5(− 5)
= − 20 − 60 − 25
= − 105
|4 −3 5
Da = 3 2 2
−6 1 −4
|
|
1 −4 | |
= 4 2 2 − (− 3) 3 2 + 5 3 2
−6 −4 | | −6 1 |
= 4(− 8 − 2) + 3(− 12 + 12) + 5(3 + 12)
= 4(− 10) + 3(0) + 5(15)
= − 40 + 75
= 35
|
2 4 5
Db = 3 3 2
4 −6 −4
|
|
−6 −4 | 4 −4|
= 2 3 2 − (4) 3 2 + 5 3 3 | |4 −6 |
= 2(− 12 + 12) − 4(− 12 − 8) + 5(− 18 − 12)
= − 4(− 20) + 5(− 30)
= 80 − 150
= − 70
|
2 −3 4
Dc = 3 2 3
4 1 −6
|
| | |
= 2 2 3 − (− 3) 3 3 + 4 3 2
1 −6 4 −6 | | |
4 1
= 2(− 12 − 3) + 3(− 18 − 12) + 4(3 − 8)
= 2(− 15) + 3(− 30) + 4(− 5)
= − 30 − 90 − 20
= − 140
D
∴ a = __ 35 1
D = –105 = – 3
a ____ _
D
∴ b = __ –70 2
D = –105 = 3
b ____ _
D
∴ c = __ –140 1
D = –105 = 1 3
c ____ _
2. |
1 1 1
|
2.1 |D| = 2 –1 3 = + (1) –1 3 – (1) 2 3 + (1) 2 –1
–1 2 2 2 2 –1 2 |–1 2 | | | | |
= 1[(–1)(2) – (2)(3)] – 1[(2)(2) – (–1)(3)] + 1[(2)(2) – (–1)(–1)]
= –8 – 7 + 3
| 1 1 1
∴ |D| = 2 –1 3 = –12
–1 2 2
|
|6 1 1
9 2 2
| 2 2 |
|Dx| = 9 –1 3 = + (6) –1 3 – (1) 9 3 + (1) 9 –1
9 2 9 2 | | | | |
= 6[(–1)(2) – (2)(3)] – 1[(9)(2) – (9)(3)] + 1[(9)(2) – (9)(–1)]
= –48 + 9 + 27
| 6 1 1
∴ |Dx| = 9 –1 3 = –12
9 2 2
|
| 1 6 1
| | |
|Dy| = 2 9 3 = + (1) 9 3 – (6) 2 3 + (1) 2 9
–1 9 2 9 2 –1 2 –1 9 | | | |
= 1[(9)(2) – (9)(3)] – 6[(2)(2) – (–1)(3)] + 1[(2)(9) – (–1)(9)]
= –9 – 42 + 27
| 1 6 1
∴ |Dy| = 2 9 3 = –24
–1 9 2
|
| 1 1 6
| |
|Dz| = 2 –1 9 = + (1) –1 9 – (1) 2 9 + (6) 2 –1
–1 2 9 2 9 –1 9 –1 2 | | | | |
= 1[(–1)(9) – (2)(9)] – 1[(2)(9) – (–1)(9)] + 6[(2)(2) – (–1)(–1)]
= –27 – 27 + 18
| 1 1 6
∴ |Dz| = 2 –1 9 = –36
–1 2 9
|
D
∴ x = __ –12
D = –12 = 1
x ___
D
∴ y = __ –24
D = –12 = 2
y ___
D
∴ z = __ –36
D = –12 = 3
z ___
2.2 |
4 –3 1
|
|D| = 1 2 –5 = + (3) –3 1 – (1) 4 1 + (2) 4 –3
3 1 2 2 –5 1 –5 |1 2 | | | | |
= 3[(–3)(–5) – (2)(1)] – 1[(4)(–5) – (1)(1)] + 2[(4)(2) – (1)(–3)]
= 39 + 21 + 22
|
4 –3 1
∴ |D| = 1 2 –5 = 82
3 1 2
|
|
–1 –3 1
|
|Dk| = 11 2 –5 = + (20) –3 1 – (1) –1 1 + (2) –1 –3
20 1 2 2 –5 11 –5 | 11 2 | | | | |
= 20[(–3)(–5) – (2)(1)] – 1[(–1)(–5) – (11)(1)] + 2[(–1)(2) – (11)(–3)]
= 260 + 6 + 62
|
–1 –3 1
∴ |Dk| = 11 2 –5 = 328
20 1 2
|
|
4 –1 1
| | |
|Dl| = 1 11 –5 = + (3) –1 1 – (20) 4 1 + (2) 4 –1
3 20 2 11 –5 1 –5 |
1 11 | | |
= 3[(–1)(–5) – (11)(1)] – 20[(4)(–5) – (1)(1)] + 2[(4)(11) – (1)(–1)]
= –18 + 420 + 90
|
4 –1 1
∴ |Dl |= 1 11 –5 = 492
3 20 2
|
|
4 –3 –1
| | |
|Dm| = 1 2 11 = + (3) –3 –1 – (1) 4 –1 + (20) 4 –3
3 1 20 2 11 1 11 |
1 2 | | |
= 3[(–3)(11) – (2)(–1)] – 1[(4)(11) – (1)(–1)] + 20[(4)(2) – (1)(–3)]
= –93 – 45 + 220
|
4 –3 –1
∴ |Dm| = 1 2 11 = 82
3 1 20
|
D
∴ k = __ 328
D = 82 = 4
k ___
D
∴ l = __ 492
D = 82 = 6
ℓ ___
D
∴ m = __ 82
D = 82 = 1
m __
|
2 –1 4
| | |
2.3 |D| = 3 –2 1 = + (2) –2 1 – (3) –1 4 + (1) –1 4
1 –5 3 –5 3 –5 3 |
–2 1 | | |
= 2[(–2)(3) – (–5)(1)] – 3[(–1)(3) – (–5)(4)] + 1[(–1)(1) – (–2)(4)]
= –2 – 51 + 7
|
2 –1 4
∴ |D| = 3 –2 1 = –46
1 –5 3
|
|
6 –1 4
| | |
|Dr| = 2 –2 1 = + (6) –2 1 – (2) –1 4 + (9) –1 4
9 –5 3 –5 3 –5 3 |
–2 1 | | |
= 6[(–2)(3) – (–5)(1)] – 2[(–1)(3) – (–5)(4)] + 9[(–1)(1) – (–2)(4)]
= –6 – 34 + 63
|
6 –1 4
∴ |Dr| = 2 –2 1 = 23
9 –5 3
|
|
2 6 4
1 9 3
| | |
|Ds| = 3 2 1 = + (2) 2 1 – (3) 6 4 + (1) 6 4
9 3 9 3 | |
2 1 | |
= 2[(2)(3) – (9)(1)] – 3[(6)(3) – (9)(4)] + 1[(6)(1) – (2)(4)]
= –6 + 54 – 2
|
2 6 4
∴ |Ds| = 3 2 1 = 46
1 9 3
|
|
2 –1 6
1 –5 9
| –5 9 |
|Dt| = 3 –2 2 = + (2) –2 2 – (3) –1 6 + (1) –1 6
–5 9 |–2 2 | | | |
= 2[(–2)(9) – (–5)(2)] – 3[(–1)(9) – (–5)(6)] + 1[(–1)(2) – (–2)(6)]
= –16 – 63 + 10
|
2 –1 6
|
∴ |Dt| = 3 –2 2 = –69
1 –5 9
D
∴ r = __ 23 1
D = –46 = –2
r ___ _
D
∴ s = __ 46
D = –46 = –1
s ___
D
∴ t = __ –69 1
D = –46 = 12
t ___ _
3. |
2 4 –1
| |
3.1 |D| = 1 2 –3 = (2) 2 –3 + (4) 1 –3 + (–1) 1 2
3 –1 1 –1 1 3 1 |3 –1 | | | |
= 2[(2)(1) – (–1)(–3)] – 4[(1)(1) – (3)(–3)] – 1[(1)(–1) – (3)(2)]
= –2 – 40 + 7
|
2 4 –1
∴ |D| = 1 2 –3 = –35
3 –1 1
|
|2 4 –1
| | |
|Dx| = –4 2 –3 = (2) 2 –3 + (4) –4 –3 + (–1) –4 2
1 –1 1 –1 1 1 1 1 –1 | | | |
= 2[(2)(1) – (–1)(–3)] – 4[(–4)(1) – (1)(–3)] – 1[(–4)(–1) – (1)(2)]
= –2 + 4 – 2
| 2 4 –1
∴ |Dx| = –4 2 –3 = 0
1 –1 1
|
|
2 2 –1
| | |
|Dy| = 1 –4 –3 = (2) –4 –3 + (2) 1 –3 + (–1) 1 –4
3 1 1 1 1 3 1 3 1 | | | |
= 2[(–4)(1) – (1)(–3)] – 2[(1)(1) – (3)(–3)] – 1[(1)(1) – (3)(–4)]
= –2 – 20 – 13
|
2 2 –1
∴ |Dy| = 1 –4 –3 = –35
3 1 1
|
|
2 4 2
3 –1 1
| –1 1 | 3 1 |
|Dz| = 1 2 –4 = (2) 2 –4 + (4) 1 –4 + (2) 1 2
3 –1 | | | |
= 2[(2)(1) – (–1)(–4)] – 4[(1)(1) – (3)(–4)] + 2[(1)(–1) – (3)(2)]
= –4 – 52 – 14
|
2 4 2
∴ |Dz| = 1 2 –4 = –70
3 –1 1
|
D
∴ x = __ 0
D = –35 = 0
x ___
D
∴ y = __ –35
D = –35 = 1
y ___
D
∴ z = __ –70
D = –35 = 2
z ___
3.2
5 –6 3
| | | |
|D| = 2 –3 2 = (–6) 2 2 + (–3) 5 3 + (–7) 5 3
3 –7 5 3 5 3 5 22 | | | |
= 6[(2)(5) – (3)(2)] – 3[(5)(5) – (3)(3)] + 7[(5)(2) – (2)(3)]
= 24 – 48 + 28
5 –6 3
|
∴ |D| = 2 –3 2 = 4
3 –7 5
|
– 9 –6 3
| –5 2
| |
–9 3
|
| x | – 5 –3 2 = (–6) –16 5 + (–3) –16 5 + (–7) –5 2
D =
–16 –7 5
1
–9 3
| | | |
= 6[(–5)(5) – (–16)(2)] – 3[(–9)(5) – (–16)(3)] + 7[(–9)(2) – (–5)(3)]
= 42 – 9 – 21
– 9 –6 3
|
∴ |Dx | = – 5 –3 2 = 12
–16 –7 5
1 |
| x|
D = 2 |
5 –9 3
–5 2 = (–9)
3 –16 5
2 35| 35 | |
2 2 + (–5) 5 3 + (–16) 5 3
22 | | | |
= 9[(2)(5) – (3)(2)] – 5[(5)(5) – (3)(3)] + 16[(5)(2) – (2)(3)]
= 36 – 80 + 64
5 –9 3
|
∴ |Dx | = 2 –5 2 = 20
3 –16 5
2 |
D =
5 –6 –9
2
3 –7 –16
3 | 2 –5
| |
5 –9
| x | –3 –5 = (–6) 3 –16 + (–3) 3 –16 + (–7) 2 –5 | 5 –9
| | | |
= 6[(2)(–16) – (3)(–5)] – 3[(5)(–16) – (3)(–9)] + 7[(5)(–5) – (2)(–9)]
= –102 + 159 – 49
5 –6 –9
|
∴ |Dx | = 2 –3 –5 = 8
3 –7 –16
3 |
D
∴ x1 = ___
x 12
D = 4 =3
__ 1
D
∴ x2 = ___
x 20
D = 4 =5
__ 2
D
∴ x3 = ___
x 8
D =4=2
_ 3
2 1 –1
3.3 D = 3 – 4 5
4 0 2
| |
| | | |
= 2 – 4 5 – 1 3 5 + (–1) 3 – 4
0 2 4 2 4 0 | |
= 2[–8] – [6 – 20] – [0 + 16]
= –16 – [–14] – 16
= –16 + 14 – 16
= –18
D =
1
2 1 –1
| I | 7 –4 5
9 0 2
| |
|
= 2 – 4 5 – 1 7 5 – (–1) 7 – 4
0 2 9 2 | | |
9 0 | |
= 2[–8] – [14 – 45] + [0 – (–36)]
= –16 – [–31] + 36
= 51
1 _ I
∴_
D= D
1
| I| 1
_1 I1
_
– 18 = 51
I1 = _51
– 18
= –2,833
3.4 _a1 + _b2 + 1_c = 0
1 = _1 – 2_ + 2
_
a b c
1.
1 –1 | |
1.1 2 6 = (2)(–1) – (1)(6) = – 8 (2)
1.2 | −5 −1 1
9 1 −1 = −5
−1 1 −5
|
1 −5 | |
1 − 1 − (− 1) 9 − 1 + 1 9 1
−1 −5 |
−1 1 | | |
= − 5(− 5 + 1) + 1(− 45 + 1) + 1(9 + 1)
= − 5(− 4) − 44 + 10
= 20 − 44 + 10
= − 16 (3)
2.
–3 2 |
2.1 D = 2 – 1 0 – 2 1 0 + 1 1 – 1
3 2 3 –3| | | | |
= 2[–2] – 2[2] + [–3 + 3]
= –4 – 4
= –8 (2)
2.2 + 2 1
3 2 | |
= 2(2) – 3(1)
=4–3
=1 (2)
2.3 2 1
1 0 | |
= 2(0) – 1(1)
= –1 (2)
3. |D|
|
6 –7 1
= 1 –3 –8
–2 –1 3
|
–3 –8 | 1 –8|
= – 2 – 7 1 – (– 1) 6 1 + 3 6 – 7
1 –3 | | | |
= –2[56 + 3] + [–48 – 1] + 3[–18 + 7]
= –2[59] – 49 + 3[–11]
= –200
| I|
D =
3
1
6 – 7 0,5
–3 –9
–2 –1 4
| |
= –2
–9|––73
0,5 ( ) 6 0,5
– –1 |
1 –9 |
+ 4 6 –7
1 –3 | | |
= –2[63 + 3(0,5)] + [–56 – 0,5] + 4[–18 + 7]
= –2[64,5] – 56,5 + 4[–11]
= –36
1 I
∴_ _
|D| = D
3
| I| 3
_ 1 _I3
– 200 = – 36
∴ I 3 = 0,18 (8)
4. | |
D = –2 –3 = (–2)(–5) – (3)(–3) = 19
3 –5
|–2 –5 |
Dr = –5 –3 = (–5)(–5) – (–2)(–3) = 19
D
∴ r = __
r 19
D = 19 = 1
__
D = | –2 –5 | = (–2)(–2) – (3)(–5) = 19
D
∴ s = __
s 19
D = 19 = 1
__
(10)
s 3 –2
5. 5.1 | –x3 x2 | = 5x
(3)(2) – (–x)(x) = 5x
6 + x2 = 5x
x2 – 5x + 6 = 0
(x – 2)(x – 3) = 0
x – 2 = 0 or x–3=0
∴ x = 2 or x=3 (3)
5.3
z 3 2
|
3 –2 5 = – 120
2 z 6
|
| | | |
+ (z) –2 5 – (3) 3 5 + (2) 3 –2 = – 120
z 6 2 6 2 z | |
z[(–2)(6) – (z)(5)] – 3[(3)(6) – (2)(5)] + 2[(3)(z) – (2)(–2)] = – 120
z[–12 – 5z] –3[18 – 10] + 2 [3z + 4] = – 120
– 12z – 5z2 – 54 + 30 + 6z + 8 = – 120
– 5z2 – 6z – 16 = – 120
– 5z2 – 6z + 104 = 0
5z2 + 6z – 104 = 0
(5z + 26)(z – 4) = 0
5z + 26 = 0 or z – 4 = 0
5z = – 26
∴ z = – 5_15 or ∴ z = 4
(4)
6.
5 –6 3
6.1 |D| = 2 – 3 2
3 –7 5
| |
| |
= 5 – 3 2 – (–6) 2 2 + 3 2 – 3
–7 5 3 5 3 –7 | | | |
= 5[–15 + 14] + 6[10 – 6] + 3[–14 + 9]
= –5[–1] + 6[4] + 3[–5]
= 5 + 24 – 15
= 14 (3)
5 –6 –9
6.2 |D c| = 2 – 3 – 5 |
3 – 7 – 16
|
| |
= 5 – 3 – 5 – (– 6) 2 – 5 + (–9) 2 – 3
– 7 – 16 3 – 16 3 –7 | | | |
= 5[48 – 35] + 6[–32 + 15] – 9[–14 + 9]
= 5[13] + 6[–17] – 9[–5]
=8
_1
∴ |D| = _c
D | c|
1 = _c
_
14 8
∴ c = 0,571 (3)
7. 7.1 |D|
|
–2 –3 –3
| |
= 5 –1 –6 = + (–2) –1 –6 – (–3) 5 –6 + (–3) 5 –1
3 2 2 2 2 3 2 |
3 2 | | | |
= –2[(–1)(2) – (2)(–6)] + 3[(5)(2) – (3)(–6)] – 3[(5)(2) – (3)(–1)]
= –20 + 84 –39
|
–2 –3 –3
∴ |D| = 5 –1 –6 = 25
3 2 2
| (3)
7.2
–4 –3 –3
1 2 2
| –1 – 6
|
|Dk¡| = 3 –1 –6 = –4| 2 2 | – (3)| 2 2 | + 1| –1 – 6 |
–3 –3 –3 –3
7.3
–2 –4 –3
| 3 1 2
|
|Dℓ| = 5 3 –6 = + (–3)| 3 1 | – (–6)| 3 1 | + (2)| 5 3 |
5 3 –2 –4 –2 –4
|
–2 –3 –4
7.4 |Dm| = 5 –1 3
3 2 1
|
[ | |] [ | |] [ |
= (5) (–1)2 + 1 –3 –4 + (–1) (–1)2 + 2 –2 –4 + (3) (–1)2 + 3 –2 –3
2 1 3 1 3 2 |]
= –5[(–3)(1) – (2)(–4)] − 1[(–2)(1) – (3)(–4)] – 3[(–2)(2) – (3)(–3)]
= – 25 – 10 – 15
|
–2 –3 –4
∴ |Dm| = 5 –1 3 = – 50
3 2 1
| (3)
|D |
–25 = –1
7.5 k = ___
k
|D|
= ___
25
|D | 100 = 4
l = ___
ℓ
|D|
= ___
25
|D |
–50 = –2
m = ___
m
|D|
= ___
25 (3)
TOTAL: [60]
MODULE
2 Complex numbers
After they have completed this module, students should be able to:
• define an imaginary number;
• identify real and imaginary parts of a complex number in rectangular form;
• simplify complex powers;
• add, subtract and multiply complex numbers in rectangular form;
• define and determine the conjugate of a complex number;
• divide complex numbers in rectangular for using the conjugate;
• define the modulus and argument of the complex number and plot them on
an Argand diagram;
• convert a complex number from rectangular form to polar form and vice
versa, using a pocket calculator or any analytical method;
• multiply and divide complex numbers in polar form;
• state and apply De Moivre’s theorem to products, quotients and powers of
complex numbers; and
• solve complex equations in rectangular or polar form.
Introduction
Complex numbers were encountered previously when _______________
solving x-intercepts for
− b ± √b 2 − 4ac . When it yields a
a x + bx + c = 0 using the quadratic formula, x = _______________
2
2a
negative number inside the square root it implies that no solution exists in the
real number system, that is, the parabola does not intersect the x-axis.
To accommodate the square root of negative numbers the real number system needs to
be extended to include pure imaginary numbers. The expanded number system is called
the complex number system.
Before working with complex numbers, we need to revise the relationships between
several types of numbers.
Integers (ℤ)
e.g. {… ; – 3 ; – 2 ; – 1 ; 0 ; 1 ;
2 ; 3 ; …}
Complex numbers can be represented in three forms, rectangular form, polar form and
exponential form.
Complex numbers
In this module we only represent complex numbers in rectangular (standard) form and
polar (trigonometric) form with the imaginary unit represented as i instead of j as in
some texts.
Pre-knowledge
Laws of exponents:
1. a m × a n = a m+n 2. a_mn = a m−n
a
( a n ) = a nb
b
5. _
a m
_
a mb
6. a −n = _
1
an
_ _ _ _ _ _ _ _ _ n_
7. √ab = √a × √b or √ab = √a × √b
n n n
8. _a = _
√_
a or √b _a = _
√_a
√b _
n
n
√b √b
_ n _
9.
n
√a = a m _
m
n
10. ( √a ) = √a
m m n
• Perfect squares: 1 = 1 2; 4 = 2 2; 9 = 3 2; 16 = 4 2; 25 = 5 2; …
_ _ _ _ _ _ _ _
3 3
• √4 = √2 × 2 = 2; √9 = √3 × 3 = 3; √a 2 = √a × a = a; √27 = √3.3.3 = 3
_ 2 _ _ _
• (√6 ) = √6 .√6 = √36 = 6
opposite side
• sin θ = ___________
hypotenuse
adjacent side
• cos θ = _
hypotenuse r
y
opposite side
• tan θ = _
adjacent side
θ
• Theorem of Pythagoras: x 2 + y 2 = r 2 x
r1 θ 1
To divide ____
r θ
the moduli (r) will be divided and the arguments (θ) subtracted.
2 2
For example:
Given z1 = r1 θ 1 and z2 = r2 θ 2. Calculate z1 ÷ z2.
r1 θ 1
z1 ____
∴_
z2 = r θ
2 2
r
= _r21 θ 1 − θ 2 • Theorem
1. i 2 = –1 2. i 7 = (i 2)3i
= (– 1)3i
= –i
7. _5 = _5 × _
i
−i
i −i
8. _
1
=_
1
× _i
−i −i i
=_
− 5i
2 =_
i
2
−i −i
= _− 5i
− (−1)
=_
i
− (−1)
= – 5i =i
9. _
1
=_
1
×_
−i
10. – _
3
= –_
3
×_
−i
2i 2i −i 4i 4i − i
=_
−i
2 =_
3i
2
−2 i −4 i
= _ −i
=_
3i
− 2(−1) − 4(−1)
=_
−i _1
2 or – 2 i =_
3i _3
4 or 4 i
____ _____
√−18
____
2.5 ___ + √−144
√−2
___ ___ ____ ___
√9.2 √−1
= ______
__ ___ + √144 .√−1
√2 .√−1
_
3 √_2 i
=_ + 12i
√2 i
= 3 + 12i
1. 1.1 – 5 + 3i – 5 + 3i –5 3i
1.2 π π + 0i π 0i
1.3 – 2i 0 – 2i 0 – 2i
1.4 3 – i9 3 – 9i 3 – 9i
3
____
1.5 4 + √−27 1 + 0i 1 0i
_____
1.6 5 – √−100 5 – 10i 5 – 10i
___
1.7 – 5√64 – 40 + 0i – 40 0i
1.8 – 8i – 1 – 1 – 8i –1 – 8i
1.9 51 51 + 0i 51 0i
____ ____
1.10 √– 81 − √−25 0 + 4i 0 4i
2. 2.1 i + 2 – 3i – 1 – 5i 2.2 (4 + i) – (4 – i)
= 1 – 7i =4+i–4+i
= 0 + 2i
1. 1.1 – 7i 7i
1.2 – 3 + 3i – 3 – 3i
1.3 –i + 2 i+2
1.4 4i – 5 – 4i – 5
1.5 –5 – 5 – 0i
1.6 i –i
1.7 2i
– 6 − __
3 – 6 + __23 i
1.8 5 − 3i
____ _5 + __3 i
8 8 8
____
1.9 −√−64 8i
____
1.10 3i – √−25 2i
_
2. 2.1 z = – 2,3 – 2,5i 2.2 – z = – (– 2,3 + 2,5i)
= 2,3 – 2,5i
_ _
2.3 – z = – (– 2,3 – 2,5i) 2.4 z = – 2,3 + 2,5i
= 2,3 + 2,5i
_ _
3. 3.1 z1 + z2 – z3 + z 2 – z 3
= 2 + 5i + 3 – i – (– 2i – 4) + (3 + i) – (2i – 4)
= 2 + 5i + 3 – i + 2i + 4 + 3 + i – 2i + 4
= 16 + 5i
_ _ _
3.2 z 1.z3 3.3 z 2.z 3
= (2 – 5i)(– 2i – 4) = (3 + i)(2i – 4)
2
= – 4i – 8 + 10i + 20i = 6i – 12 + 2i 2 – 4i
= – 4i – 8 + 10(– 1) + 20i = 2i – 12 + 2(– 1)
= 16i – 8 – 10 = – 14 + 2i
= – 18 + 16i
_ _ _
3.4 z 1.z 3.z 4
= (2 – 5i)(2i – 4)(– 5i)
= (4i – 8 – 10i 2 + 20i)(– 5i)
= (24i – 8 – 10(– 1))(– 5i)
= (2 + 24i)(– 5i)
= – 10i – 120i 2
= – 10i – 120(– 1)
= 120 – 10i
4.2 (‾
= 24 + 4i
_ _ 2
− 1 + 2 √2 i) (1 + √2 i)
_ _ _
= (− 1 − 2 √2 i)(1 + √2 i)(1 + √2 i)
_ _ _
= (− 1 − 2 √2 i)(1 + √2 i + √2 i + 2 i 2)
_ _
= (− 1 − 2 √2 i)(1 + 2 √2 i − 2)
_ _
= (− 1 − 2 √2 i)(− 1 + 2 √2 i)
_ _
= 1 − 2 √2 i + 2 √2 i − 8 i 2
=1+8
= 9 + 0i
4.3 (−4 + 5i)(‾
−3 − i)(2 − 2i)
= (− 4 + 5i)(‾
− 6 + 6i − 2i + 2 i 2)
= (− 4 + 5i)(‾
= (− 4 + 5i)(‾
− 6 + 4i − 2)
− 8 + 4i)
= (− 4 + 5i)(− 8 − 4i)
= 32 + 16i − 40i − 20 i 2
= 32 − 24i + 20
= 52 − 24i
1. 1.1 _
−3 − 4i
− 12 1.2 _5i − _5i
=_
−3 _4i
− 12 – − 12 = _5i × _ii − _5i
= – 5i – _15 i
= – 5_15 i
= 0 – __
26
5 i or 0 – 5,2i
2 − 3i −3 − i
1.3 ____
i
1.4 ____
−3i
2 − 3i __
= ____
i
× −i
−i
−3 − i _
= ____
−3i
× 3i
3i
2 2
= ______
−2i + 3 i
2 = _____
−3i − i
2
−i −3i
−2i + 3(−1) −3i − (−1)
= ________
−(−1)
= _______
−3(−1)
= _____
−2i − 3
1 = _____
−3i + 1
3
−3i _
1
= – 3 – 2i = ___
3 +3
= – i + _13
= _13 – i
6
1.5 2i 8 − 3i 7 + __
4i
9
5i
2(i ) − 3(i ) i + 4(i 2)3
2 4 2 3
= ______________
2 4
5(i ) i
2(−1)4 − 3(−1)3i + 4(−1)3
= ________________
4
5(−1) i
2(1) − 3(−1)i + 4(−1)
= _____________
5(1)i
=_
2 + 3i − 4
5i
– 2 + 3i × _
=_ – 5i
5i – 5i
10i – 15 i
=_
2
– 25 i 2
10i – 15(– 1)
= _____________
– 25(– 1)
10i + 15
=_ 25
= 5 – 3i + 3i + 4
= 5 – 3i + 3i + 4
= 9 + 0i
−i 3 − 5i
3. 3.1 ____
3 − 5i
3.2 ____
2+i
−i 3 + 5i 3 − 5i ___
= ____ × ____
3 − 5i 3 + 5i
= ____
2+i
× 22 −− ii
2 (3 − 5i)(2 − i)
= _____________
−3i − 5i
2 = _________
(2 + i)(2 − i)
9 + 15 i – 15 i − 25 i
− 3 i − 5(– 1) 2
=_
9 − 25 (−1)
= ___________
6 − 3i − 10i + 5 i
2
4−i
6 − 13i + 5(−1)
=_
− 3i + 5
9 + 25 = __________
4 − (−1)
=_
5 − 3i
34
1 − 13i
= _____
5
=_5 _3
34 – 34 i or = _15 – __
13
5 i or
=_
− 5 + 9i − 2
26
= __
26 ___
18
20 + 20i
=_
− 7 + 9i
26
= __
13 __ 9
10 + 10 i
= −_
7
+_9
26 26
i = 1,3 + 0,9i
or – 0,269 + 0,346i
__
√2 + 5i__
______
3.5
−3i + √2
__
2 + 5i
√__
= _____
√2 − 3i
__ __
2 + 5i _____
√__
= _____ × √__2 + 3i
√2 − 3i √2 + 3i
__ __
2
2 + 3 √2 i + 5 √2 i + 15i
= _______________ 2
2 − 9i
__
2 + 8 √2 i − 15
= _________
2+9
__
= − __ + 8√2 i or
13 ___
11 11
= – 1,182 + 1,029i
= ________
1
(3 − i)(3 − i)
=_
2−i
2
4 + 4i + i
= _______
1
2 =_ 2−i
4 + 4i − 1
9 − 6i + i
= ______
1
9 − 6i − 1
=_2−i 3 − 4i
× ____
3 + 4 i 3 − 4i
2
= ____
1 8 + 6i
× ____
8 − 6i 8 + 6i
=_
6 − 8i − 3i + 4i
2
9 − 16 i
8 + 6i
= ______ 2 =_
6 − 11 i − 4
9 + 16
64 − 36i
8 + 6i
= _____
64 + 36
=_
2 − 11 i
25
= ___
8 ___
6
100 + 100i =_
2 _
11
25 – 25 i or
(3 − 2i)(−2 + i) (5 − 4i)(3 + i)
4.3 __________
3−i
4.4 _________
3
i
2 2
= ___________
−6 + 3i + 4i − 2i
3−i
= ___________
15 + 5i − 12i − 4i
2
(i )i
−6 + 7i − 2(−1)
= __________
3−i
= _______
15 − 7i + 4
(−1)i
−4 + 7i ___ 19 − 7i _i
= _____
3−i
× 33 ++ ii = _____
−i
×i
2 2
= ____________
−12 − 4i + 21i + 7i
2 = ______
19i − 7 i
2
9−i −i
19i − 7(−1)
= _________
−12 + 17i − 7
9+1 = _______
−(−1)
= – __
19 __
+ 17 i
10 10
= _____
19i + 7
1
3
(2 + i)
2 − 3i ___
4.5 ____
4−i
– 21 +− ii 4.6 _________
(3 − 4i)(2 + i)
= (____ × 44 ++ ii ) – (___
2 + i 2 − i)
(2 + i)2
2 − 3i ___
4−i
1 − i ___
× 2−i = _____
3 − 4i
= (________ )–( )
2
_______
2 (2 + i)(2 + i)
8 − 10i − 3i
2
2 − 3i + i
2 = ________
3 − 4i
16 − i 4−i
= (_______ )–( 5 )
2
8 − 10i + 3 ______
2 − 3i − 1
= _______
4 + 4i + i
17 3 − 4i
= (______
17 ) – ( 5 )
11 − 10i 1 − 3i
____ = ______
4 + 4i − 1
3 − 4i
= __
11 __10 _1 _3
17 – 17 i – 5 + 5 i
3 + 4i ____
= ____ × 3 + 4i
3 − 4i 3 + 4i
2
= 0,447 + 0,012i = _________
9 + 24i + 16i
2
9 − 16i
9 + 24i + 16(−1)
= __________
9 − 16(−1)
−7 + 24i
= ______
25
= __
− 7 ___
24
25 + 25 i
= – 0,28 + 0,96i
2i 20 − i 19
4.7 ______
3i − 1
3i
4.8 _____2
(1 − i)
2 10 2 9
2(i ) − (i ) i 3i
= _________
3i − 1
= ________
(1 − i)(1 − i)
2(−1) 10 − (−1) 9i 3i
= __________
3i − 1
= _______
2
1 − 2i + i
= ____
2+i
3i − 1
3i
= ________
1 − 2i + (−1)
2+i − 1 − 3i 3i 2i
= _____
−1 + 3i
× _____
−1 − 3i
= ___ × __
−2i 2i
2 2
= __________
−2 − 6i − i − 3i
2 = ___
6i
2
1 − 9i −4i
6(−1)
= _______
−2 − 7i + 3
1+9 = _____
−4(−1)
1 − 7i
= ____
10 = __
−6
4
= __
1 ___
7
10 – 10i or = − _32 + 0i
= 0,1 – 0,7i
__ (2 − 2i)(3 + i) ____
√2 + 3i__ 4.10 _________ – 21++3ii
4.9 ______ −i + 2
−3i + √2
__ __ 2
2 + 3i _____ = __________
6 + 2i − 6i − 2i 2 + 3i
– ____
√__
= _____ × √2__ + 3i 2−i 1+i
√2 − 3i √2 + 3i
__ __ 6 − 4i − 2(−1)
2 + 3√2 i + 3 √2 i + 9 i 2
= _________ 2 + 3i
– ____
= ______________ 2
2−i 1+i
2 − 9i
= (___ × 82−−4ii ) – (____ × 11 −− ii )
__
2 + i ____ 2 + 3i ___
2 + 6√2 i + 9(−1)
= ___________
2 − 9(−1)
2+i 1+i
= (___________ )–( )
__ 2 2
2 + 6√2 i − 9
16 − 8i + 8i − 4i __________
2 − 2i + 3i − 3i
= ________ 11
2
4−i 2
1–i
= (____
5 )–( 2 )
_
− 7 + 6 √2 i
16 + 4 ______
2+i+3
=_ 11
__
6√2 = __
20 _ 5 _ 1
5 – 2 – 2i
= − __
7
+ ___
11 i 11
= __
15 _ 1
10 – 2 i
= 1_12 – _12 i
z ×z
5. zp = _
z + z + z3
1 2
1 2
=_
–113 ___
123i
74 + 74 – 2 – 3i
= –3,53 – 1,34i
1. Im
z6 = 4i + 2
4
3 z5 = 3i
z2 = – 2 + 2i
2
Re
–4 –3 –2 –1 1 2 3 4
z3 = – 2 – i –1
–2 z1 = 4 – 2i
z4 = – 2i
–3
–4
2. Im
4
z2 = 3i _
3 z5 = 3i + 4
_
z3 = –3 + 2i _
2 z6 = 12 + 32i
1 _
z1 = 4 + i
z4 = i
Re
–4 –3 –2 –1 1 2 3 4
z4 = –i _
–1 z1 = 4 – i
–2 z6= 1 – 3i
2 2
z3 = –3 – 2i _
z2 = –3i
–3 z5 = 4 – 3i
–4
1. 1.1 z = – 2 + 3i 1.2 z = – 2
1.3 z = – i – 3 1.4 z = 2 – 4i
1.5 z = i + 6 1.6 z = – 5i
2. 2.1 z = 5 + 3i _________
r(mod) = √(5)2 + (3)2 Im
______
= √25 + 9
___
= √34 3
z = 5 + 3i
= 5,831
1
θ(arg) = tan–1(_ab ) 5,
83
)=
= tan–1 (_35 ) mo
d
r(
= 30,964° θ(arg) = 30,964°
Re
r |__
θ = 5,831 |_______
30,964° 5
2.2 z = 4i – 2
Im
∴ z = – 2 +__________
4i
r(mod) = √(−2)2 + (4)2 z = – 2 + 4i
______ 4
= √4 + 16
___ r (m
= √20 od
)=
= 4,472 4,
47
θ(arg) = 116,565°
θ(arg) = 180° – tan ( 2 )
–1 _4 2
= 180° – 63,435° ∞
Re
= 116,565° –2
r |__
θ = 4,472 |________
116,565°
2.3 z = – 5
Im
∴ z = – 5 +__________
0i
r(mod) = √(−5)2 + (0)2
___
= √25
=5
θ(arg) = 180° – tan–1 (_05 ) θ(arg) = 180°
z = – 5 + 0i
= 180° – 0° Re
= 180° – 5 r (mod) = 5
r |__
θ = 5 |____
180°
2.4 z = – 3i Im
∴ z = 0 – 3i__________
r(mod) = √(0)2 + (−3)2
__
= √9 θ(arg) = 270°
=3
Re
θ(arg) = 270° r (mod) = 3
r |__
θ = 3 |____
270° –3 z = 0 – 3i
3
__
2.5 z = 3√8 – 5i
∴ z = 6 – 5i
__________ Im
r(mod) = √(6)2 + (−5)2 θ(arg) = 320,194°
_______
= √36 + 25 6
__ Re
___ ∞ 2
= √61 r (m √3
od
= 7,81 )=
7,
4 quadrant: θ(arg) = 360° – tan–1 (_56 )
th 81
= 360° – 39,806°
–5
= 320,194° z = 6 – 5i
∴ r |__
θ = 7,81 |________
320,194°
____________
__ __
√3
– 1 __
3. 3.1 r(mod) = √(−1) + (− √3 )
2 2
3.2 θ(arg) = 180° + tan 1
_____
= √1 + 3 = 180° + 60°
=2 = 240°
3.3 2 |____
240° 3.4 Im
θ(arg) = 240°
Re
–1
2
=
od)
m
r(
__
__ – √3
z = – 1 – √3 i
___________
4. 4.1 z = – 2 – 4i 4.2 r(mod) = √(−2)2 + (−4)2
___
= √20
= 4,472
4.3 θ(arg) = 180° + tan–1 (_42 ) 4.4 Negative argument = – 116,565°
= 243,435°
45°
1
60°
1
__
1.3 √3 (cos 60° + i sin 60°) 1.4 45°
|___
__ __
√3
= √3 (_12 + i.__ = 1(cos 45° + i sin 45°)
__ 2)
√3
= __ _3 = 1(__
1__ __
+ 1__ i)
2 + 2i √2 √2
= __
1__ __
+ 1__ i or
√2 √2
__ __
√2 √2
= __ + __
2 i 2
__
√3
1.5 __
2 cis 60°
__
√3
= __
2 (cos 60° + i sin 60°)
__ __
√3 _ √3
= __ 1 __
2 ( 2 + i. 2 )
__
√3
= __ _3
4 + 4i
2. 2.1 4 |____
135° 2.2 90°
|___
= 4(cos 135° + i sin 135°) = 1(cos 90° + i sin 90°)
= 4(– 0,707 + i.0,707) =0+i
= – 2,828 + 2,828i
__
2.3 2 |______
− 300° 2.4 √2 (cos 140° + i sin 140°)
__
= 2(cos(– 300°) + i sin(– 300°)) = √2 (– 0,766 + i.0,643)
= 2(0,5 + i.0,866) = – 1,083 + 0,909i
= 1 + 1,732i
= 1,619 |____
170°
2 cis 55° × 6,2 cis 67,3°
2.5 ________________
0,2 cis 22° × 4 cis (–220°)
55° × 6,2 |_____
2 |___ 67,3°
= _____________
0,2 |___
22° × 4 | − 220°
______
2 × 6,2 |_________
55° + 67,3°
= _____________
0,2 × 4 | 22° − 220°
_________
12,4
= _____
0,8 |______________
122,3° − (− 198°)
= 15,5 |______
320,3°
_
3. 3.1 √3 (cos 30° + i sin 30°) 3.2 45°
|___
_ _
= √3 (____
2 + i. 2 )
√3 __1 = 1(cos 45° + i sin 45°)
= 1(____
1_
+ i.____
1_
)
_
√3
= __32 + ____
2 i
√2 √2 _ _
√2 √2
= ____
1_ ____
+ 1_ i or ____2+ ____
2 i
√2 √2
_ _
3.3 √3 |___
60° + √2 |___
45°
_ _
= √3 (cos 60° + i sin 60°) + √2 (____ + 1_ i)
1_ ____
_
√2 √2
_ _
= √3 (__12 + ____
2 i) + √2 ( √2 + √2 i)
√3 ____
1_ ____
1_
_ _ _ _
√3 √9 2 2
= ____ ____
2 + 2 i+
____
√_
+ ____
√_
i
_
√2 √2
√3
= ____
2 + __3 i + 1 + i
2
_
= (____
2 + 1) + ( 2 + 1)i
√3 __3
_
√3 + 2 __
= ________
2 + 5i 2
3.4 3 |___
45° .2 cis −15° 3.5 ________
9 cis 90°
__1
3 cis 30°
= 3 × 2 |________
45° − 15°
= __9__1 |________
90° − 30°
= 6 |___
30° 3
= ___
16
3 |____________
105° − (− 75°)
180°
= 5,333 |____
= 5,333(cos 180° + i sin 180°)
= − 5,333 + 0i
4.4 ___________
2 cis 40° .3 cis 60°
3 | 20° .2 − 35°
___
2 |___
40° .3 |___
60°
= __________
3 | 20° .2 | − 35°
___ _____
2 × 3 |________
40° + 60°
= ____________
3 × 2 |___________
20° + (− 35°)
6 |____
100°
= _____
6 | − 15°
_____
= |____________
100° − (− 15°)
= |____
115°
= (cos 115° + i sin 115°)
= − 0,423 + 0,906i
3 |____
130° .4 |___40°
4.5 __________
6 | 20° .8 | 80°
___ ___
3 × 4 |_________
130° + 40°
= ___________
6 × 8 | 20° + 80°
________
12 |____
170°
= ______
48 | 100°
____
= ___
12
| 170° − 100°
48 __________
70°
= 0,25 |___
= 0,25(cos 70° + i sin 70°)
= 0,086 + 0,235i
5. _________
2+i
10 cis 20°
_ Im
√5 |_______
26,565°
= ________
10 |___
20°
√5
_
1
z=2+i
= ____
10 26,565° − 20°
= 0,224 |______
6,565°
______________________ )
r(mod) = √(2) 2 + (− 1)2 od
_ r (m
= √5
θ(arg)
θ(arg) = tan −1(__12 ) Re
2
= 26,565°
_
∴ r |__θ = √5 |_______
26,565°
6. (−3 − i)(−2 + i)
(−3 − i) _________________________ (−2 + i) ______________________
r(mod) = √(− 3)2 + (− 1)2 r(mod) = √(− 2)2 + (1)2
_ _
= √9 + 1 = √4 + 1
_ _
= √10 = √5
= 3,162 = 2,236
θ(arg) = 180° + tan −1(__13 ) θ(arg) = 180° − tan −1(__21 )
= 198,435° = 153,435°
∴ r |__θ .r |__θ Im
= 3,162 . 2,236 |_________________
198,435° + 153,435°
z = –2 + i
= 7,071 |_______
351,78° 1
Re
–3 –2 –1
–1
z = –3 – i
1. 1.1 (3 |___
50° )4 1.2 (2,5 cis 60,3°)5
= 3 4 |______
50° × 4 = (2,5 |_____
60,3° )5
200°
= 81 |____ = 2,5 5 |________
60,3° × 5
= 97,656 |______
301,5°
_ (5 |___
85° ) 3
= ____
125
| 255° − 40°
4 _________
= 31,25 215°
3
4 cis 45° × (3 cis 60°)
1.5 ____________________
2
(2 cis −50°)
= ____________________
4 cis 45° × 27 cis 180°
4 cis −100°
4 × 27 |_________
45° + 180°
= ____________
4 | − 100°
______
= ____
108
4 |_____________
225° − (− 100°)
325°
= 27 |____
2. z1 = 21 cis 120°
z2 = 3 cis 80°
z3 = |______
− 108°
(z1) (z2)
3
________ (21 |____
120° ) (3 |___
80° )3
= ___________
(z3) ( |______
− 108° ) 2
2
(21 |____
120° )(27 |____
240° )
= ______________
| − 216° ______
21 × 27 |__________
120° + 240°
= _____________
| − 216°
______
567 |____
360°
= _______
| − 216°
______
= 567 |__________
360° + 216°
576°
= 567 |____
216°
= 567 |____
3.1 (_____
25° )
× (_____
190° )
4 −3
6 |___
50° 2 |___
60°
3. 3 |___ 4 |____
3.2 [2(cos 30° + i sin 30°)] 3
= (2 |___
30° )3
= (_____
25° )
× (_____
60° )
4 3
6 |___
50° 4 |____
190°
3 |___ 2 |___ = 2 3 |______
30° × 3
= (2 |___
25° )4 × (2 |____
130° )3 = 8 |___
90°
25° × 4 )(2 3 |_______
= (2 4 |______ 130° × 3 )
100° )(8 |____
= (16 |____ 390° )
100° + 390°
= 16 × 8 |__________
490°
= 128 |____
130°
= 128 |____
3.3 (________
2 cis 35° )
× (_________
4 cis 120° )
3 −2
3 cis 78° 3 cis 25°
= (________
2 cis 35° )
× (_________
3 cis 25° )
3 2
3 cis 78° 4 cis 120°
= (________) × ( 2| )
3 3 |______
78° × 3
________ 4 2 |_______
120° × 2
3
|2 ______
35° × 3 3 ______
25° × 2
27 |____
234° 16 |____
240°
= ______
8 | 105°
× ______
9 | 50°
____ ___
= (___
27
| 234° − 105° ) × (___
8 __________
16
| 240° − 50° )
9 _________
= (___
27
| 129° )(___
8 ____
16
| 190° )
9 ____
8 )( 9 ) __________
= (___
27 ___
16
| 129° + 190°
= 6 |____
319°
(¯ z2) 2
z1. ¯
4. 4.1 _____
z
× z3
4
2
(‾ − 105° )
__1
| 35° . 5 |______ _
3 ___
_____________
‾
= × √2 |___
45°
4 |____
210°
2
( 3 × 5 _________
35° − 105° )
__
1
‾ | _
= _____________
‾
× √2 |___
45°
4 |____
210°
( 3 |_____
− 70° )
2
__5 _
= _______
‾
× √2 |___
45°
4 |____
210°
( 3 |___
70° )
2
__5 _
‾
= _______ × √2 |___
45°
4 |______
− 210°
( 3 ) |______
2
__52 × 70° _
= _________ × √2 |___
4 |______
− 210°
45°
___
25
140°
|____ _
= ______
9
4 | − 210°
× √2 |___
45°
______
___
25 _
= ___
9
| 140° + 210° × √2 |___
4 __________ 45°
_
= ___
25
| 350° × √2 |___
36 ____
45°
_
= ___
25
× 2 | 350° + 45°
36 √ _________
_
25 √2
= _______ | 395°
36 ____
_
25 √2
= _______
36
35°
|___
(z1 + z3)
4
4.2 _________
_
z ÷ __
1
z 2 4
_
( 3 |___ 45° )
4
__1 35° + √2 |___
‾
= _____________ ÷ _____1
4 | 210°
| 5 ______
− 105° ____
_
[ 3(cos 35° + i sin 35°) + √2 (cos 45° + i sin 45°)]
4
__1
‾
= _____________________________ ÷ _____
1
4 |____
210°
5 |______
− 105°
_ _
[( 3 cos 35° + √2 cos 45°) + i( 3 sin 35° + √2 sin 45°)]
4
__1 __1
‾
= ________________________________ ÷ _____ 1
4 |____
210°
5 |______
− 105°
[1,273 + 1,191i] 4
= __________
5 | 105°
× 4 |____
210°
____
(1,743 |_______
43,097° ) 4
= ____________
5 | 105°
× 4 |____
210°
____
(1,743)4 |__________
4 × 43,097°
= ______________
5 | 105°
× 4 |____
210°
____
9,239 |________
172,390°
= __________
5 | 105°
× 4 |____
210°
____
9,239
= ______
5 |_____________
172,390° − 105° × 4 |____
210°
210°
= 1,848 67,390° × 4 |____
= 1,848 × 4 |____________
67,390° + 210°
= 7,391 |________
277,390°
1+i
2.3 (5 – 2i)(x + yi) = ___
1−i
1 + i ___
5x + 5yi – 2xi – 2yi 2 = ___ × 1+i
1−i 1+i
2
5x + 5yi – 2xi – 2y(– 1) = _______
1 + 2i + i
2
1−i
1 + 2i + (−1)
________
(5x + 2y) + i(5y – 2x) =
1 − i2
2i
__
= 2
∴ (5x + 2y) + i(5y – 2x) = 0 + i
∴ 5x + 2y = 0; 5y – 2x = 1
5x = – 2y
x = − _25 y
∴ 5y – 2(− _25 ) y = 1
5y + _45 y = 1
__
29
y=1
5
y = __
5
29 or 0,172
∴ x = − _25(__
29 )
5
x = – __
2
29
= – 0,69
∴ (– 0,69; 0,172) or (– __
29 ; 29 )
2 __ 5
2y − i
2 + i ____
___
2.4 3−i
= x
2y
3+i
× 2 + i = __ – _1 i
3 + i ___
___
3−i x x
_______ 2y 2
6 + 5i + i
2 = __ – _1 i
x x
9−i
2y
6 + 5i + (−1) __
________
9 − (−1)
= – _1 i x x
2y
10 = – _1 i
5 + 5i __
____
x x
2y _
_1 + _1 i = __
2 2 – 1ix x
2y
∴ _12 = __
x;
_1 = _1
2 x
∴x=2
∴ 2y = _12 . 2
y = _12
∴ (2; _12 )
(3 + 5i)(2 − 5i)
3. 3.1 a + bi
(3 – 4i)2 = ____
2 3.2 (a + bi) = __________
1 − 3i
i
a + bi
____
(3 – 4i) (3 – 4i) = (−1) a + bi = ____________
6 − 15i + 10i − 25 i 2
1 − 3i
9 – 24i + 16i 2 = – a – bi 6 − 5i − 25(−1)
= __________
1 − 3i
9 – 24i + 16(– 1) = – a – bi
– 7 – 24i = – a – bi = _______
6 − 5i + 25
1 − 3i
∴ – 7 = – a; – 24 = – b 31 − 5i ____
= _____ × 11 ++ 3i
3i
1 − 3i
∴ a = 7 and b = 24 2
= ____________
31 + 93i − 5i − 15 i
2
1−9i
31 + 88i − 15(−1)
___________
= 1 − 9(−1)
a + bi = __
46 __88
10 + 10 i
∴ a = __
46
10 and b = __
88
10
a = 4,6 and b = 8,8
5
3.3 a – bi = ____
5−i
1+i
5 − (i 2)2i
= ______
1+i
5 − (−1)2i
= ______
1+i
5 − i ___
= ___ × 1−i
1+i 1−i
2
= _______
5 − 6i + i
2
1−i
5 − 6i + (−1)
________
= 1 − (−1)
= _42 – _62 i
∴ a – bi = 2 – 3i
a = 2; – b = – 3
b=3
2 − 3i ____
3.4 a + bi = ____
1+i
+ 11 −+ 2i
2i
a + bi = (________ )+( )
2 2
2 − 5i + 3 i ________
1 − 4i + 4i
2 2
1−i 1 − 4i
a + bi = (_________
1 − (−1) ) ( 1 − 4(−1) )
2 − 5i + 3(−1) 1 − 4i + 4(−1)
+ _________
2 − 2 i + (− 5 − 5 i)
a + bi = __
−1 _ 5 _3 _4
a + bi = − __
11 __33
10 – 10 i
∴ a = − __
11
10 and b = − __
33
10
= – 1,1 = – 3,3
4. x + y + xi – yi = 8,944 63,436°
RHS: 8,944 63,436° = r(cos θ + i sin θ)
= 8,944(cos 63,436° + i sin 63,436°)
= 8,944(0,447 + i 0,894)
= 3,998 + 8,044i
≈ 4 + 8i
LHS: x + y + xi – yi = (x + y) + (x – y)i
∴ (x + y) + (x – y)i = 4 + 8i
x+y=4 … (1)
x–y=8 … (2)
2x = 12 … (3)
∴x=6
Substitute x = 6 into (1):
6+y=4
∴ y = –2
∴ (x; y) = (6 ; – 2)
5. |a +i b |
2a − b = − 5 − 7i
2
(a + b)(2) − (2a − b)(i) = − 5 − 7i
(2a + 2b) − (2a − b)i = − 5 − 7i
2a + 2b = − 5 and −(2a − b) = − 7
2a + 2(2a − 7) = − 5 b = 2a − 7
2a + 4a − 14 = − 5 = 2(_32 ) − 7
6a − 14 = − 5 =3−7
6a = 9 = –4
a = _32
a = _32 ; b = − 4
____ ___
1.2 (5 – √−50 ) – (3 – √−8 )
____ ___ __ ___
= (5 – √25.2 . √−1 ) – (3 – √8 . √−1 )
__ ___
= 5 – 5√2 i – 3 + √4.2 i
__ __
= 5 – 5√2 i – 3 + 2√2 i
__
= 2 – 3√2 i or 2 – 4,243i (3)
___ _____ ___
1.3 √−9 – √−169 + √49
__ ___ ____ ___
= √9 . √−1 – √169 . √−1 + 7
= 3i – 13i + 7
= 7 – 10i (2)
−3 + 6i
2. z = _____
3
∴ z = – 1 + 2i
2.1 z¯ = – 1 – 2i
−3 − 6i
or z¯ = _____
3 (2)
2.2 and 2.5
Im
z = – 1 + 2i
2
r (m
od
).2
,2
θ(arg) = 116,565°
36
Re
–1
_ –2
z = – 1 – 2i
(3)
__________
2.3 r (mod) = √(−1)2 + (2)2
_____
= √1 + 4
__
= √5
= 2,236 (2)
2.4 θ(arg) = 180° – tan–1(_21 )
= 116,565° (2)
2.5 On Argand diagram (2)
2.6 z = 2,236 |________
116,565° (2)
= ________
−12 + 5i − 3
10
−15 + 5i
= ______
10
60°
1 (3)
5. 5.1 2 cis 120° + 3 cis 65°
= 2(cos 120° + i sin 120°) + 3(cos 65° + i sin 65°)
= 2(– 0,5 + i.0,866) + 3(0,423 + i.0,906)
= – 1 + 1,732i + 1,268 + 2,72i
= 0,268 + 4,452i (3)
5.2 ________
5__cis 145°
√2 cis −45°
=_
5_
145° − (−45°)
√2
3 + j2
_____________
= 2 + j3 + 3 + j
3 + (– 1)
= 5___________
( )
– j2 j + j
= ____________
2
5 – (– 1)j + j
5 – 2j
=_ 2 _
5 + 2j × 5 – 2j
10 – 4j
=_
25 – 4 j 2
10 – 4j
= ___________
25 – 4(– 1)
10 – 4j
=_
29
_–_
= 10 4
29 29 j
____________________
r = √(10
| |
29) (29)
_ 2+ _4 2
________________________
= √0,119 + 0,019
= 0,371
θ = tan –1(29
_)
_
4
_
10
29
–1
= tan 0,4
= 21,8°
∴ z = 0,371 cis 21,8° (5)
TOTAL: [40]
MODULE
3 Sketch graphs
After they have completed this module, students should be able to:
• distinguish between a dependent and an independent variable;
• define a domain and range;
• state the difference and distinguish between functions and relations;
• identify the relevant functions that relate to their graphs;
• identify points of symmetry with reference to an axis or the lines y = ± x;
• calculate inverse functions and relations; and
• draw neat sketch graphs of the following functions/relations:
– ax + by + c = 0 _ _
– x + y = r , y = ± √r − x , x = ± √r 2 − y 2
2 2 2 2 2
– xy = c
2
x
_
2 y
– ±_=1
a2 b2
– y = k a nx, y = k e nx, y = k log a(nx) and y = k log e(nx):
– y = k a nx, with a > 0 and a and n positive integers
– y = k a nx, with 0 < a < 1 rational and n a positive integer
– y = k log e(nx), with n a positive integer
– y = k log a(nx), with a > 1 and a and n positive integers
– y = k log a(nx), with 0 < a < 1 rational and n a positive integer
– y = ax 2 + bx + c.
Introduction
A graph is a visual representation of the relations between certain variable quantities, or
the connections that exist between a set of points plotted with reference to a set of axes,
namely the x- and y-axes.
In this module we will focus on equations and graphs of the following relations:
1 Straight line ax + by + c = 0
_ _
2 Circle x 2 + y 2 = r 2; y = ± √r 2 − x 2 ; x = ± √r 2 − y 2
2
3 Ellipse _
x2 _
y
2 ± 2 = 1
a b
4 Rectangular hyperbola xy = c
5 Exponential y = k a nx; y = k e nx; y = k log a(nx) and y = k log e(nx)
6 Logarithmic y = a x 2 + bx + c
7 Parabola y = a x 3 + b x 2 + cx + d
Pre-knowledge
Cartesian plane
In previous years students learnt about the Cartesian plane as a two-dimensional
plane that is formed by the intersection of two perpendicular lines. The horizontal
line is known as the x-axis, and the vertical line is known as the y-axis.
1 C(0; 1)
E(0; 0) B(3; 0)
0 x
–3 –2 –1 1 2 3
–1
–2
D(–3; –2)
–3
y = mx + c
m = gradient (slope) c = y-intercept
Gradient (m):
y y
m = (+)
x x
m = (–1)
y y
m = (∞)
m = (0)
x x
Parallel lines: m1 = m2
Perpendicular lines: m1.m2 = − 1
• _
1n
= a −n, for example _12 = 3 −2
a 3
• _
1−n
= a n, for example _ 2
−2 = 4 , and so on.
1
a 4
Definition of a logarithm
If x = a y • Exponential form
then y = log ax • Logarithmic form; x > 0; a > 0 and a ≠ 1
For example: 4 3 = 64
∴ log 464 = 3
_
2a
Note
If a < 0, then there is a maximum turning point (∩) and if a > 0, then there is a
minimum turning point (∪).
x 0 x
0 (–r; 0) (r; 0)
Range: {y, y ∈ ℝ} Range: {y: –r ≤ y ≤ r,
y ∈ ℝ} (0; –r)
Range: (–∞; ∞) Range: [–r; r]
0 x
0 x (–r; 0) (r; 0)
Range: {y: 0 ≤ y ≤ r, (–r; 0) (r; 0) Range: {y: –r ≤ y ≤ 0,
y ∈ ℝ} y ∈ ℝ} (0; –r)
Range: [0; r] Range: [–r; 0]
(–r; 0) 0 x
0 x
Range: {y: –r ≤ y ≤ r, Range: {y: y ∈ℝ,
y ∈ℝ} y ≠ 0}
(0; –r)
Range: [–r; r] Range: (–∞; 0) ∪ (0; ∞)
0 x
(–a; 0) (a; 0) 0 x
(–a; 0) (a; 0)
Range: {y: –b ≤ y ≤ b, (0; –b) Range: {y: –b ≤ y ≤ b,
y ∈ℝ} y ∈ℝ}
Range: [–b; b] Range: [–b; b] (0; –b)
0 x
Range: {y: y ∈ℝ} Range: {y: y ∈ℝ} 0 x
Range: (–∞; ∞) Range: (–∞; ∞)
1. Function 2. Non-function
3. Function 4. Non-function
5. Function 6. Non-function
7. Non-function 8. Function
9. Function 10. Function
__
(–3; 6√2 ) y = –x y=x
5
13
(__
2
; 2)
y=0
0 x 0 x
10 –5 5
13
(–__
2
; –2)
__ –5
(–3; –6√2 ) ______
x = – √81 – y 2
xy = 13
__ __
2.2 x-axis: ( −8; −3√5 ) ↔ ( −8; 3√5 )
__ __
2.3 y = x: ( 52; −10 ) ↔ ( −10; 52 )
_ _
y y
2 2
16y - 9x = 144
y = –x y=x
3 x=0
y = – 4x _
10 y = _34x 10
__
(–8; 3√5 ) (–10; _52 )
y=0
0 x 0 x
–10 10 –10 10
__
(–8; –3√5 )
__ (10; – _52 )
(8; –3√5 )
–10 –10 (_25 ; –10)
–xy – 25 = 0
______
3. 3.1 y – √75 – x2 = 0
________
y – √75 – (–x2 ) = 0
______
y – √75 – x2 = 0
Since the equation is equivalent, the graph is symmetrical about the y-axis
The tests for symmetry about the x-axis, y = x and y = –x do not yield an
equivalent equation, therefore are not lines of symmetry.
3.2 3x2 + y2 = 2
3x2 + (–y2) = 2
3x2 + y2 = 2
Since the equation is equivalent, the graph is symmetrical about the x-axis.
3x2 + y2 = 2
3(–x2) + y2 = 2
3x2 + y2 = 2
Since the equation is equivalent, the graph is symmetrical about the y-axis.
The test for symmetry about the line y = x and the line y = –x do not yield an
equivalent equation, therefore are not lines of symmetry.
3.3 xy – 9 = 0
(y)(x) – 9 = 0
yx – 9 = 0
xy – 9 = 0
Since the equation is equivalent, the graph is symmetrical about the y = x.
xy – 9 = 0
(–y)(–x) – 9 = 0
yx – 9 = 0
xy – 9 = 0
Since the equation is equivalent, the graph is symmetrical about the y = –x.
The tests for symmetry about the x-axis and y-axis do not yield an equivalent
equation, therefore are not lines of symmetry.
2
x
3.4 _
5
– y2 = 1
2
x
_
5
– (–y)2 = 1
2
x
_
5
– y2 = 1
Since the equation is equivalent, the graph is symmetrical about the x-axis.
2
x
_
5
– y2 = 1
(–x)2
_
5
– y2 = 1
2
x
_
5
– y2 = 1
Since the equation is equivalent, the graph is symmetrical about the y-axis.
The tests for symmetry about the line x = y and line y = –x do not yield an
equivalent equation, therefore are not lines of symmetry.
2.3 x 2 + y 2 = 49 2.4 y = 3x
_____________
y = ± √49 − x 2 f −1(x) = 3 y
_____________
∴ x = 3y
∴ f −1(x) = ± √49 − y 2
_____________ y = log 3x
x = ± √49 − y 2
∴ x 2 = 49 − y 2
x 2 + y 2 = 49
2
y
_
2
2.5 4
+_
x
=125
2.6 y = − 3 x 2
___________
2.7 x = − y 2.8 x = √16 − y 2
1. a) i) y b) i) y = _2x
y = 2x
0 x
2. a) i) y b) i) x = –2
0 x
(0; –2)
y = –2
3. a) i) y b) i) y=4
x=4
(4; 0)
0 x
4. a) i) y b) i) y=x–3
10
(0; 3)
0 x
–10 (–3; 0) 10
y=x+3 –10
5. a) i) y b) i) y = –2x + 4
y = – _21x + 2 10
(0; 2)
0 x
–10 (4; 0) 10
–10
6. a) i) y b) i) y = _32 x + 6
10
–2x + 3y + 12 = 0
(6; 0) x
0
–10 10
(0; –4)
–10
7. a) i) y b) i) y = –_54 x – _
15
4
4x + 5y + 15 = 0 10
0 x
15
–10 (– _ ; 0) 10
4
(0; –3)
–10
8. a) i) y b) i) y = _54 x – 5
y
x+ _ = 1
–_
5 4
10
(0; 4)
0 x
–10 (0; –5) 10
–10
9. a) i) y b) i) y = –_13 x + 2
10
(0; 6)
(2; 0)
0 x
–10 10
–10 x + _y = 1
_
2 6
10
(_72 ; 0)
0 x
–10 7 10
(0; – 3 )
_
–10
2 3
_
y+1
=_
x–2
11. a) i) y b) i) y = –_13 x – _
11
3
x
+4
_
= – _13
y–1 10
11
(– _
3
; 0)
0 x
–10 10
–10
(0; –11)
12. a) i) y b) i) y = _12 x – 5
(0; 10)
10
(–5; 0)
0 x
–10 10
–10
2 1
_
y–4
–_
x+3
=0
13. a) i) y b) i) y = –x + 7
1 1
_
5–x
–_
2–y
=0
10
(0; 7)
0 x
–10 (7; 0) 10
–10
14. a) i) y b) i) y = –x
0 x
y = –x
1. a) i) y b) i) x2 + y2 = 16
5
(0; 4)
(–4; 0) (4; 0)
0 x
–5 5
x 2 + y 2 = 16
–5 (0; –4)
2. a) i) y b) i) x2 + y2 = 23
_
(0; √23 ) 5
x 2 + y 2 = 23
_ _
(– √23 ; 0) ( √23 ; 0)
0 x
–5 5
_
–5 (0; – √23 )
_ _ _ _
ii) [−√23 ;√23 ] ii) [−√23 ;√23 ]
_ _ _ _
iii) [−√23 ;√23 ] iii) [−√23 ;√23 ]
iv) Non-function iv) Non-function
v) Continuous v) Continuous
3. a) i) y b) i) x2 + y2 = 49
(0; 7)
0 x
(–7; 0) –5 5 (7; 0)
x 2 – 49 = – y 2 –5
(0; –7)
4. a) i) y b) i) x2 + y2 = 19
_
(0; √19 ) 5
– x 2 – y 2 + 19 = 0
_ _
(– √19 ; 0) ( √19 ; 0)
0 x
–5 5
_
–5 (0; – √19 )
_ _ _ _
ii) [−√19 ;√19 ] ii) [–√19 ;√19 ]
_ _ _ _
iii) [−√19 ;√19 ] iii) [−√19 ;√19 ]
iv) Non-function iv) Non-function
v) Continuous v) Continuous
5. a) i) y b) i) x2 + y2 = 25
(0; 5)
0 x
(–5; 0) (5; 0)
4x 2 + 4y 2 = 100
(0; –5)
6. a) i) y b) i) x2 + y2 = 45
_
(0; 3√5 )
–5x 2 + 225 –5y 2 = 0
5
_ 0 _x
(–3√5 ; 0) –5 5 (3√5 ; 0)
–5
_
(0; –3√5 )
_ _ _ _
ii) [−3√5 ; 3√5 ] ii) [−3√5 ;3√5 ]
_ _ _ _
iii) [−3√5 ; 3√5 ] iii) [−3√5 ; 3√5 ]
iv) Non-function iv) Non-function
v) Continuous v) Continuous
7. a) i) y b) i) x2 + y2 = 144
(0; 12)
10
0 x
(–12; 0) –10 10 (12; 0)
y2
x2 + _ –10
_
3 3
= 48
(0; –12)
8. a) i) y b) i) x2 + y2 = 7
5
_
y2
x2 + _
(0; √7 ) _
=1
7 7
_ _
(– √7 ; 0) ( √7 ; 0)
0 x
–5 5
_
(0; – √7 )
–5
_ _ _ _
ii) [−√7 ; √7 ] ii) [−√7 ; √7 ]
_ _ _ _
iii) [−√7 ; √7 ] iii) [−√7 ; √7 ]
iv) Non-function iv) Non-function
v) Continuous v) Continuous
9. a) i) y b) i) x2 + y2 = 36
(0; 6)
0 x
(–6; 0) –5 5 (6; 0)
_
x = ±√36 – y 2 –5
(0; –6)
10. a) i) y b) i) x2 + y2 = 43
_
(0; √43 ) _
y = ±√43 – x 2
5
_ 0 _x
(–√43 ; 0) –5 5 (√43 ; 0)
–5
_
(0; –√43 )
_ _ _ _
ii) [−√43 ; √43 ] ii) [−√43 ; √43 ]
_ _ _ _
iii) [−√43 ; √43 ] iii) [−√43 ; √43 ]
iv) Non-function iv) Non-function
v) Continuous v) Continuous
(0; 9)
0 x
(–9; 0) 10
(0; –9) _
x = – √81 – y 2
_
2. a) i) y b) i) x = –√27 − y 2
_
y + √27 – x 2 = 0
_ 0 _ x
(–3√3 ; 0) (3√3 ; 0)
_
(0; –3√3 )
_ _ _
ii) [−3√3 ; 3√3 ] ii) [−3√3 ; 0]
_ _ _
iii) [−3√3 ; 0] iii) [–3√3 ; 3√3 ]
iv) Function iv) Non-function
v) Continuous v) Continuous
_
3. a) i) y b) i) x = +√100 − y 2
(0; 10)
0 x
(–10; 0) (10; 0)
_
y = +√100 – x 2
–10
_
4. a) i) y b) i) y = +√32 − x 2
_
(0; 4√2 )
5
_
x – √32 – y 2 = 0
0 _x
–5 5 (4√2 ; 0)
–5
_
(0; –4√2 )
_ _ _
ii) [0; 4√2 ] ii) [–4√2 ; 4√2 ]
_ _ _
iii) [−4√2 ; 4√2 ] iii) [0; 4√2 ]
iv) Non-function iv) Function
v) Continuous v) Continuous
_
5. a) i) y b) i) y = +√169 − x 2
(0; 13)
10
_
x = +√169 – y 2
0 x
–10 10 (13; 0)
–10
(0; –13)
_
6. a) i) y b) i) x = +√75 − y 2
_
(0; 5√3 ) 10
_ _
(– 5√3 ; 0) (5√3 ; 0)
0 x
–10 10
_
y – √75 – x 2 = 0
–10
_ _ _
ii) [–5√3 ; 5√3 ] ii) [0; 5√3 ];
_ _ _
iii) [0; 5√3 ] iii) [–5√3 ; 5√3 ]
iv) Function iv) Non-function
v) Continuous v) Continuous
_
√ 25 − y
441
7. a) i) y b) i) x=– _ 2
√
441
y=– _
25
– x2 5
21 21
(– _
5
; 0) (_
5
; 0)
0 x
–5 5
21
–5 (0; – _
5
)
[ 5 5] [ 5
ii) 21 _
–_ ; 21 ii) 21
−_ ; 0]
iii) [−_
21
5
; 0] iii) [–_
5 5]
21 _
; 21
_
8. a) i) y b) i) y = –√52 − x 2
_
(0; 2√13 )
5
_
x + √52 – y 2 = 0
_ 0 x
(–2√13 ; 0) –5 5
–5
_
(0; –2√13 )
_ _ _
ii) [−2√13 ; 0] ii) [–2√13 ; 2√13 ]
_ _ _
iii) [–2√13 ; 2√13 ] iii) [−2√13 ; 0]
iv) Non-function iv) Function
v) Continuous v) Continuous
_
9. a) i) y b) i) y = –√256 − x 2
(0; 16)
10 ______________
x + – √(16 + y)(16 – y)
0 x
(–16; 0) –10 10
–10
(0; –16)
_
10. a) i) y b) i) x = –√72 − y 2
________________
_ _
y + √(x + 6√2 )(6√2 – x) = 0
5
_ 0 _x
(– 6√2 ; 0) –5 5 (6√2 ; 0)
–5
_
(0; – 6√2 )
_ _ _
ii) [–6√2 ; 6√2 ] ii) [−6√2 ; 0]
_ _ _
iii) [−6√2 ; 0] iii) [–6√2 ; 6√2 ]
iv) Function iv) Non-function
v) Continuous v) Continuous
x 2 y2
1. a) i) y b) i) _
2 + _2 = 1
(3) (4)
5
y2
x2 + _
_
16
=1
9 4
(0; 3)
3
1
(–4; 0) (4; 0)
0 x
–5 –4 –3 –2 –1 1 2 3 4 5
–1
–2
–3
(0; –3)
–4
–5
_____________
2. a) i) y b) i) x = 4_5 √25 – y 2
(0; 4) _
y = __45 √25 – x 2
0 x
(–5; 0) (5; 0)
x 2 y2
3. a) i) y b) i) _
2 +
_
2 = 1
(5) (2)
(0; 5)
25x 2 + 4y 2 = 100 5
1
(–2; 0) (2; 0)
0 x
–5 –4 –3 –2 –1 1 2 3 4 5
–1
–2
–3
–4
–5
(0; –5)
x 2 y2
4. a) i) y b) i) _
2 + _2 = 1
(2) (3)
4
4x 2 + 9y 2 = 36 (0; 2)
3
1
(–3; 0) (3; 0)
0 x
–4 –3 –2 –1 1 2 3 4
–1
–2
–3
(0; –2)
–4
x_ 2 y2
5. a) i) b) i) _
+_
_ 2 =1
y (√2 ) 2
(√3 )
2 _
_
(0; √2 )
3x + y = 2
2 2
1,2
0,8
_ _
0,4
√ √ ; 0)
2 2
(– _
3
; 0) ( _
3
0 x
–1,6 –1,2 –0,8 –0,4 0,4 0,8 1,2 1,6
–0,4
–0,8
–1,2
_
(0; –√2 )
_ _ _ _
[– √_ √_3 ]
2 2
ii) _
3
; _
ii) [−√2 ; √2 ]
_ _
iii) [–
√ √3 ]
2 2
iii) [–√2 ; √2 ] _
3
; _
x_ 2 y2
6. a) i) y b) i) _
+_ _ =1
(√6 ) 2 (√7 ) 2
_
(0; √6 )
2 6x 2 + 7y 2 = 42
_ 0 _ x
(–√7 ; 0) –2 –1 1 2 (√7 ; 0)
–1
–2
_
(0; –√6 )
_ _ _ _
ii) [–√7 ; √7 ] ii) [–√6 ; √6 ]
_ _ _ _
iii) [–√6 ; √6 ] iii) [–√7 ; √7 ]
iv) Non-function iv) Non-function
v) Continuous v) Continuous
x 2 y2
7. a) i) y b) i) _
+_ =1
(5) (3)
2
1
_ 1 2_
0,4
0,3
9x 2 + 25y 2 = 1
(0; _15 )
0,2
0,1
(– _13 ; 0) (_13 ; 0)
0 x
–0,4 –0,3 –0,2 –0,1 0,1 0,2 0,3 0,4
–0,1
–0,2
(0; – _15 )
–0,3
–0,4
[ 3 3] [ 5 5]
ii) − _1 ; _1 ii) − _1 ; _1
x_2 y2
8. a) i) y b) i) _
(√3 ) 2
+_ =1
( √3 )
1_ 2
_
_
(0; √3 )
1 1 2
_
3
x2 + _
27
y = _19
1
1_
1_
(– _ ; 0) (_ ; 0)
√3 √3
0 x
–1 1
–1
_
(0; –√3 )
_ _
[
ii) −_ ; 1_ ];
1_ _
ii) [−√3 ; √3 ]
√3 √3
_ _
iii) [− _
√3 √3 ]
1_ _
iii) [−√3 ; √3 ] ; 1_
0 x
(–5; 0) (5; 0)
_
y = __85 √25 – x 2
(–8; 0)
x 2 y2
10. a) i) y b) i) _
2 + _2 = 1
(4) (2)
(0; 4)
4
y 2 = 16 – 4x 2
3
1
(–2; 0) (2; 0)
0 x
–4 –3 –2 –1 1 2 3 4
–1
–2
–3
–4
(0; –4)
1. a) i) y b) i) xy = 13
xy = 13 5 _ _
(√13 ; √13 )
0 x
–5 5
_ _
(–√13 ; –√13 )
–5
2. a) i) y b) i) xy = –8
_ _ 5 xy = –8
(–2√2 ; 2√2 )
5
0 x
–5
_ _
(2√2 ; –2√2 )
–5
3. a) i) y b) i) xy = 10
10
y=_x 5 _ _
(√10 ; √10 )
0 x
–5 5
_ _
(–√10 ; –√10 )
–5
4. a) i) y b) i) xy = –6
x = – _6y
_ _ 5
(–√6 ; √6 )
0 x
–5 5
_ _
(√6 ; –√6 )
–5
5. a) i) y b) i) xy = 9
xy – 9 = 0
5
(3; 3)
0 x
–5 5
(–3; –3)
–5
6. a) i) y b) i) xy = –25
–xy – 25 = 0
10
(–5; 5)
0 x
–10 10
(5; –5)
–10
7. a) i) y b) i) x = 6_y
y – _6x = 0
0 x
8. a) i) y b) i) x + 5_y = 0
0 x
y + _5x = 0
9. a) i) y b) i) xy = 36
y
_
4
– _9x = 0
10
(6; 6)
0 x
–10 10
(–6; –6)
–10
10. a) i) y b) i) xy = –21
7
_
y
= – _3x
_ _ 10
(–√21 ; √21 )
0 x
–10 10
_ _
(√21 –√21 )
–10
x 2 y2
1. a) i) y b) i) –_ 2 +
_
2 = 1
(2) (7)
y2
x2 – _
_
49
=14
10
y = – _27x y = _27x
(7; 0)
(0; 2)
0 x
–10 10
(0; –2)
(–7; 0)
–10
x 2 y2
2. a) i) y b) i) _
2 – _2 = 1
(5) (3)
y = – _53x y = _53x
x +_=1
2 y2 10
–_
9 25
(0; 5)
(–3; 0) (3; 0)
0 x
–10 10
(0; –5)
–10
x 2 y2
3. a) i) y b) i) _
2 –
_
2 = 1
(1) (8)
x =1
y2 – _
2
64
10
–10
x 2 y2
4. a) i) y b) i) –_ 2 +
__ =1
( )2
(1) √5
x2 –
_
y2 = 1
5
1_ 5 1_
y = –_ x y=_ x
√5 _ √5
(√5 ; 0)
(0; 1)
0 x
–5 5
_ (0; –1)
(–√5 ; 0)
–5
_ _
ii) (−∞; −√5 ] ∪ [√5 ; ∞) ii) (–∞; ∞)
_ _
iii) (–∞; ∞) iii) [−∞; −√5 ] ∪ [√5 ; ∞)
iv) Non-function iv) Non-function
v) Discontinuous v) Discontinuous
x 2 y2
5. a) i) y b) i) _
2 –
_
2 = 1
(3) (4)
16y – 9x = 144
2 2
y = – _34x 10 y = _34x
(0; 3)
(–4; 0) (4; 0)
0 x
–10 10
(0; –3)
–10
x 2 y2
6. a) i) b) i) –_ 2 +
_
2 = 1
(6) (5)
y
36y 2 – 25x 2 = 900
y = – _65x y = _65x
10
(0; 6)
(–5; 0) (5; 0)
0 x
–10 10
(0; –6)
–10
x 2 y2
7. a) i) y b) i) _
2 –
_
2 = 1
(3) (3)
–x 2 + y 2 – 9 = 0
y = –x 10 y=x
(0; 3)
(–3; 0) (3; 0)
0 x
–10 10
(0; –3)
–10
x 2 y2
8. a) i) y b) i) –__ 2 + _2 =1
_
( )
( √3 )
2
_ √2
–x + 3y = –2
2 2
1_ 1_
y = –_ x y=_ x
√3 √3
_
√)
2
(0; _
3
_ 0 _ x
(–√2 ; 0) (√2 ; 0)
_
√)
2
(0; – _
3
_ _
ii) (−∞; −√2 ] ∪ [√2 ; ∞) ii) (–∞; ∞)
_ _
iii) (–∞; ∞) iii) (−∞; −√2 ] ∪ [√2 ; ∞)
iv) Non-function iv) Non-function
v) Discontinuous v) Discontinuous
x 2 y2
9. a) i) y b) i) _
2 –
_
2 = 1
(3)
1
_ (1)
9y 2 – x 2 = 1
y = – _13x y = _13x
(0; _13 )
(–1; 0) (1; 0) x
0
–1 1
(0; – _31 )
–1
x 2 y2
10. a) i) y b) i) –_ +_ =1
(5) (4)
1 2
_ 1 2 _
16x 2 – 25y 2 = 1
y = –_45x y = _45x
1
(0; _15 )
(– _14 ; 0) (_14 ; 0)
0 x
–1 1
(0; – _51 )
–1
1. a) i) y b) i) y = log x
5
20
y = 5x
10
(0; 1)
0 x
–3 –2 –1 1 2 3
–50
2. a) i) y b) i) y = log (– _3x )
2
–3 –2 –1 1 2 3
0 x
(0; –3)
–10 y = –3.2 x
–20
3. a) i) y b) i) y = ln(6x)
y = _16 e x
1
(0; _16 )
0 x
–3 –2 –1 1 2 3
0 x
–1 1
(0; –4)
–10
y = –4.3 2x
–20
5. a) i) b) i) y = _13 ln(_2x )
y
–20
y = 2e 3x
–10
(0; 2)
0 x
–1 1
6. a) i) y b) i) y = log 1(–x)
_
3
–3 –2 –1 1 2 3
0 x
(0; –1)
y = –(_13)
x
–10
–20
20
10
y = 3(_34)
2x
(0; 3)
0 x
–3 –2 –1 1 2 3
0 x
–2 –1 1 1 2
(0; – 2 )
_
y = – _12(_15)
2x
–5
–10
9. a) i) y b) i) y = – _12 ln(_5x )
–20
y = 5(_1 )
x
e2 –10
(0; 5)
0 x
–1 1
0 x
–1 1
(0; –4)
y = – 4(_12)
3x
–10
–20
1. a) i) y b) i) y = 10x
2
y = log x
(1; 0) x
0
10 20 30
2. a) i) y b) i) y = 2x
5 y = –log x
1
_
2
1
(1; 0)
0 x
10 20 30
–1
y = 2 log ex
5
(1; 0)
0 x
10 20 30
–5
4. a) i) y b) i) y = _13 e −x
1
(_13 ; 0)
0 x
10 20 30
–1
–2
–3
–4
–5 y = –log e(3x)
y = _14 .2 3
x
5. a) i) b) i)
_
20
y = 3 log 2(4x)
10
(_14 ; 0)
0 x
1 2 3 4 5 6 7 8
y = _12 .3 4
x
6. a) i) b) i)
_
y
y = –4 log (2x)1
_
3
10
(_12 ; 0)
0 x
5 10 15
2 y = _34 ln(6x)
(_16 ; 0)
0 x
1 2 3
8. a) i) y b) i) y = _12 e −4x
(_12 ; 0)
0 x
5 10 15
y = –_14 ln(2x)
–1
9. a) i) y b) i) y = _13 .4 −5x
1
(_13 ; 0)
0 x
1 2 3 4 5 6 7 8 9 10
–0,1
–0,2
–0,3
–0,4
y = _15 log (3x)
1
–0,5
_
4
–0,6
(_15 ; 0)
0 x
1 2 3
–1
y = – _12 log 3(5x)
–2
1. a) i) y b) i) x = _12 y 2
10
y = _12x 2
0 x
–5 (0; 0) 5
2. a) i) y b) i) x = –3y2 – 15y
(– _52 ; _
75
4
) 20
y = –3x – 15x 2
10
(–5; 0)
0 x
–5 (0; 0)
x = – _52
75
ii) (–∞; ∞); ii) (−∞; _
4
]
75
iii) (−∞; _
4
] iii) (–∞; ∞)
iv) Function iv) Non-function
v) Continuous v) Continuous
3. a) i) y b) i) x = 9y2 – 16
10
(– _43 ; 0) ( _43 ; 0)
0 x
–1 1
–10
y = 9x 2 – 16
(0; –16)
4. a) i) y b) i) x = –_14 y 2 + y – _32
1
–4 –3 –2 –1 1 2 3 4 5 6 7
0 x
–1
(0; – _32 )
–2 (2; – _12 ) y = –_14x 2 + x – _32
–3
–4
–5
x=2
–6
–7
5. a) i) y b) i) x = _16 y 2 – y + _56
1 5
y = 6x – x + 6
_ 2 _
10
x=3
6. a) i) y b) i) x = –2y2 – 7y + 15
169
(– _74 ; _8
)
20
y = –2x – 7x + 15
2
(0; 15)
( _32 ; 0)
(–5; 0)
0 x
–7 –6 –5 –4 –3 –2 –1 1 2 3 4
x = – _74
169
ii) (–∞; ∞) ii) (−∞; _8
]
169
iii) (−∞; _8
] iii) (–∞; ∞)
iv) Function iv) Non-function
v) Continuous v) Continuous
7. a) i) y b) i) x = 3y2 – 2y – 7
y = 3x 2 – 2x – 7
x = _13
20
10
(–1,230; 0) (1,897; 0)
0 x
–3 –2 –1 1 2 3
(0; –7)
(_13 ; – _
22
3
)
[ 3
ii) (–∞; ∞) ii) 22
−_ ; ∞)
iii) [−_
22
3
; ∞) iii) (–∞; ∞)
17 11
8. a) i) y b) i) x = –y2 + _5
y–_
5
(0,869; 0) (_ ; 69 )
17 _
10 100
0 x
–4 –3 –2 –1 1 2 3 4 5 6 7
11
(0; – _
5
)
(2,531; 0)
–10
17
x=_
10
–20
17 11
y = –x 2 + _
5
x–_5
69
ii) (–∞; ∞) ii) (–∞; _
100
]
69
iii) (−∞; _
100
] iii) (–∞; ∞)
iv) Function iv) Non-function
v) Continuous v) Continuous
x = 2(y − _4)
2
11 49
9. a) i) y b) i) –_
8
50 ) – 49
11 2 _
y = 2(x – _
4 8
40
11
x=_
4
30
20
10
(0; 9) (_29 ; 0)
0 x
–2 –1 1 2 3 4 5 6 7 8
–10 (1; 0) 11
(_ 49
; –_ )
4 8
[ 8
ii) (–∞; ∞); ii) 49
−_ ; ∞);
iii) [−_
49
8
; ∞) iii) (–∞; ∞)
(–4; 3)
(–1; 0)
(–7; 0)
0 x
–10 –5
(0; – _37 )
y = –_13(x + 4) 2 + 3
–5
x = –4
–10
3 9x 2
_ 25y 2
225
+_=1
225
0 x
–5 5
Shape ✓
Labelling ✓
–3 x and y ✓
(3)
2.2 Both x-axis and y-axis. (1)
3.2 y
f (x)
y=x
5
f –1(x)
(0; 3)
0 x
(3; 0) 5
(5)
= log 1 (_12 )x
_
2
= log 1 _12_
2
= x .1
f –1(f (x)) = x
f (f –1(x)) = 3(_12 ) (log (–3))
_x
_1
2
= 3. _3x
f (f –1(x)) = x (4)
Since f –1(f (x)) = f (f –1(x)), therefore f (x) = –3(_12 )x and f –1(x) = log 1(_3x ) are
_
2
inverses of each other in the line y = x.
4. 4.1 [–25; 25]; [–25; 0] (4)
4.2 y
_______________
y + √(25 + x)(–x + 25) = 0
(–25; 0) (25; 0)
0 x
–20 20
–20
(0; –25)
(5)
______________
4.3 y + √(25 + x)(–x + 25) = 0
___________________
y + √(25 + (–x))(–(–x) + 25) = 0
_____________
y + √(25 – x)(x + 25) = 0
______________
y + √(25 + x)(–x + 25) = 0
Since the equation is equivalent, the graph is symmetrical about the y-axis.
The tests for symmetry about the line x-axis, the line y = x and the line y = –x
does not yield an equivalent equation, therefore are not lines of symmetry. (3)
5. 5.1 y
(0; 7)
y2
x2 – _
_
36 49
=1
(0; –7)
y = ex
0 x
Shape ✓
x and y ✓
4 Trigonometry
After they have completed this module, students should be able to:
• calculate special triangles pertaining to the four quadrants;
• apply the notion of compound angles such as sin(a ± b), cos(a ± b) and
tan(a ± b);
• apply the complementary angles specifically to trigonometric identities;
• apply factorisation of different types of trigonometric equations including
using identities;
• derive the following identities:
– compound angles
– double angles
– half angles;
• derive the co-ratios sin(90° ± θ), cos(90° ± θ) and tan(90° ± θ);
• use the square, invert and quotient identities and furthermore solve
trigonometric equations, simplify trigonometric expressions and prove
trigonometric identities; and
• draw neat sketch graphs of the following functions/relations:
– y = a sin(bx + c) + d for − π ≤ x ≤ π
– y = a cos(bx + c) + d for − π ≤ x ≤ π
– y = a tan(bx + c) + d for − π ≤ x ≤ π
– y = cosec x for − π ≤ x ≤ π
– y = sec x for − π ≤ x ≤ π
– y = cot x for − π ≤ x ≤ π.
Introduction
Trigonometry deals with the study of triangles and is used when precise distances,
lengths, heights and angles need to be calculated. The trigonometric skills in this
module will require students’ logical thinking skills.
Pre-knowledge
A
• Trigonometric ratios
opposite hypotenuse
sin θ = _ cosec θ = _
opposite
hypotenuse
se
nu
adjacent hypotenuse
cos θ = _ sec θ = _
te
opposite
po
hypotenuse adjacent
hy
opposite adjacent
tan θ = _ cot θ = _
opposite
adjacent
θ
B adjacent C
• Theorem of Pythagoras: x 2 + y 2 = r 2
180°
x 0°/360°
–θ
r –y
(x; –y)
270°
I all none
II sin, cosec cos, sec, tan, cot
III tan, cot sin, cosec, cos, sec
IV cos, sec sin, cosec, tan, cot
• Reference angle
y I II
y y y
θ θ θ
θ=α α
x x x x
α
α
III IV
θ = 180° – α θ = 180° + α θ = 360° – α
• Trigonometric identities
Reciprocal identities/ratios
1 1 1
cosec θ = _
sin θ
sec θ = _
cos θ
cot θ = _
tan θ
Quotient identities
sin θ cos θ
tan θ = _
cos θ
cot θ = _
sin θ
Square/Pythagorean identities
• Special angles
45°
30° _
_
√2
2 1 90°
√3 1
0
60° 45° 0°
1 1 1
y y = cos x
1 Amplitude 1
Range –1 ≤ y ≤ 1
0,5
Frequency 1
Period 360°
0 x
90° 180° 270° 360° Domain 0° ≤ x ≤ 360°
–0,5 Turning (0°; 1);
points (180°; –1);
y = cos x (360°; 1)
–1
x-intercepts (90°; 0); (270°; 0)
y y = tan x
Amplitude undefined
2
y = tan x Range y ∈ℝ
1 Frequency 2
Period 180°
0 x
90° 180° 270° 360° Domain 0° ≤ x ≤ 360°,
–1 x ≠ 90°, x ≠ 270°
Asymptotes x = 90°; x = 270°
–2
x-intercepts (0°; 0); (180°; 0);
(360°; 0)
Reciprocal ratios
sin x = _ 1 ; cos x = _ 1 ; tan x = _ 1
cosec x sec x cot x
Quotient identities
sin x cos x
tan x = _
cos x
; cot x = _
sin x
Square identities
sin 2 x + cos 2 x = 1; 1 + tan 2 x = sec 2 x; 1 + cot 2 x = cosec 2 x
Double-angle identities
sin 2x = 2 sin x.cos x
cos 2x = cos 2 x − sin 2 x; cos 2x = 1 – 2 sin2 x; cos 2x = 2 cos2 x – 1
2 tan x
tan 2x = _ 2
1 − tan x
and
cos 2 x = 1_2(1 + cos 2x); sin 2 x = _21(1 − cos 2x)
Half-angle identities
________ _
√_
(1 – cos x)
sin 1_2 x = ________
2
cos _21 x = 1_2(1 + cos x) ;
√
1 − cos x
tan _21 x = √_
1 + cos x
; tan 1_2 x = 1_
− cos x
sin x
; tan 21_ x = _ sin x
1 + cos x
Co-ratios (co-functions)
sin(90° − x) = cos x cos(90° − x) = sin x tan(90° − x) = cot x
sin(90° + x) = cos x cos(90° + x) = − sin x tan(90° + x) = − cot x
cosec(90° − x) = sec x sec(90° − x) = cosec x cot(90° − x) = tan x
cosec(90° + x) = sec x sec(90° + x) = − cosec x cot(90° + x) = − tan x
Factorisation
• Common factor, for example
sin θ.cos θ + sin θ = sin θ(cos θ + 1)
• Difference between squares, for example
cos 2 θ − sin 2 θ = (cos θ − sin θ)(cos θ + sin θ)
• Trinomials, for example
cos 2 θ + 2 cos θ + 1 = (cos θ + 1)(cos θ + 1) = (cos θ + 1)2
1.5 cot(− _
18 )
25
π 1.6 cosec(–465°)
= cosec(–105° – 360°)
= –cot(_
18 )
25
π
= cosec(–105° – (1)360°)
= –cot(π + _
18 )
7
π = cosec(–105°)
= –cosec 105°
= –cot(_
18 )
7
π = –cosec(180° – 75°)
= –cosec 75°
= sec(− _14 π)
= sec(_14 π)
= –2
= − cot _4π 1
=_
cos (− 4 π)
_7
= –1 1
=_
cos ( 4 π)
_7
1
=_
cos (2π − 4 π)
_1
1
=_
cos ( 4 π)
_1
1
=_
1_
_
√2
_
= √2
2.7 sin 150° 2.8 cot(− 30°)
= sin(180° − 30° ) 1
=_
tan(− 30°)
= sin 30°
1
= _21 =_
− tan 30°
1
=_
_1_
−
√3
_
= − √3
2.9 cosec(–120°)
= _______
1
sin(–120°)
= ______
1
– sin 120°
= ______ 1
– sin(180° – 60°)
= ______
1
– sin 60°
= ___
1__
√3
__ – 2
= – __
2__
√3
1.6 cot(75° + _3 ) = _
1 β 1 1 − tan 75° tan _
=_ = ___________ 3
tan (75° + 3 )
β
_
β
tan 75° + tan _ β
_
tan 75° + tan
___________
3
3
β
1 − tan 75° tan _3
2. 2.1 cos 40° cos 35° − sin 40° sin 35° = cos(40° + 35° )
2.2 sin 4x cos 55° + sin 55° cos 4x = sin(4x + 55°)
tan 2θ − tan 3ρ
___________
2.3 1 + tan 2θ tan 3ρ
= tan(2θ – 3ρ)
1
__________________ 1
2.4 =_ = cosec (3α – 2β)
sin 3α cos 2β − cos 3α sin 2β sin(3α − 2β)
= (tan(λ + _π6 )) −1
1
=_
tan(λ + 6 )
π
_
= cot(λ + _π6 )
2.6 (cos 8x cos 2x + sin 8x sin 2x)–1 = (cos(8x – 2x))–1
= (cos 6x)–1
1
=_cos 6x
= sec 6x
3. 3.1 tan 75° = tan(30° + 45°)
tan 30° + tan 45°
= ____________
1 − tan 30° tan 45°
1__ _
__ +1
= ________
√3 1
1 − (__ ) (1)
1__ _ 1
√3
1__
__ +1
= ____
√3
1__
__
1−
√3
__
1+ √3
_____
= __
√3 − 1
__ __
1__+ √3 _____
= _____ × √__3 + 1
√3 − 1 √3 + 1
__
4 + 2√3
= _____
2
__
= 2 + √3
√2 )(2) ( 2 )(√2 )
= (_1_ 1_ √3
+ _ _1_
_
=_ + √3_
1_ _
2 √2 2 √2
_
= 1_+√
_
2 2
3
√
_ _
1+√3 √_
2
=_ _ ×_
2 √2 √2
_ _
2 + √6
= √_ 4
√2 )( 2 )
= (__ − (_12 ).(__
√2 )
√3
1__ __ 1__
__
2√2 ( 2√2 )
√3__ 1__
= ___ − ___
__
√3 −__ 1
= _____
2√2
__ __
√3 −__ 1 2
= _____ × __
√__
2√2 √2
__ __
√6 − √2
= _____
4
__ __
√2 (√3 − 1)
= _______ 4
tan 63° − tan 48°
______________
3.4 1 + tan 63° tan 48°
= tan(63° − 48°)
= tan 15°
= tan(45° − 30°)
tan 45° − tan 30°
= 1______________
+ tan 45° tan 30°
(1) (√3 )
1_ 1_
_
−
=_
1 + (1_1)(_3)
1_
√
_
1_ − √_
3
= 1 + √3
_
3 −1
=_
√_
3 +1
√
_ _
3 −1 _
=_
√_
3 +1
× √_33 ++ 11
√ √
= ________
3 –__1
3 + 2√3 + 1
= ________
2 __
4 + 2√3
= ________
1 __
2 + √3
1
____________________ 1
3.5 = ____________________
sin 33° sin 18° + cos 33° cos 18° cos 33° cos 18° + sin 33° sin 18°
1
=_
cos(33° − 18°)
1
=_
cos 15°
1
=_
cos(45° − 30°)
1
= ____________________
cos 45° cos 30° + sin 45° sin 30°
1
= _____________
__
( √2 )( 2 ) + ( √2 )( 2 )
1
__ √3
__
__ 1 _
__ 1 __
1
= ______
__
√3
___ 1
___
__ + __
2√2 2√2
1
= ____
__
√3 + 1
_____
__
2√2
__
2√2
= _____
__
√3 + 1
__ __
2√2 3 −1
= _____
__ × _____
√__
√3 + 1 √3 − 1
__ __
2√6 − 2√2
= _______
2
__ __
= √6 − √2
__ __
= √2 (√3 − 1)
3.6 sin(− 105°)
= − sin 105°
= − sin(60° + 45°)
= − (sin 60° cos 45° + sin 45° cos 60°)
_
= − [(_2 )( ) ( )(2)]
√3 1_
_ 1_ 1_
+ _
√2 √2
_
= − [_
2 2 2 2]
√3_ 1_
+_
√ √
_
√3_ 1_
= − 2_ −_
2 2 2
√ √
_ _
− √3 _
−1 _
=_ 2 2
× √_22
√ √
_ _ _ _
− √6 − √2 −(√6 + √2 )
=_ 4
or ___________
4
__ __
√6 + √2
4.2 To prove: cos(− 15°) = _______ 4
LHS = cos(− 15° )
= cos(30° − 45° )
= cos 30° cos 45° + sin 30° sin 45°
_
= (_2 )( 2 ) (2)( 2 )
√3 _1_
+ 1_ _1_
√ √
_
√3_ 1_
=_ +_
2 2 2 2
√ √
_
√3 +_1
=_2 2 √
_ _
√3 +_1 2
=_2 2
×_
√_
2
√ √
_ _
√6 + √2
=_ 4
∴ LHS = RHS
( 1 )(cos x)
cos
_x 1
_
= ____________
cos x)( 1 )(sin x)
−(_
sin x _sin x _1
_ 1
= − tan x
= − cot x
= 1 − sin 2θ
= cos 2θ
sin(90° − θ) cos(360° − θ)
______________________ = − 1
4. 4.1 To prove: cos(90° + θ) sin(180° + θ) − 1
sin(90° − θ) cos(360° − θ)
______________________
LHS = cos(90° + θ) sin(180° + θ) − 1
= ____________
cos θ cos θ
(–sin θ)(–sin θ) – 1
2
cos θ
=_
−(1 − sin θ)
2
2
cos θ
=_ 2
− cos θ
= −1
∴ LHS = RHS
=1
∴ LHS = RHS
2
1 − tan x
=_2 tan x
_
= 2( 4 ) _
√3
_
_
√3
= 2
_
− 8 − 4 √3
=1+_ 8
_
8 − 8 − 4 √3
=_ 8
_
− 4 √3
=_ 8
_
_
√3
=−2
4. 4.1 sin 37,5° cos 37,5° = _12 (2 sin 37,5° cos 37,5°)
= _12 sin[2(37,5°)]
( 1 – tan 2(_ )
−1
1 − tan ( 12 )
2 π
_ 2 tan( 12 ) π
_
4.2 _ = _
2 tan(_
12 ) 12 )
π π
= (tan[2(_
12 )])
π −1
= (tan(_π6 )) −1
−1
= (_
1_
) √3
_
= √3
2 )( 2 ) ( 2 )(2)
= (_
1_ √3
_ + _1_ 1_
√ √
_ _
√3_ √1_
=_ +_
2 2 2 2
√ √
_ _
_
√3 +_1 _
√2
= 2 √2
× _
√2
_ _
√
_2 (√3 + 1)
= 4
_ _
_
√6 + √2
= 4
2
sin x
5. tan2x = _ 2
cos x
1 − cos 2x
_
=_
2
1 + cos 2x
_
2
1 − cos 2x
=_
1 + cos 2x
=( )
2 1_ 2
_ 1−_
_√2
= 2_
+ √3
4
2
_
= (_ )
2
√2 −_ 1
2√2
_
3 − 2√2
=_ 8
= (_12 (_12 )) (_
2 )
_
√3
2 1+_2
16 ( 4 )
1 _2 + √3
=_
_
2 + √3
=_ 64
7. 7.1 sin 2x = 1_2(1 − cos 2x) 7.2 cos 2x = 1_2(1 + cos 2x)
1 − cos 2x 1 + cos 2x
=_ 2
=_ 2
___________ ___________
√_
1 − cos 2x
√_
_ 1 + cos 2x
_
∴ sin x = 2
∴ cos x = 2
sin _2x = √_
1 − cos x
2
cos _2x = √_
1 + cos x
2
_
1 − cos[2(_
12 )]
√
π
8. sin(_
12 )
π
= _
2
_
1 − cos(_π6 )
=√ _
2
__
=√
√3
1−_
_2
2
_ _
= √
2 − √3
_
_
4
_
√2 − √3
=_ 2
9. y
13
5
θ x
12
___________
√____2
1_ 1 + cos θ
_
9.1 sin 2θ = 2 sin θ cos θ 9.2 cos 2
θ =
13)(13)
= 2(_5 12
_
√
12
_
1 + 13
= ____
2
= 120
_ ____
=√
169 13 + 12
_
____
13
2
__
=√
25
_
__
13
2
5 __
=_____
_
13 2
√ √
= ___
5
___
√26
= 1 − 2(_ 2)
2
120
169
= –0,008368
− cos x = 1_2
cos x = − 1_2
2. 4 cos2x – 3 = –2 sin2x
4(1 – sin2x) – 3 = –2 sin2x
4 – 4 sin2x – 3 = –2 sin2x
– 4 sin2x + 1 = –2 sin2x
–2 sin2x = –1
sin2x = _12
1_
_
sin x = ±
√2
sin x = ⊕ _
1_
sin x = ⊖ _
1_
√2 √2
sin+; 1st sin+; 2nd sin–; 3rd sin–; 4th
3. _1 cos x = cos 2x
2
_1 cos x = 2 cos2x – 1
2
_ _
1 + √33
_ 1 − √33
cos x = 8
cos x = _ 8
1
4. tan2x –_
sin(90° − x)
=1
1
(sec2x – 1) – _
cos x
=1
1
sec2x – 1 – _
cos x
=1
1
_ 1
–1–_ cos x
=1
cos 2x
1 1
–2 – _
cos x
+_ 2 =0
cos x
2
2 cos x + cos x – 1 = 0
(2 cos x – 1)(cos x + 1) = 0
2 cos x – 1 = 0 cos x + 1 = 0
2 cos x = + 1 cos x = ⊖1
cos x = ⊕_12
cos+; 1st cos+; 3rd cos–; 2nd cos–; 4th
x = xref x = 360° – xref x = 180° – xref x = 180° + xref
= cos–1(_12 ) = 360° – cos–1(_12 ) = 180° – cos–1(1) = 180° + cos–1(1)
x = 60° x = 300° x = 180° x = 180°
and x = –300° and x = –60° and x = –180° and x = –180°
5. 3 cot2x – 4 cosec x = 1
3(cosec2x – 1) – 4 cosec x = 1
3 cosec2x – 3 – 4 cosec x = 1
–4 – 4 cosec x + 3 cosec2x = 0
4 3
–4 – _
sin x
+_2 =0
sin x
2
4 sin x + 4 sin x – 3 = 0
(2 sin x – 1)(2 sin x + 3) = 0
2 sin x – 1 = 0 2 sin x + 3 = 0
2 sin x = + 1 2 sin x = –3
sin x = ⊕_12 sin x ≠ − _32
7. 1 − cos 2x
_
1 + cos 2x
– 2(_
cos x )
sin x
=4
tan2x – 2 tan x = 4
tan2x – 2 tan x – 4 = 0
______________
− (–2) ± √(–2) − 4(1)(–4)
2
__________________
tan x = 2(1)
_
2 ± 2√5
=_ 2
_
tan x =1 ± √5
_ _
tan x = 1 + √5 tan x = 1 – √5
tan x = ⊕3,236 tan x = ⊖1,236
tan+; 1st tan+; 3rd tan–; 2nd tan–; 4th
tan x – 3 = 0 tan x + 2 = 0
tan x = ⊕ 3 tan x = ⊖ 2
tan+; 1st tan+; 3rd tan–; 2nd tan–; 4th
cos 2x
2 2 2
= ________
cos x − sin x ________
2 × 2cos x 2
cos x cos x + sin x
2 2
= ________
cos x − sin x
2 2
cos x + sin x
cos 2x
=_ 1
= cos 2x
sin 2x
_ cos 2x
_
3. 1 − cos 2x
4. sin x − cos x
2 2
2 sin x cos x
=_ 2 = ________
cos x − sin x
sin x − cos x
1 − (1 − 2 sin x)
2 sin x cos x (cos x + sin x)(cos x − sin x)
=_ 2 = _________________
− (cos x − sin x)
1 − 1 + 2 sin x
2 sin x cos x
=_ 2
= –(cos x + sin x)
2 sin x
= –cos x − sin x
cos x
=_
sin x
= cot x
tan x
_ cot x
_ cot x
5. sin 2x − tan x
6. +_
cosec x − 1 cosec x + 1
sin x
_ cot x(cosec x + 1) + cot x(cosec x − 1)
= ____________
cos x = _______________________
(cosec x − 1)(cosec x + 1)
sin x
_
2 sin x cos x − cos x
cot x cosec x + cot x + cot x cosec x − cot x
sin x = __________________________
= _____________
2
2
cosec x − 1
2 sin x cos x − sin x
2 cosec x cot x
sin x
=_
= ___________
2
cot 2x
sin x(2 cos x − 1) 2 cosec x
_
= cot x
sin x
=_ sin x cos 2x
2 (_
1
)
1 = _____
sin x
=_
cos 2x
cos x
_
sin x
2 sin x
= sec 2x =_ ×_
sin x cos x
= 2____
1
cos x
= 2 sec x
3 3
7. ________
sin x − cos x
8. sin 4x _
_ – cos 4x
cos x − sin x sin x cos x
2
(sin x − cos x)(sin 2x + sin x cos x + cos x) 2
= __________________________
− (sin x − cos x)
2 sin 2x cos 2x _
=_ sin x
– 2 cocos
s 2x − 1
x
( 2 )
1 + cos 2x
_
cos 3x + cos x 1− + cos(90° − 2x)
9. _ 10. __________________
sin 3x + sin x 2 cos x + sin x
2
cos 2x cos x − sin 2x sin x + cos x 1 − cos x + sin 2x
= _____________________
sin 2x cos x + sin x cos 2x + sin x
= ____________
2 cos x + sin x
(2 cos 2x − 1)cos x − (2 sin x cos x)sin x + cos x (1 − cos 2x) + 2 sin x cos x
= ____________________________
2 = ________________
(2 sin x cos x) cos x + sin x(2 cos x − 1) + sin x 2 cos x + sin x
3 2 2
2 cos x − cos x − 2 sin x cos x + cos x sin x + 2 sin x cos x
= __________________________
2 2 = _____________
2 sin x cos x + 2 sin x cos x − sin x + sin x 2 cos x + sin x
3 2
2 cos x − 2 sin x cos x sin x(2 cos x + sin x)
= ______________ 2 = _____________
4 sin x cos x 2 cos x + sin x
2 cos 3x − 2(1 – cos2x) cos x = sin x
= ___________________
2
4 sin x cos x
3 3
2 cos x − 2 cos x + 2 cos x
= ________________ 2
4 sin x cos x
3
4 cos x − 2 cos x
=_ 2
4 sin x cos x
3
4 cos x 2 cos x
=_ 2 –
_
2
4 sin x cos x 4 sin x cos x
cos x _ 1
=_ –
sin x 2 sin x cos x
cos x _
=_ – 1
sin x sin 2x
= cot x – cosec 2x
2
sin θ _
=_
cos θ
× cos1 θ
1
=_
_1
2
sin 2x
= 2 cosec 2x
∴ RHS = LHS
sin(x − y) + sin(x + y)
7. 2 tan x = ______________
cos x cos y
sin(x − y) + sin(x + y)
RHS = ______________
cos x cos y
2 sin x cos y
=_
cos x cos y
2 sin x
=_cos x
= 2 tan x
∴ RHS = LHS
= 2(_ )
2(cos2x − sin2x)
= __________
2 cos2x
1 − cos 2x
2
2
cos x − sin x2
= 1 – cos 2x
= ________
cos2x
∴ RHS = LHS
2 2
cos x _sin x
=_ 2 – 2
cos x cos x
= 1 – tan2x
∴ RHS = LHS
1 − tan x _
11. _ = cos 2x
1 + tan x 1 + sin 2x
1 − tan x
LHS = _
1 + tan x
sin x
1−_
=_cos x
sin x
1+_
cos x
cos x − sin x
_
=_ cos x
cos x + sin x
_
cos x
cos x − sin x
=_
cos x + sin x
cos x − sin x _
=_ × cos x + sin x
cos x + sin x cos x + sin x
2 2
cos x − sin x
= _________________
cos2x + 2 sin x cos x + sin2x
2 2
cos x − sin x
= __________________
(sin2x + cos2x) + 2 sin x cos x
cos 2x
=_
1 + sin 2x
∴ LHS = RHS
1.
y = sin x
y
1.1 Amplitude 1
1 y = sin x 1.2 Frequency 1
1.5 Range −1 ≤ y ≤ 1
0 x
90° 180° 270° 360°
1.6 Turning (90°; 1);
–0,5 points (270°; –1)
y = cos x
y
1.1 Amplitude 1
1 1.2 Frequency 1
y = cos x
1.3 Period 360°
0,5
1.4 Domain 0° ≤ x ≤ 360°
1.5 Range −1 ≤ y ≤ 1
0 x
90° 180° 270° 360°
1.6 Turning (0°; 1);
–0,5 points (180°; –1);
(360°; 1)
y = tan x
2.
2.10 y = − 8 sin(x − _
12 )
π
8 1 2π π
Shift _
12
No shift
−_
3π _3π right
2 ≤x≤ 2
2.11 y = − cos(_2x − _
18 ) + 3
π
1 _1
2 4π Shift π_9 right Shift
− 2π ≤ x ≤ 2π up 3
0 x
–270° –180° –90° 90° 180° 270°
–2
–4
–6
3.2 y = 3 cos 2x – 1, –π ≤ x ≤ π
y
2 y = 3 cos 2x – 1
0 x
–π – _π2 π
_
2
π
–2
–4
0 x
–π – _π2 π
_
2
π
–1
0 x
–45° 45° 90° 135° 180° 225° 270° 315° 360°
–1
–2
0 x
–180° –90° 90° 180° 270°
–2
–4
–6
–8
0 x
–90° –45° 45° 90°
–2
–4
0 x
3π
– _π2 – _π4 π
_
4
π
_
2
_
4
π
–2
y = 3 sin(_23x – 30°) + 1
4
–180° 360°
0 x
–360° –270° –90° 90° 180° 270°
–2
y y = –3 tan(2x + 60°)
0 x
45° 90° 135° 180° 225° 270° 315° 360°
–2
–4
3.10 y = –8 sin(x − _
12 )
π 3π
,−_2
3π
≤x≤_2
y
y = –8 sin(x − _
12 )
π
8
0 x
3π 3π
–_2
–π – _π2 π
_
2
π _
2
–2
–4
–6
–8
3.11 y = –cos(_2x − _
18 )
π
+ 3, –2π ≤ x ≤ 2π
y = –cos(_2x − _
18 )
π
+3
4
3π
0 3π
–2π –_ –π – _π π
_ π _ 2π
2 2 2 2
4.
Function Range Function/ Continuous/
Non-function Discontinuous
4.11 y = − cos(_2x − _
18 ) + 3
π
2≤y≤4 Function Continuous
− 2π ≤ x ≤ 2π
1.
y = cosec x
2
1
y = sin x
0 x
–360° –300° –240° –180° –120° –60° 60° 120° 180° 240° 300° 360°
–1
–2
2.
y
y = sec x
6
5
4
3
2
1
–180° –90° 90° 180°
0 x
–π – __12 π __
1
2
π π
–1
–2
–3
–4
–5
–6
3.
y
6
y = cot x
5
4
3
2
1
–180° –90° 90° 180°
0 x
–π – __21 π __
1
π π
–1 2
–2
–3
–4
–5
–6
√2 )( 2 ) √2 )( 2 )
= (_1_ _ 1
− (_1_ _√3
_
− √3_
1_ _
=_
2√2 2√2
_
1−_
√3
=_
2√2
_ _
1−_
√3 2
=_ ×_
√_
2√2 √2
_ _
√2 − √6
=_ 4
= sin x (_
1_
) − ( ) cos x
1_
_
√2 √2
1_ (
=_ sin x − cos x)
√2
_
× √_2 (sin x − cos x)
1_ _
=_
√2 √2
_
√2
=_2
(sin x − cos x)
cot x – tan x
1.4 To prove: ________ = _1 sin 2x
cot2x + tan2x 2
cot x – tan x
LHS = ________
cot2x + tan2x
cot x – tan x
= __________________
(cot x + tan x)(cot x − tan x)
1
=_
cot x + tan x
1
=_
cos x _
_ sin x
sin x
+ cos x
= _______
1
cos 2x + sin x
_________
2
sin x cos x
1
=_
1
_
sin x cos x
= sin x cos x
= _12 sin 2x
5 )( 10 ) ( 5 )( 10 )
= (− _
2_ 3
−_
_ − _1_ _1
_
√ √ √ √
_ 6 1
= _ −_ _
√50 √50
_ 5
= _
√50
_ 5_
= 5 √2
__
_1_ √2
__
= or 2 (4)
√2
1 − cos 2x
tan2x = _
1 + cos 2x
(4)
1 − cos[2( 12 )]
π
_
( 12 ) 1 + cos[2(_
2 π
_ _________
4.2 tan =
12 )
π
]
1 − cos( _π )
=_6
1 + cos( 6 )
π
_
_
1 − (_2)
√3
=_ _
1+(2)
√3
_
_
√3
1−_
=_2
_
√3
1+_2
_
tan2(_
12 )
π 2 − √_
=_ 3
(4)
2 + √3
_
5. 5.1 cosec x + cot x = √3
_
cosec x = √3 – cot x
_
(cosec x)2 = (√3 – cot x)2
_
cosec2x = 3 – 2√3 cot x + cot2x
_
cosec2x = 3 – 2√3 cot x + (cosec2x –1)
_
cosec2x = 3 – 2√3 cot x + cosec2x –1
_
0 = 2 – 2√3 cot x
_
2√3 cot x = 2
1_
cot x = _
√3
_
∴ tan x = ⊕√3
tan +; 1st tan +; 3rd
x + _π3 = _π2 − (x − _
18 )
π
x + _π3 = _π2 − x + _
π
18
x + _π3 = − x + _
5π
9
2π
2x = _9
x = _π9 (4)
sin 2 A
_ = _1(1 − cos A)
2 2
_
√
1 − cos A
sin A
_=
2
_
2
(3)
8
y = 5 cos(2x – 40°) + 2
6
0 x
–180° –90° 90° 180°
–2
–4
(4)
8.2 y = cot x, –π ≤ x ≤ π
y
4 y = cot x
0 x
–π 2π
–_ –_π3 π
_ 2π
_ π
3 3 3
–1
–2
–3
–4
(4)
TOTAL: [60]
5 Differential calculus
After they have completed this module, students should be able to:
• calculate limits that are indeterminate by making use of algebraic
expressions (the theorem of L’Hôspital may not be applied);
• use the binomial theorem in general terms;
• apply the binomial theorem with rational indices to expand a simple
binomial to four terms;
• define differentiation as a rate of change and derive the expression
f(x + ∆ x) − f(x) f(x + h) − f(x)
lim __________
∆x
or lim _________
h
from first principles with the aid
∆x→0 h→0
of a sketch as an introduction to differentiation; f(x) may only be in one of
the following forms: f(x) = ax n + b with ax n + bx n−1 + cx n−2 + … and n a
positive integer (exams will be limited to n ∈ {ℕ; n < 4});
dy
• determine __
dx
of the following standard forms:
– y=k
– y = kx n
– y = ka x
– y = ke x
– y = k ln x
– y = k log ax
– y = k sin x
– y = k cos x
– y = k tan x
– y = k cot x
– y = k sec x
– y = k cosec x;
• apply the chain rule to determine the first derivatives of ka nx, ke nx,
k log anx, k log enx, k sin(bx), k cos(bx), k tan(bx), k cot(bx), k sec(bx) and
k cosec(bx);
• apply the product and quotient rules for differentiation of differentiate
simple products and quotients (combinations of chain, product and
quotient rules may not be asked);
• determine the second derivatives of trigonometric functions, algebraic
terms and polynomials to determine maximum and minimum turning
points and points of inflection;
• draw neat sketch graphs of y = ax 3 + bx 2 + cx + d, where a, b, c and d are
integers; and
• sketch graphs indicating maximum and minimum values derived above.
Introduction
The word calculus describes a system of rules or reasoning used to do certain types of
calculations. It was developed independently by Sir Isaac Newton and Gottfried Leibniz
towards the end of the 17th century.
In calculus students will compare quantities that vary in a nonlinear way. Calculus
is generally used in science and engineering. It is the mathematics of rates of change.
Many concepts that they learnt about, such as velocity, acceleration and current in a
circuit, do not behave in a simple linear way. Quantities continuously change, so you
need calculus to interpret all the changes.
Differential calculus is a subfield of calculus and is the study of the rates at which
quantities change. The derivative of a function at a chosen input value describes the
rate of change of the function near that specific input value. Finding a derivative is
called differentiation.
Pre-knowledge
• Sketching graphs (Module 3).
4 k 0
• Division by 0, for example __0 , __0 and __0 is undefined.
• __0 = 0, __0 = 0, and so on
k 3
• Factorisation:
Common factor 3 x 2 y − 6x
= 3x(xy − 2)
Difference of two squares x2 − 9
= (x − 3)(x + 3)
Quadratic trinomial x 2 − 6x + 8
= (x − 2)(x − 4)
Sum of two cubes a 3 + b3
= (a + b)( a 2 − ab + b 2)
Difference of two cubes a 3 − b3
= (a − b)( a 2 + ab + b 2)
• x0 = 1
Example
If f (x) = x3 – 7x2 – 10x + 16
(x – 1)(ax2 + …)
Multiply the first terms of each bracket and compare the answer to the term x3
in the given polynomial: f (x) = x3 – 7x2 – 10x + 16
You see that:
x.ax2 = ax3
∴ x.1x2 = 1x3
Therefore a = 1
last terms
(x – 1)(ax2 + bx + c)
Multiply the last terms of each bracket and compare the answer with the last
(constant) term of f (x), which is 16. You see that:
(–1)(c) = 16
∴ c = –16
• Substitute a = 1 and c = –16 in (x – 1)(ax2 + bx + c).
∴ (x – 1)(x2 + bx – 16)
• Find b using the coefficients of x.
∴ x3 – 7x2 – 10x + 16 = (x – 1)(x2 + bx – 16)
–x2
+
bx2
Exponential laws:
a x × a y = a x+y
ax
a x ÷ a y = __
ay
= a x−y
(a x)y = a xy
a0 = 1
1
a −x = __
ax
(ab)x = a x b x
_x __1 y _
a y = (a x) y = √a x
Factorisation:
a+b _
____ a b
c
= +_ c c
Useful definitions:
Definition Example
n 2
x
__ 1 x 1
1 a
= __ x n a
__
3
= __ x 2 3
a
__ 3
__
2 xn
= ax −n = 3x − 2
x2
n 4
ax
___ a 2x 2
3 = _ xn
b b
___
3
= __ x 43
a
___ a 2 2
4 bx n
= _ x −n ___ = __ x −4
3
b 3x 4
_ _
n m
__ 5 __3
5 √a m = a n √2 3 = 2 5
_ _ _ _
__1 __3
6 √ax = √a x 2 √2x 3 = √2 x 2
a_ __
____ a m
__ 2_ __
____ 2 __2
7 n = m = ax − n __ 3 = __2 = 2x − 3
√x m x n
√x 2
x 3
Logarithmic
Logarithmic
laws
laws Logarithmic
Logarithmic
form
form
and
and
exponential
exponential
form
form
loglog
x +x log
a a
+ log
y =y log
a a
= log
xy xy
a a
loglog
N=
b b
N a=(logarithmic
a (logarithmic
form)
form)
x x
_ _
x −x log
loglog
a a
− log
y =y log
a a
= log
ay ay
x k x=k k=log
loglog
a a
k log
x x
a a N b=a b(exponential
N= a
(exponential
form)
form)
a =a 1= 1
loglog
a a
1 =1 0= 0
loglog
a a Note
Note
log___
log
b b
b =b ___
loglog =a a • • ln ln
e =e log
= log
e =e 1= 1
e e
a a log log
• • loglog
x =x ln
e e
= ln
x with
x with
e =e 2,71828
= 2,71828
• • loglog
x =x log
= logx x
10 10
(base
(base= 10)
= 10)
• • Factor
Factor
theorem
theorem
Activity
Activity
5.1
5.1 SBSB
page
page
286
286
2
_____
_____ x 2x
coscos
(x 3()x 3)
1. 1. limlim 2. 2. limlim
π 1 π−1sinx
− sinx
x→5x→5 x→_2x→_2
3 3
= (5)
= (5) 2π
_ 2 π_
coscos
= _____
= _____
2 2
= 125
= 125 − π_sinπ_
1 −1sin 2 2
=0_
=_ 0
1 −11− 1
= 0_0= 0_0
= no
= no
limit
limit
lim (_ )
x→1 √3x + 1 )
(
2
4x −9 2x − 9x + 4
5. lim __ 6. 2
x→_2
1 4x + 12x − 7
( 2 ) − 9( 2 ) + 4
2
_4(1) − 9 2 _1 _1
= _
___________
√3(1) + 1 =
4(_12 ) + 12(_12 ) − 7
2
_4_
−9
=
(4) 2
√3 + 1 2 _1 − _9 + 4
−5 =_
=__ 4(_14 ) + 6 − 7
√4
_1 − _9 + 4
−5
=_
2 =_
2 2
1+6−7
= − 2_12 = _00
lim (_2x 2 − 9x + 4
2
)
x→_ 4x + 12x − 7
1
2
= lim [_
(2x − 1)(2x + 7) ]
(2x − 1)(x − 4)
1
x→_
= lim [_
2x + 7 ]
2
x−4
1
x→_2
(2)
_1 − 4
=_
2(_12 ) + 7
_1 − 4
=_
2
1+7
− _72
=_
8
7
= −_
16
_ _
(x + 2x − 3 ) ( )
4
x − 81 √5 − √x
7. lim _
2 8. lim _ x−5
x→– 3 x→5
_ _
4
(−3) − 81 √5 − (5)
√
= ___________
2 =_
(5) − 5
(−3) + 2(−3) − 3
_ _
81 − 81 √5 − √5
=_ 9−6−3
=_ 5−5
= _00 = _00
_ _
x→– 3 x + 2x − 3 )
lim (_ 2
x 4 − 81
lim (_x−5 )
√5 − √x
x→5
_ _
= lim [_
x→– 3 (x − 1)(x + 3) ]
= lim [_ x−5 ]
2 2
(x + 9)(x − 9) − √x − √5 ( )
x→5
_ _
= lim [_____________ ] [ √x + √5 ]
−(√x − √5 )
2
(x + 9)(x + 3)(x − 3)
(x − 1)(x + 3)
= lim ____________
(
_ _ _
)(
_
)
x→– 3 x→5 √x − √5
= lim [_ ] [ √x + √5 ]
−1 _
= lim _
2
(x + 9)(x − 3) _
x→– 3 (x − 1) x→5
−1
((−3) 2 + 9)((−3) − 3)
= _____________ =_
_ _
((−3) − 1) √(5) + √5
−1 _
=_
(9 + 9)(−3 − 3) =__
(−3 − 1) √5 + √5
1_
=_
(18)(−6) = −_
(−4) 2√5
−108
=_−4
= 27
1 1 1 +1x+ x ) )
( ( x→2x→26 −6x−−xx−)x )
( (
2 2
_3x _
3+x 2x
+− 2x1− 1 2x_−
2x4− 4
9. 9. limlim 3 3 10.10.limlim_ 2 2
x→–x→–
3(−1 ) 2 +) 22(−1)
3(−1 + 2(−1) − 1− 1 2(2)2(2)
− 4− 4
= ____________
= ____________
3 3 =_
=_2 2
1 +1(−1 + (−1
) ) 6 −6(2) − (2)
− (2−) (2)
_ 3(1)_3(1)
− 2−−21− 1 _ 4_ −44− 4
== = 6=−62−−2(4) − (4)
1 +1(−1 )3 )3
+ (−1
3 −_
=_ = 32−+−2(−1)
1 +1(−1)
1− 1 _ _ 0 0
= 6=−62−−24− 4
3 −_
=_ =13−2−1−1−21−1 1 = _00= _00
( 6 (−6x−−xx−2 )x 2 )
= _00= _00 limlim_ 2x_−
2x4− 4
x→2x→2
( ( x 3) ) [ [ x+−x6)−]6) ]
3x 2_
_ 3+x 22x+− 2x1− 1 _ 2(x
_ 2(x
− 2)− 2)
limlim 3 = lim= lim 2 2
x→–x→–1 1 1 + 1x+ x→2x→2 −( x−( +
x
( ( 1) ) [ −(x
[ −(x − 2)−]2) ]
2 2
3x _
_ 3+x 2x +−2x1− 1 2(x2(x
− 2)− 2)
= lim= lim 3 3 = lim
= lim_ _
x→–x→– 1 1 x +x 1 + x→2x→2 + 3)(x
+ 3)(x
1 [ (x
1 [+(x1)(
+ x1)(−x x−+x1)+]1) ] [ −(x
[ −(x
+ 3)+]3) ]
(3x(3x
− 1)(x
− 1)(x
+ 1)+ 1) 2 2
= lim___________
= lim ___________
2 2 = lim
= lim_ _
x→–x→– x→2x→2
1 [ x1 [− ] 1]
3x −
3x 1− 1 2 2
= lim_
= lim 2
_
2 =_
=_ −((2)−((2)+ 3)+ 3)
x→–x→– x x−+x1+
_ 2 2
=_
=_
2 2
3(−1)3(−1)
− 1− 1 = =_
−(2−(2+ 3)+ 3)
(−1(−1
) −) (−1)
− (−1)
+ 1+ 1
_ 2_ 2
= _ −3_ −3
− 1− 1
= + 1++11+ 1 = = −(5)
−(5)
(1) (1)
= _=_ −4 −4 = _=2 _
−5 −5
2
1 +11++11+ 1
= −=1−_13 1_13
( 3( 3 ) )
2 2
_
x _−x 36
− 36 x −x2− 2
_________
_________
11.11.limlim 12.12.limlim_ __ _
x→6x→6x −x 216
− 216 √2x√−
x→2x→2 2x2−−2√−x √x
_
__ _
(6) 2(6−) 236− 36 x −x2− 2
=_
=_
3 3 = lim _________
= lim__________
__ × ×2x___________
√_ √−
2x2−+2√+x √x
_ ___________
__ _
(6) (6−) 216 − 216 x→2x→2 2x2−−2√−x √x √2x√−
√2x√− 2x2−+2√+x √x
_
__ _
_ 36_ −3636 − 36 )(√22x
)(√−2x2−+2√+x )√x )
(x −_____________
(x2−
= 216
= 216 − 216 − 216 = lim _____________
= lim
x→2x→2 (2x(−2x2−
) −2)x− x
0 _
_ 0 _
__ _
= 0= 0 )(√22x
)(√−2x2−+2√+x )√x )
(x −_____________
(x2−
_____________
= lim
= lim x −x2− 2
( x (−x 3216 ) )
x→2x→2
_ x2_ −x 236
− 36 _
_ _ _
limlim
x→6x→6
3
− 216 = lim
= lim
√2x
√2x
− 2− +2 √+x√x
x→2x→2
[ [ ] ]
(x +(x6)(x
_____________ + 6)(x
_____________ − 6)− 6) _ _ _ _
= lim
= lim 2 2 = √=2√+2 √+2√2
x→6x→6(x −(x6)(
− x6)(+x 6x
++6x36)
+ 36)
_ _
= _1= _1
9 9
lim (_ + x)
_1 + _1
14. lim (_
x→4 2 − √x )
2
x 2 x − 16
13. 2
_
x→– 2
1
_ + _1 (4) 2 − 16
_
(−2) 2 =__
= 2 + (−2) 2 − √(4)
_ 16 − 16
= _
− _12 + _12 2 − √4
=_ 0
2−2 =_ 2−2
= _00
= _00
lim (_
2 + x)
_1 + _1
lim (_
x→4 2 − √x )
x 2 x 2 − 16
_
x→– 2
16. lim (_
x 2 + 5x − 8 )
15. lim (_
x→∞ 2x + 3 )
2
3x + 2 6x − 4x + 2
x→∞ 3
3(∞) + 2 6(∞) 2 − 4(∞) + 2
=_
2(∞) + 3
= ___________
2
3(∞) + 5(∞) − 8
∞ ∞
=_
∞
=_∞
lim (_
x→∞ 3x + 5x − 8 )
lim (_
3x + 3 )
3x + 2 6x 2 − 4x + 2
2
x→∞
( x + x)
3x _
_ +2
2
6x 4x _
+ 2
(_
_ −_
− 8)
= lim _
x x
2x _
3 = lim _
x2 x2 x2
_
x→∞ 3x 5x _2
x→∞ +_ 2 2 2
(2 + x )
x x x
3 + _2x
6 − _4x + _
2
= lim __3
x→∞ ( 3 + _ − _2 )
x→∞ = lim _ x2
5 8
x x
2
3+_ 4 2
_ ∞ 6−_ +_
=
=_
(∞) (∞) 2
3
2+_ 5 8
∞ 3+_
(∞)
−_ 2
(∞)
_3+0
= _6−0+0
2+0 = 3+0−0
= _3
2 = _6
3
= 1_12 =2
( (3 3 ) ) ( (2 2 ) )
2 2 5 5
x −_
_ x 2x
−+2x2+ 2 3x _
_ 3−x 9x
−+9x2+ 2
17.17.limlim 18.18.limlim
x→∞
x→∞ x +x 2+ 2 x→∞ 2x
x→∞ 2+x 5x
++5x1+ 1
2
(∞)_
(∞ −) 22(∞)
− 2(∞)+ 2+ 2 ) 5 −) 59(∞)
3(∞___________
3(∞ − 9(∞)+ 2+ 2
=_ = 3 3 = ___________
= 2 2
(∞)(∞+) 2+ 2 2(∞2(∞
) +) 5(∞)+ 5(∞)+ 1+ 1
∞ _
_ ∞ ∞ _
_ ∞
= ∞= ∞ = ∞= ∞
( 2xx( _ +)1 )
= lim
= lim _ _
x3 _
x 3x 3 x 3x 3 x 3
= lim
= lim_ _
x5 _
x 5 x 5 x 5x 5 x 5
3 3 2 2
2x _
x→∞x→∞ 3 3 3 3
x→∞x→∞ + 5x++_
5
5x_
1 _
5 5 5 5 5
x x xx x
_1 −_1_
2 _
−+2_ 2 _
+ 2 3 −3_ 9 _
−+9_ 2 _
+ 2
( (1 +1_+ 2) ) (( ))
= lim
= lim _x _ xx 2 x 2x 3 x 3
= lim
= lim_ _x 4 x 4x 5 x 5
2 _ 2 25 _
x→∞x→∞ x→∞_3 +_3_+
x→∞ +5_ 1 _
+ 1
x x 3 3
x x x 4 x 4x 5 x 5
1 _
_ −1 _
−2 _
+2 _
+2 _
2
−9 4_
3 −3_ +9 4_
+2 5_
2
=_
(∞) _
=_
=_
(∞)(∞) (∞) (∞) (∞)
2 2 3 3
(∞) (∞) (∞) (∞) 5
=
+2 3_
1 +1_ 2 2 _
_ +2 _
+5 _
+5 _
+1 _
1
3
(∞) (∞) (∞) 3(∞) 3(∞) 4(∞) 4(∞) 5(∞) 5
0 −_
=10+0−1+0+00+0 0
=_ 3 −_
= 30−+00+ 0
=_
0 +00++00+ 0
( 2(−23x− 3x) ) ( ( x x ) )
√1 _
_ √+14+x 4x 2 2
_ _ ) 3 x−) 38− 8
(2 +(2x+
19.19.limlim 20.20.limlim
x→∞
x→∞ x→0x→0
_ _ 3
(2 +(2(0)
+ )(0)−) 38− 8
√= _
√ =_
=_
2 2
1 +14(∞
+ 4(∞
) )
=_2 −23(∞)
− 3(∞) (0) (0)
(2) 3(2−) 38− 8
=∞ _
=_ ∞ =_
=_
0 0
−∞−∞
8 −_
= ∞ _
−∞
−=_ =088−0 8
=_
∞ ∞
_
_
( 2(−23x− 3x) )
limlim√1 _
_ √+14+x 4x 2 2
= _00= _00
( ( x x ) )
x→∞
x→∞ _
_ ) 3 x−) 38− 8
(2 +(2x+
( ( − 3x) )
limlim_ _
(x 2 (x 2 ) )
√√
12 _
x 2 x_ +14+ 4 x→0x→0
= lim
= lim_ _
[ [ ] ]
x→∞ 2 −23x ((2 ((2
+ x)+−x)2)((2
− 2)((2
______________________
______________________ ) 2 x+) 22(2
+ x+ + 2(2
+ x)++x)4)+ 4)
x→∞
__ = lim
= lim
(( ))
x→0x→0 x x
√√
1 _
x2 +124+ 4
x _
[ [ ] ]
= lim_
x_
x
= lim (2 +(2x+−x2)((2
− 2)((2
_____________________ ) 2 x+) 22(2
+ x+
_____________________ + 2(2
+ x)++x)4)+ 4)
x→∞ 2 −23x
x→∞ − 3x = lim
= lim x x
__ x→0x→0
√_
√
[ [ ] ]
1 _ 1
(( ))
x _2x+ 42 + 4
_ x x + x+
x((2x((2 ) 2 x+) 22(2
_______________
_______________ + 2(2
+ x)++x)4)+ 4)
= lim
= lim
= lim_
x_
x
= lim 2 23x 3x
x→0x→0 x x
x→∞_ −__− _
x→∞
[(2[(2 + 4+] 4]
x xx x
_ _
= lim
= lim + x+) 2x+
) 2 2(2
+ 2(2
+ x)
+ x)
√2 _
√
1 _
+14+ 4
((_ −_23−)
3 )
_ x→0x→0
= lim_
2 2
x x
= lim = (2
= (2
+ (0))2 2
+ (0))
+ 2(2
+ 2(2
+ (0))
+ (0))
+ 4+ 4
x→∞x→∞
x x
_
_
= (2
= (2 + 20)+2 2(2
+ 0) + 2(2
+ 0)
+ 0)
+ 4+ 4
√=2_
√2
1 _
_ +1 4+ 4
=_
2 2
(∞) (∞)
2 2
__
(∞) (∞)
− 3− 3 = (2) + 2(2)
= (2) + 2(2)
+ 4+ 4
__
√0 _
=0 −√+0034−+34
=_ = 4=+4 4++4 4+ 4
_ _
√4 _ = 12
= 12
= √4
=_
−3 −3
=2 _
=_ 2
−3 −3
= −=_23− _23
T4 = 70 000x13
(x 3) 3(− _3x )
8
11!
T9 = _
8!(11 − 8)!
T9 = 1 082 565x
2. 2.1 (x + 2)7
(x) 7(2) 0 7(x) 6(2) 1 7.6(x) 5(2) 2 7.6.5(x) 4(2) 3
=_
0!
+_
1!
+_
2!
+_
3!
+…
7 6 5 4
x .1 _
=_1
+ 7.x1 .2 + _
7.6.x .4 _
2
+ 7.6.5.6x .8 + …
[ ]
15
= (1) + (− _4x )
= _ + _ + ___________+ _____________ + …
0! 1! 2! 3!
2 3
15.1.− _4x 15.14.1._
x
15.14.13.1.− _
x
1.1 _ _ _
=_
16 64
1
+ 1 + 2
+ 6
+…
2 3
15x _
=1–_4
+ 105
16
x 455x
–_64
+…
1
2.3 _ 5
(1 + x)
= (1 + x)–5
(1) −5(x) 0 (−5)(1) −6(x) 1 (−5)(−6)(1) −7(x) 2 (−5)(−6)(−7)(1) −8(x) 3
=_
0!
+_
1!
+ ____________
2!
+ _______________
3!
+…
(−5)1x
11 _ _ ____________ (−5)(−6)1x 2 (−5)(−6)(−7)1x 3
=_1
+ 1 + 2
+ 6
+…
= 1 – 5x + 15x2 – 35x3 + …
2.4 (x − _15 )
− 12
= [(x) + (−_15 )]
− 12
(−12)(x )( 5 ) ____________
(−12)(−13)(x )( 25 ) _________________
(−12)(−13)(−14)(x )( 125 )
−12 −13 −_1 −14
1
_
−15
1
−_
x 1 __________
=_ + 1
+ 1
+ +… 2 6
1
_+_ 12 _78 _364
= + + +…
x 12 5x 13 25x 14 125x 15
2.5 (_3x + y) 10
= _ + _ + ____________ + ___________________ + …
8
256a 512a 1 024a 2 048a
1 1 2 6
2 3
1 3b 81b 405b
=_ 8 +
_
9 +
_
10 +
_
11 + …
256a 64a 256a 256a
_3
2.9 (x + 7) 4
4( 4) ( )(
_3 − _1 (x) −_54(7) 2 _3 − _1 − _54 )(x) −4(7) 3
_9
_3 _3 (x) −_14(7) 1
(x) 4(7) 0
_ _
4 ___________ _______________
4 4
= 0!
+ 1!
+ 2!
+ 3!
+…
4 ( 4) 4 ( 4) ( 4)
_3 _3 x −_14 7 _3 − _1 x −_54 49 _3 − _1 − _5 x −4 343
_9
x 4.1 _
=_ + _ + ______________ + …
4
+ 1 1 2 6
21_3 − _1 147 − _5 1 715 − _9
= x4 + _4
x 4 –_
32
x 4 +_128
x 4 +…
21_3147 1 715
= x4 + _ –_ +_ +… _1 _5 _9
4x 4 32x 4 128x 4
21_3147 1 715
= x4 + _ –_ 1
+_ 2
+… _1 _1 _1
4x 4 32x .x 4 128x .x 4
_
4 21 147 1 715
= √x 3 + _
4
_ –_ 4
_ +_
24
_ +…
4√x 32x √ x 128x √ x
_
(5 )
_x − 6 9
2.10
√ _1
[ ]
= (_5x − 6) 9
2
= ( 5 − 6) 2
_9
_
x
_9
[ ]
= (_5x ) + (−6)
2
_ _ _ _
4 3 2
=_ – 27x √_x + _
x √x_ _ 567x _√x _
– 567x_√x + …
625√5 125√5 50√5 2√5
_ _ _ _ _ _ _ _
4 3 2
√5 x √x 27√5 x √x _
=_ –_
3 125
+ 567√5 x √x – _
567√5 x√x
…
625 250 10
− _85
2.11 (4r + _2S )
(4r) −5(_2S ) (− 5 )(4r) ( 2 ) (− 5 )(− 5 )(4r) ( 2 ) (− 5 )(− 5 )(− 5 )(4r) ( 2 )
0 1 2 3
_8
_8 13
−_
5 _S _8 13
_ 18
−_5 _S _8 13
_ 18
_ 23
−_
5 _S
=_
0!
+ ___________
1!
+ _______________
2!
+ ____________________
3!
+…
1
2.12 _
_
√3x −
1 3 _
x2
1
=_ _1
( x 2)
1
3x − _
3
− _13
( )
1
= 3x − _2
x
− _13
[ ( )]
1
= (3x) + − _2
x
1. f (x) = 5x – 3
f (x + h) = 5(x + h) – 3
f (x + h) = 5x + 5h – 3
f (x + h) – f (x) = (5x + 5h – 3) – (5x – 3)
= 5x + 5h – 3 – 5x + 3
f (x + h) – f (x) = 5h
f(x + h) − f(x) _
_
h
= 5h h
f(x + h) − f(x)
_
h
=5
f(x + h) − f(x)
f ʹ(x) = lim _
h h→0
= lim (5)
h→0
f ʹ(x) = 5
2. y = 2x2
∴ f (x) = 2x2
f (x + h) = 2(x + h)2
= 2(x + h)(x + h)
= 2(x2 + 2xh + h2)
f (x + h) = 2x2 + 4xh + 2h2
f (x + h) – f (x) = (2x2 + 4xh + 2h2) – (2x2)
= 2x2 + 4xh + 2h2 – 2x2
f (x + h) – f (x) = 4xh + 2h2
f(x + h) − f(x) _ 2
_
h
= 4xh + 2h h
h(4x + 2h)
=_
h
f(x + h) − f(x)
_
h
= 4x + 2h
f(x + h) − f(x)
f ʹ(x) = lim _
hh→0
3. y=4
f(x) = 4x 0
f(x + h) = 4(x + h)0
=4
f(x + h) − f(x)
lim _________
h
h→0
4−4
= lim ____
h
h→0
0
= lim _h
h→0
= lim 0
h→0
∴ f ʹ(x) = 0
4. f (x) = 9x2 – 4
f (x + h) = 9(x + h)2 – 4
= 9(x + h)(x + h) – 4
= 9(x2 + 2xh + h2) – 4
f (x + h) = 9x2 + 18xh + 9h2 – 4
f (x + h) – f (x) = (9x2 + 18xh + 9h2 – 4) – (9x2 – 4)
= 9x2 + 18xh + 9h2 – 4 – 9x2+ 4
f (x + h) – f (x) = 18xh + 9h2
f(x + h) − f(x) _ 2
_
h
= 18xh + 9h
h
h(18x + 9h)
=_
h
f(x + h) − f(x)
_
h
= 18x + 9h
f(x + h) − f(x)
f ʹ(x) = lim _
h
h→0
5. y = –3x2 + 7
∴ f (x) = –3x2 + 7
f (x + h) = –3(x + h)2 + 7
= –3(x + h)(x + h) + 7
= –3(x2 + 2xh + h2) + 7
f (x + h) = –3x2 – 6xh – 3h2 + 7
f (x + h) – f (x) = (–3x2 – 6xh – 3h2 + 7) – (–3x2 + 7)
= –3x2 – 6xh – 3h2 + 7 + 3x2 – 7
f (x + h) – f (x) = –6xh – 3h2
f(x + h) − f(x) _ 2
_
h
= −6xh – 3h
h
h(−6x − 3h)
=_
h
f(x + h) − f(x)
_
h
= –6x – 3h
f(x + h) − f(x)
f ʹ(x) = lim _
h
h→0
6. f (x) = x2 – 6x
f (x + h) = (x + h)2 – 6(x + h)
= (x + h)(x + h) – 6(x + h)
f (x + h) = x2 + 2xh + h2 – 6x – 6h
f (x + h) – f (x) = (x2 + 2xh + h2 – 6x – 6h) – (x2 – 6x)
= x2 + 2xh + h2 – 6x – 6h – x2 + 6x
f (x + h) – f (x) = 2xh – 6h + h2
f(x + h) − f(x) _ 2
_
h
= 2xh − 6h + hh
h(2x − 6 + h)
=_
h
f(x + h) − f(x)
_
h
= 2x – 6 + h
f(x + h) − f(x)
f ʹ(x) = lim _
h
h→0
= lim (2x − 6 + h)
h→0
= 2x – 6 + (0)
f ʹ(x) = 2x – 6
7. y = 2x2 + 3x – 8
∴ f (x) = 2x2 + 3x – 8
f (x + h) = 2(x + h)2 + 3(x + h) – 8
= 2(x + h)(x + h) + 3(x + h) – 8
= 2(x2 + 2xh + h2) + 3(x + h) – 8
f (x + h) = 2x2 + 4xh + 2h2 + 3x + 3h – 8
f (x + h) – f (x) = (2x2 + 4xh + 2h2 + 3x + 3h – 8) – (2x2 + 3x – 8)
= 2x2 + 4xh + 2h2 + 3x + 3h – 8 – 2x2 – 3x + 8
f (x + h) – f (x) = 4xh + 3h + 2h2
f(x + h) − f(x) _ 2
_
h
= 4xh + 3h + 2h h
h(4x + 3 + 2h)
=_
h
f(x + h) − f(x)
_
h
= 4x + 3 + 2h
f(x + h) − f(x)
f ʹ(x) = lim _
h
h→0
8. f (x) = x3
f (x + h) = (x + h)3
(x) 3(h) 0 3(x) 2(h) 1 3.2(x) 1(h) 2 3.2.1(x) 0.(h) 3
=_
0!
+_
1!
+_
2!
+_
3!
3 2 1 2 3
x .1 _
=_1
+ 3.x1 .h + _
3.2.x .h
2
3.2.1.1.h
+_ 6
f (x + h) = x3 + 3x2h + 3xh2 + h3
f (x + h) – f (x) = (x3 + 3x2h + 3xh2 + h3) – (x3)
= x3 + 3x2h + 3xh2 + h3 – x3
f (x + h) – f (x) = 3x2h + 3xh2 + h3
f(x + h) − f(x) ___________
2 2 3
_
h
= 3x h + 3xh + h h
h(3x + 3xh + h 2)
2
= ___________
h
f(x + h) − f(x)
_
h
= 3x2 + 3xh + h2
f(x + h) − f(x)
f ʹ(x) = lim _
h
h→0
9. y = 5x3 – 4
∴ f (x) = 5x3 – 4
f (x + h) = 5(x + h)3 – 4
= 5[_ ]–4
(x) 3(h) 0 3(x) 2(h) 1 3.2(x) 1(h) 2 3.2.1(x) 0(h) 3
0!
+_
1!
+_
2!
+_
3!
= 5[_ ]–4
3 2 2 3
x .1 _
1
+ 3.x1 .h + _
3.2.x.h
2
3.2.1.1.h
+_ 6
= –2[_ ] + 4(x + h)
3 2 2 3
x .1 _
1
+ 3.x1 .h + _
3.2.x.h
2
3.2.1.1.h
+_ 6
11. y = –6x4
∴ f (x) = –6x4
f (x + h) = –6(x + h)4
= –6[_ ]
(x) 4(h) 0 4(x) 3(h) 1 4.3(x) 2(h) 2 4.3.2(x) 1(h) 3 4.3.2.1(x) 0(h) 4
0!
+_
1!
+_
2!
+_
3!
+_
4!
= –6[_ ]
4 3 2 2 3 4
x .1 _
1
+ 4.x1 .h + _
4.3.x .h
2
4.3.2.x.h _
+_ 6
+ 4.3.2.1.1.
24
h
9_
12. y=_
4
4 √x
f(x) = _9 x − 1_4
4
4[
x − 4 h 3 + …]
( 4)( 4)
− 1_ − 5_ (
− 4)(− 4)(− 4)
_1 5_ 9_
+ (− _14) x −4 h − 9_4
5_ 13
= _9 x − 1_4 + _ x h + 2 ___________ _
2! 3!
= 9_4[x −4 − 41_ x −4 h + _ x h + …]
5_ 9_ 13
1_
5 −4 2 _ 15 − 4 3 _
32
x h − 128
5_ 9_ 13
= 9_4 x −4 − _9 −4 45 − 4 2 135
1_ _
16
x h+_
128
x h −_512
x − 4 h3 + …
_9 1
−_4 9
__ 5
−_4
x − 16 x h + 128 x h − 512 x h + …. 4 x
45
___ 9
−_4 2 135
___ 13
−__
4
3 _9 1
−_4
lim ______________________________
4
h
h→0
9 − _54
= −_
16
x
9_ 0,563
= −_
4 or − _
4
_
5
16 √x 5
√x
=0 = −_ (x )
d 8
dx
= − 8(x 8−1)
= − 8x 7
f ʹ(x) = 51_
5
1.5 y=_4 1.6 f(x) = a 2 x
x
= 5x −4 f ʹ(x) = a 2
f ʹ(x) = − 20x −5
− 20
= __
5
x
_
1.7 f(x) = 1_2 x −8 1.8 f(x) = − 3√x
_1
f ʹ(x) = (− 8) 1_2 x −9 = − 3x 2
f ʹ(x) = − 3_2 x −2
1_
= − 4x −9
4 3_
= −_9 = −_
x 2√x
2_
1.9 f(x) = _
4 1.10 y = mn2a3
√x
dy _
= 2
_
1_
_
dx
= d (m n 2 a 3)
dx
x4
− _14
= 2x =0
5_
f ʹ(x) = − 1_4(2) x −4
_5
= − 1_2 x −4
1_
= −_
4 5
2 √x
1.11 y = 2π 2
dy _
_
dx
= d (2π 2)
dx
=0
6 1
2. 2.1 y=_2 2.2 y = −_ 3
x 4x
= 6x −2
= − _14 x −3
dy
_ dy 3_ − 4
_
dx
= − 12x −3 dx
= x 4
3
= − 12
_
3 =_ 4
x 4x
3
_ _
2.3 y = − 2 √x 2.4 y = √5x
_1 _ 1_
= − 2x 3 = √5 x 2
_
(2)
dy _2 dy 1_
_
dx
= − 2_ x −3
3
_
dx
= √5 1_ x −2
_
2_ √5_
= −_
3 =_
3 √x
2 2√x
2
2.5 y= _
x_ 2.6 y = a 2 b2 x 2
√x
1_ dy
_
= x 2−2 dx
= 2a 2 b 2 x
_3
=x 2
dy 3_ 1_
_
dx
= x2 2
_
= 3_2 √x
_
3√x
=_ 2
3
πx 1
2.7 y=_6
2.8 y=_ −3
ax
= _π x 3 = _1 x 3
6 a
(a)
dy dy
_
dx
= 3 × π_ x 2 6
_
dx
= 3 _1 x2
2
= π_2 x 2 or _
πx
2
= _a3 x 2
2
3
= 3_
x
a
or _a x2
1_
2.9 y = −_ 3
3√ x
3_
= − 3_1 x −2
2( 3)
dy 5_
_
dx
= − 3_ − 1_ x −2
1_
=_ 5
2√x
= _
d 4
x – 2_
d 2
x +_
d
6
dx dx dx
= 4x3 – 2(2x) + 0
dy
_
dx
= 4x3 – 4x
2
_1 x 3 − 9
(x + 1)(x − 2)
y=_ y=_
3
3.3 3.4 2x − 6
x2
3 2 _1 (x 3 − 27)
x − 2x + x − 2
=_ _3
2
x = 2(x − 3)
3 2
2x
=_
x
–_ +_ –2
x _
_1 (x − 3)(x 2 + 3x + 9)
x2 x2 x2 x2
= _____________
3
= x – 2 + _1x – _
2
2
2(x − 3)
x
y = x – 2 + x–1 – 2x–2 = _16 (x 2 + 3x + 9)
dy _
_ = d (x) – _
d
(2) + _(x ) – _
d –1 d
(2x–2) y = _16 x 2 + _12 x + _32
dx dx dx dx dx
dx ( 6 ) dx ( 2 ) dx ( 2 )
= _
d
–_
d
2+_ x – 2_
d –1 d –2 dy _
dx
x dx dx dx
x _
dx
= d _1 x 2 + _ 1
d _
x +_ 3
d _
–2 –3
= 1 – 0 – x – 2(–2.x )
= _16 _
dx
x + 12 _
d 2 _ d
dx
x+_
d_ 3
dx 2
= 1 – x–2 + 4.x–3
dy
_ 1 4 = _16 (2x) + _12 (1) + 0
=1–_ +_
dx x2 x3 dy _
_
dx
= 1 x + _1
3 2
1. y = 1_2 e 4x 2. y = 3e − x
dy
_ dy
_
dx
= 2e 4x dx
= − 3e − x
3. y = 3 ln x 4. y = log 4x
dy 3_ dy _
_
dx
= x
_
dx
= 1 x ln 4
_
5. y = log 3x 2 6. y = − 5 log 2√x
_1
dy _ = − 5 log 2x 2
_
dx
= 2 x ln 3
dy
_
dx
= − 5_._
1
2 x ln 2
−5
=_
2x ln 2
= 12.2 −3x ln 2
3
_
9. f (x) = √ 125 x 10. f (x) = e ln4+x
_1
= [(5 3) x] = e ln4.e x
3
_1
= [5 3x] f (x) = 4.e x
3
f (x) = 5x f ʹ(x) = _
d
(4.e x)
dx
f ʹ(x) = _
d x
dx
5 = 4_
d x
e
dx
f ʹ(x) = 5x ln 5 f ʹ(x) = 4ex
_
11. f (x) = –5 ln x2 12. f (x) = 4 log √x 7
_1
= –5(2) ln x = 4 log(x 7) 2
_7
f (x) = –10 ln x = 4 log x 2
f ʹ(x) = _
d
dx
(–10 ln x) = 4(_72 ) log x
= –10_
d
dx
ln x f (x) = 14 log x
= –10._1x f ʹ(x) = _
d
(14 log x)
dx
10
f ʹ(x) = − _x = 14_
d
log x
dx
1
= 14._
x ln 10
14
f ʹ(x) = _
x ln 10
( √x 4 )
13. y = _18 ln _ 1_
14. y = 6 log 1_x
3
dy _
8 ( (x 4) _12 ) dx( )
_1 ln _1 _ = d 6 log 1_x
= dx 3
(x 2)
= _18 ln _
1 = 6_
d
dx
log _1x
3
1
= 6. _
= _18 ln x −2 x ln 1_3
_ 6
=
= _18 (−2)ln x x ln 1_3
y = − _41 ln x
dx ( 4 )
dy _
_
dx
= d − _1 ln x
= − _41 _d
dx
ln x
= − _41 ._1x
dy
_ 1
dx
= −_ 4x
= cos 5x._
d
dx
5x = − 3_
d
dx
(cos x)
= 4_
d
dx
(tan 4x) = −a 2 _
d
dx
(cosec x)
= 4 sec 24x._
d
4x = − a 2(−cot x cosec x)
dx
= a 2 cot x cosec x
= 4 sec 24x.4
= 16 sec 24x
dx(2 ) dx(3 )
dy _ dy _
_
dx
= d _1 sec πx _
dx
= d 1_ cot 3x
= _1 _
d
(sec πx) = _1 _
d
(cot 3x)
2 dx 3 dx
2 cos x
1.9 y = 4 cos πx 1.10 f (x) = _
sin 2x
dy _
_
dx
= d (4 cos πx)
dx =_ 2 cos x
2 sin x cos x
= 4. _
d
(4 cos πx) 1
dx =_
sin x
= 4(− sin πx)._
d
(πx)
dx f (x) = cosec x
= 4(− sin πx) π
f ʹ(x) = _
d
dx
cosec x
= − 4π sin πx
f ʹ(x) = –cosec x cot x
1
1.11 f (x) = ___________
4 4 1.12 y = 10 sin _2x .cos _2x
cos x − sin x
1
= _______________ = 5(2 sin _2x .cos _2x )
(cos x + sin x)(cos x − sin x)
2 2 2 2
1 y = 5 sin x
=_
1.cos x
dy _
_
1
= d (5 sin x)
= _ dx dx
cos x
= 5_d
dx
sin x
= sec x
dy
_ = 5 cos x
f ʹ(x) = _
d
dx
sec x dx
= sec x tan x
_
cos x
1.13 f (x) = _
_ 1.14 y = √4 + 4 tan 2x
2
√1 − cos x _
cos x = √4(1 + tan 2x)
=_ sin x _ _
= √4 .√1 + tan 2x
f (x) = cot x _
= 2√sec 2x
f ʹ(x) = _
d
dx
cot x
y = 2 sec x
f ʹ(x) = –cosec2x
dy _
_
dx
= d (2 sec x)
dx
= 2_
d
dx
sec x
dy
_
dx
= 2 sec x tan x
1
1.15 f (x) = _
___________
2
√3 cosec x − 3
1
=_____________
√3(cosec 2x − 1)
1
=_
_ _
√3 .√cosec x − 1
2
1
=_
_ _
√3 .√cot x
2
1
=_
_
√3 cot x
1_ _
=_ . cot1 x
√3
1_
f ʹ(x) = _ tan x
√3
dx ( √3 )
1_
f ʹ(x) = _
d _
tan x
1_ _
=_ d
tan x
dx
√3
1_
f ʹ(x) = _ sec 2x
√3
_
10
y = 3 cot x + _
3
2. 2.1 ex
− 4 √x − 8
1_
= 3 cot x + 10. e −x − 4. x 3 − 8
(4. x 3) − _
dy _
_ _1
dx
= d (3 cot x) + _
dx
d
(10. e −x) − _
dx
d d
(8) dx dx
1_
= 3_
d
dx
cot x + 10_
dx
e − 4_
d −x d 3 _
dx
d
x − dx 8
= − 3 cosec 2 x − 10
_−_
ex 3
4_
2
3 √x
_
2.2 y = 7 sin 2x – 3–x + _12 log√x − _52 x 4
dx ( 4 ) dx ( 2 )
dy _
_ 1 5 4
dx
= d (7 sin 2x) – _
dx
(3 ) + _
d –x d _
dx
log x – _
d _
x
= 7_
d
dx
sin 2x – _
dx
3 + 14 _
d –x _ d
dx
log x – _52 _
d 4
dx
x
_ _
2.3 y = _1 sec x – √2 8x –√3 ln 2x + 10log2
4
_1 _
= _1 sec x – (2 8x) –√3 ln 2x + 2
2
4
_
y = _14 sec x – 24x –√3 ln 2x + 2
_
dx ( 4 )
dy _
_ = d _1 sec x – _(2 ) – _
d 4x d
(√3 ln 2x) + _
d
(2)
dx dx dx dx
_d
= _14 _
d
dx
sec x – _
d
dx
2 4x – √3 _
dx
ln 2x + _
d
dx
2
_
= _14 (sec x tan x) – (24x ln 2.4) – √3 (_
2x )
1
.2 + 0
_
dy _
_
dx
= 1 sec x tan x – 4.24x ln 2 – _
4
√3
x
dx ( 2 ) dx ( 3 )
dy _
_
dx
= d − _1 cos 4x + _
d
(11 ln x) + _
dx
d
(5x–2) – _ 1 x
d _
.edx
= − _12 _
d
dx
cos 4x + 11_
d
dx
ln x + 5_
dx
x – 13 _
d –2 _ d x
dx
e
= –12_
d
dx
cosec x – 3_
dx
e – 5_
d 3x d
dx
ln x + _
d
dx
13
log x
1_ _ x
2.6 y = –2 tan x + _
4
5
–_
2 + ln6 6
x √x
ln 6
.6 x
(x − 2) + _
dx ( 4 ) dx ( ln 6 )
dy _
_ 1 _5 1
dx
= d (–2 tan x) + _
dx
d _
log 5x – _
d d _
.6 x dx
x ln 5 ) ( 2
= –2(sec2x) + _14 (_ 1
– − _5 .x − 2) + _1 _7
ln 6
(6 x ln 6)
1
= –2 sec2x + _ + _5 ._
4x ln 5 2
1
+ 6x _7
x2
1
= –2 sec2x + _ + _5 ._
4x ln 5 2 3
1
+ 6x _1
x .x 2
dy
_ 1 5 _
= –2 sec2x + _ +_ + 6x
4x ln 5
dx 2x 3√x
y = (_13 ) y = 3 10 u=_
10 dx
= 110
y = 3u du
= 3u ln 3 dx
= 3 ln 310
7 du
_ dy
_ dy
_
y=_
3x y = 7.e–3x u = –3x dx
= –3 y = 7.eu du
= 7.eu dx
= –21.e–3x
e
_ 5x 5x
_ 5x dy _
y = √e 5x y=e2 u=_ _
du _
=5 y = eu _ = eu _
dy _
= 5 .e 2
2 dx 2 du dx 2
du
_ dy
_ dy
_
y = eln 2+9x y = 2.e9x u = 9x dx
=9 y = 2.eu du
= 2.eu dx
= 18.e9x
u = _8x _
du _
=1 y = 6 log u _
dy _
= 6 _
dy _
= 48
dx 8 du u ln 10 dx x ln 10
y = 6 log(_8x ) y = 6 log(_8x )
_ du
y = ln (√4x ) y = _12 ln 4x u = 4x _ =4 _
dy _
= 1 _
dy _
= 1
dx
y = _12 ln u du 2u dx 2x
1 _
du _ dy
_ dy
_
y = cot _ y = cot(_2x ) u = _2x dx
=1 2
y = cot u du
= –cosec2 u dx
= –_12 cosec2(_2x )
( 2x −1 )
3x 3x 3x _
du _ dy
_ dy
_ 3x
y = 4 cos(_π2 + _
4)
y = –4 sin _
4
u=_
4 dx
=3 4
y = –4 sin u du
= –4 cos u dx
= –3 cos _ 4
_ −1 _ _ _ _ _ _
1_ 1_ du
_ 1_ dy
_ 1_ dy
_ √6 sec (√3 x) tan (√3 x)
y=_ (cos (π − √3x 2 )) y = −_ sec(√3 x) u = √3 x dx
= √3 y = −_ sec u du
= −_ sec u tan u dx
= − _______________ 2
√2 √2 √2 √2
du
_ dy
_ dy
_
y = 3 cos(π + 6x) y = –3 cos 6x u = 6x dx
=6 y = –3 cos u du
= 3 sin u dx
= 18 sin 6x
Module 5 • Differential calculus
SB page 328
185
28/02/2022 11:38 am
186 N4 Mathematics – Lecturer Guide
= _12 u − 2 × (2x + 1)
_1
3
= 8u
2x +_1
dy
_ =_
dx
= 8(2x – 1)3 2√u
dy
_ 2x + 1
dx
=_
_
2√ x + x − 1
2
_ _
3 4
2.7 y = √x 2 − 1 2.8 y = √ tan x
_1 _1
y = (x 2 − 1) 3 y = (tan x) 4
_1 _1
Let u = x2 – 1 then y = u 3 Let u = tan x then y = u 4
Therefore, Therefore,
dy _ dy _
= 1u − _23
= 1u − 4
_3
_
du
= 2x _ _
du
= sec2x _
dx du 3 dx du 4
dy _
_ dy dy _
dy
dx
= ×_du
du dx
_
dx
= ×_du
du dx
= _13 u − _23
× 2x = _14 u − _34
× sec2x
2
2x_ sec_
=_
3 =_4
x
3 √u
2 3
4 √u
dy
_ 2x
_ dy
_ se_
cx 2
dx
= _
3
dx
=_
4
3 √(x 2 − 1) 2 3
4 √ tan x
1. y = ( x 2 + 3x)(2x − 2)
dy
_
dx
= (x 2 + 3x)(2) + (2x − 2)(2x + 3)
= 2x 2 + 6x + (4x 2 − 4x + 6x − 6)
= 2x 2 + 6x + 4x 2 + 2x − 6
= 6x 2 + 8x − 6
2. y = x5.3x
Let f (x) = x5 and g(x) = 3x
Thus f ʹ(x) = 5x4 and gʹ(x) = 3x ln 3
dy
_
dx
= f (x)_
d
g(x) + g(x)_
d
dx
f (x) dx
= (x )(3 ln 3) + (3 )(5x4)
5 x x
dy
_
dx
= x4.3x(x ln 3 + 5)
3. y = ex.log x
Let f (x) = ex and g(x) = log x
1
Thus f ʹ(x) = ex and gʹ(x) = _
x ln 10
dy
_
dx
= f (x)_
d
g(x) + g(x) _
dx
d
f (x) dx
= (e )(_
x
x ln 10 )
1
+ (log x)(ex)
ex (_ + log x)
dy
_ 1
dx
= x ln 10
4. y = ln x sin x
Let f (x) = ln x and g(x) = sin x
Thus f ʹ(x) = _1x and gʹ(x) = cos x
dy
_
dx
= f (x)_
d
g(x) + g(x) _
dx
d
f (x) dx
= (ln x)(cos x) + (sin x)(_1x )
dy
_ sin x
dx
= cos x ln x + _ x
5. s = t 3 cos t
Let f (t) = t 3 and g(t) = cos t
Thus f ʹ(t) = 3t 2 and g ʹ(x) = − sin t
dt ( )
_=
ds
f (t) _
d
g(t) + g(t) _
d
f t
dt dt
= (t 3)(− sin t) + (cos t)(3t 2)
= t 2(−t sin t + 3 cos t)
6. y = tan x.ex
Let f (x) = tan x and g(x) = ex
Thus f ʹ(x) = sec2x and gʹ(x) = ex
dy
_
dx
= f (x)_
d
g(x) + g(x) _
dx
d
f (x) dx
= (tan x)(e ) + (e )(sec2x)
x x
dy
_
dx
= ex(tan x + sec2x)
_
7. y = (ln x − 1).√x
_1
y = (ln x − 1).x 2
_1
Let f (x) = ln x – 1 and g(x) = x 2
Thus f ʹ(x) = _1x and gʹ(x) = _12 .x − 2
_1
dy
_
dx
= f (x)_
d
g(x) + g(x) _
dx
d
f (x) dx
_1
ln x _
−1 _
=_ + xx
2
2√x
_ _
√x (ln x − 1)
=_+_ 2x
√x
x
_ _
√x (ln x − 1) + 2√x
= ____________
2x
_ _ _
√x ln x − √x + 2√x
= ____________
2x
_ _
√x ln x + √x
=_ 2x
_
dy _
_ √x (ln x + 1)
dx
= 2x
( )
1
8. x= 2+_4 log 6t
x
= (2 + x −4) log 6t
Let f (t) = 2 + x −4 and g(t) = log 6t
1
Thus f ʹ(t) = − 4 x −5 and g ʹ(t) = _
t ln 6
_
dx
= f (t) _
d
g(t) + g(t) _
d
f (t)
dt dt dt
= (2 + x −4)(_
t ln 6) (
1
+ log 6t)(− 4.x −5)
2 1 4 log t
=_
t ln 6
+_
4 −_5
6
tx ln 6 x
9. y = 4x(cot x – x2)
Let f (x) = 4x and g(x) = cot x – x2
Thus f ʹ(x) = 4x ln 4 and gʹ(x) = –cosec2x – 2x
dy
_
dx
= f (x)_
d
g(x) + g(x)_
d
f (x) dx dx
= (4 )(–cosec x – 2x) + (cot x – x2)(4x ln 4)
x 2
dy
_
dx
= 4x(–cosec2x – 2x + cot x ln 4 – x2 ln 4)
_
10. y = (√x 3 − sec x) cosec x
y = (x 2 − sec x) cosec x
_3
_3
Let f (x) = x 2 – sec x and g(x) = cosec x
Thus f ʹ(x) = _32 .x 2 − sec x tan x and gʹ(x) = – cosec x cot x
_1
dy
_
dx
= f (x)_
d
g(x) + g(x)_
d
f (x) dx dx
= (x − sec x)(–cosec x.cot x) + (cosec x)(_32 x 2 − sec x tan x)
_3 _1
2
_ _
dy
_ 3√x cosec x
dx
= −x √x cosec x cot x + cosec2x + _ – sec2x 2
4
1 −_x
1. y=_
√x
x 2(− 4x 3) − (1 − x 4) 21_ x −2
_1 1_
dy
_ = ____________
(x 2)
2
dx 1_
7_ 1_ 7_
− 4x 2 − 1_2 x −2 + 21_ x 2
= ______________ x
7_
− 7_2 x − 1_2 x −2
1_
2
= ___________
x
5_ 3_
= − 7_2 x 2 − 1_2 x −2
_
= − 7_2 √x 5 − _
1_
3
2√x
7
2. y=_x
ln x
(x)
(ln x)(7x 6) − (x 7) _1
= _____________
(ln x) 2
6 6
7x ln x − x
=_ 2
ln x
6
dy _
_ x (7 ln x − 1)
=
dx ln 2x
4 cos x
3. y=_ 10 x
log r
4. x=_5
3
(rln 3)
r5 3
1
_ − (log r)(5r 4)
= ___________ 2
(r 5)
4
_
r
− 5r 4 log r
= ____________
ln 3 3
10
r
(ln 3 3 )
1
_
r4 − 5 log r
= ___________
r 10
1
_ − 5 log r
=_
ln 3 3
6
r
5. y = (2 ln x)–1
1
y=_
2 ln x
(x)
(2 ln x)(0) − (1) _2
= ____________
(2 ln x) 2
− _2x
= _2
(2 ln x)
dy
_ 1
= −_
dx 2x ln 2x
6. r = cosec θ
1
=_
sin θ
= −_ 1 _
.cos θ
sin θ sin θ
= − cosec θ cot θ
x
7. y=_
3
e
x +1
Let f (x) = ex and g(x) = x3 + 1
Thus f ʹ(x) = ex and gʹ(x) = 3x2
g(x)_
d
f(x) − f(x)_
dy ______________
d
g(x)
_ =
dx dx
dx (g(x)) 2
(x 3 + 1)(e x) − (e x)(3x 2)
= ______________
3 2
(x + 1)
x 3 2
dy _
_ e (x − 3x + 1)
=
dx (x + 1) 2
3
2
4−x
8. y=_2x
(2 x)(−2x) − (4 − x 2)(2 x ln 2)
= _________________
x 2
(2 )
2 x(x 2 ln 2 − 2x − 4 ln 2)
= _______________
x 2
(2 )
dy ____________
2
_
dx
= x ln 2 − 2x − 4 ln 2 2x
3
_
√t
9. s=_ sec t − t
_1
=_ t 3
sec t − t
1_
Let f (t) = t 3 and g(t) = sec t − t
2_
Thus f ʹ(t) = 1_3.t −3 and g ʹ(t) = sec t.tan t − 1
g(t) _
d
f(t) − f (t) _
d
g(t)
_ = _______________
ds dt dt
dt (g(t)) 2
= ___________________
(sec t − t)2
1_ − 2_3 1_ _1 _1
t sec t − 1_3 t 3 − t 3 sec t tan t + t 3
3________________
=
(sec t − t)2
1_ − 2_3 1_ 1_
t sec t − t 3 sec t tan t + 2_ t 3
= ______________
3 3
2
(sec t − t)
_1 t 1_3(t − 1 sec t − 3 sec t tan t + 2)
= _______________
3
(sec t − t)2
1_
t 3(sec t − 3t sec t tan t + 2t)
= ______________
2
3t (sec t − t)
3
_
√t (sec t − 3t sec t tan t + 2t)
= ______________
3t (sec t − t)2
x
e + sin x
10. y=_ log x 4
x
Let f (x) = e + sin x and g(x) = log 4x
1
Thus f ʹ(x) = ex + cos x and gʹ(x) = _
x ln 4
g(x)_
d
f(x) − f(x)_
dy ______________
d
g(x)
_ =
dx dx
dx (g(x)) 2
( x ln 4 )
1
(log x)(e x + cos x) – (e x + sin x) _
= _______________________
4
(log 4x) 2
x
sin x
e xlog 4x + cos x log 4x − _ e
−_
= _____________________
x ln 4 x ln 4
2
(log 4x)
x x
x e log 4x ln 4 + x cos x log 4x ln 4 − e − sin x
dy ____________________________
_ =
dx x ln 4(log 4x) 2
y = x2(x – _x ) + 5
1 2
1. y = –2x3 + 5x2 + 3x – 12 2.
dy
_ dy
_
dx
= –6x2 + 10x + 3 = 4x3 – 4x
dx
d 2y
_ d 2y
=_
d
(–6x2 + 10x + 3) _ =_
d
(4x3 – 4x)
dx 2 dx dx 2 dx
=_
d
dx
(–6x2) + _
d
dx
(10x) + _
d
dx
(3) =_
d
(4x3) – _
d
(4x)
dx dx
= –6_
d 2
dx
x + 10_
d
dx
x+_
d
dx
3 = 4_
d 3
x – 4_
d
x
dx dx
2
_1 t 3 − 9
(x + 1)(x – 2)
y = _________
3_
3. 4. s= 2t − 6
x2
dy
_ 1 4
=1–_ +_ _ = 1_ t
ds
dt 3
+ 21_
dx x2 x3
dt(3 2)
dy
_ d2 s _
= 1 – x–2 + 4x–3 ∴ _ = d _1 t + 1_
dx dt 2
2
dt(3 ) dt(2)
dy _
_ = d (1 – x–2 + 4x–3) d 1_
=_ t + _d 1_
dx 2 dx
=_
d
dx
(1) – _
dx
(x ) + _
d –2 d
dx
(4x–3) = 1_3 dt
_
d d 1_
t+_
dt 2
=_
d
dx
1–_
dx
x + 4_
d –2 d –3
dx
x = 1_3(1) + 0
2
d s 1_
_
= 0 – (–2x–3) + 4(–3x–4) = 3
dt 2
2
dy _
_ = 2 –_
12
dx 2 x3 x4
_
10
y = 3 cot x + _
3
5. – 4 √ x– 8
_x
e2
dy
_ 5 _ 4_
dx
= –3 cosec2x – _ _x – 3
e 2 3 √x 2
dy
= –3(cosec x)2 – 5e − 2 – _4 x − 3
_x _2
_
dx 3
dx ( )
2
dy _
− 3(cosec x) 2 − 5e– 2 − _4 x − 3
_x _2
_ d
2 =
dx 3
dx ( 3
(5e 2) – _ x )
4 −3 − _x _2
=_
d
dx
(–3(cosec x)2) – _
d
dx
d _
e – _43 _
_x _2
= –3_
d
dx
(cosec x)2 – 5_
d −2
dx
d −3
dx
x
2
dy
_ 5 8_
= 6 cosec2x cot x + _ _x +
_
dx 2 3
2e 2 9x √x 5
_
6. y = 7 sin 2x – 3–x + _12 log√x – _52 x4
dy
_ ln 3 _1
dx
= 14 cos 2x + _ x + – 10x3
3 4x ln 10
dy
_ 1
dx
= 14 cos 2x + ln 3.3–x + _ .x–1 – 10x3 4 ln 10
2
dy _
_ 1
= d (14 cos 2x + ln 3.3–x + _ .x–1 – 10x3) 4 ln 10
dx 2 dx
dx ( 4 ln 10
=_
d
dx
(14 cos 2x) + _
d
dx
(ln 3.3–x) + _
d _ 1
.x −1) – _
d
dx
(10x3)
1 _
= 14_
d
dx
cos 2x + ln 3_
d
dx
3 –x + _ x – 10_
d −1
4 ln 10 dx
d 3
dx
x
1
= 14(–sin 2x.2) + ln 3(3–x ln 3. –1) + _
4 ln 10
(− 1x −2) – 10(3x2)
2 2
dy
_ (ln 3) 1
= –28 sin 2x – _ – _
2 – 30x2 3 x
dx 4x 2 ln 10
_ _
7. y = _14 sec x – √2 8x – √3 ln 2x + 10log 2
_
dy _
_
dx
= 1 sec x tan x – 4.24x ln 2 – _
4
√3
x
dy _ _
_
dx
= 1 sec x tan x – 4.24x ln 2 – √3 x −1
4
_
dx ( 4
2
dy _
_ 1
d _
2 = sec x tan x – 4.24x ln 2 – √3 x −1)
dx
_
dx ( 4
=_
d _ 1
sec x tan x) – _
d
dx
(4.24x ln 2) – _
d
dx
(√3 x −1)
_
= _14 _
d
dx
sec x tan x – 4 ln 2_
dx
2 – √3 _
d 4x d −1
dx
x
_
= _14 [sec x_
d
dx
tan x + tan x _
d
dx
sec x] – 4 ln 2_
d
dx
2 4x – √3 _
d −1
dx
x
_
= _14 [sec x sec2x + tan x sec x tan x] – 4 ln 2(24x ln 2.4) –√3 (–1.x–2)
_
= _14 [sec3x + sec x tan2x] – 16.24x(ln 2)2 + _
√3
2
x
_
= _1 [sec3x + sec x (sec2x – 1)] – 16.24x(ln 2)2 + _
4
√3
x2
_
= _14 [sec3x + sec3x – sec x] – 16.24x(ln 2)2 + _
√3
2
x
_
= _14 [2 sec3x – sec x] – 16.24x(ln 2)2 + _
√3
2
x
_
d 2y
_ = _12 sec3x – _14 sec x – 16.24x(ln 2)2 + _
√3
dx 2 2
x
8. y = – _12 cos 4x + 11 ln x + _
5
2 –e
x – ln 3
x
dy
_ 11
_ 10
_ _1 ex
= 2 sin 4x + – – 3
dx x x3
dy
_
dx
= 2 sin 4x + 11x–1 – 10x–3 – _1 ex 3
2
dy _
_ = d (2 sin 4x + 11x–1 – 10x–3 – _1 ex) 3
dx 2 dx
=_
d
dx
(2 sin 4x) + _
d
dx
(11x–1) – _
d
dx
(10x–3) – _ ( 1 ex)
d _
dx 3
= 2_
d
dx
sin 4x + 11_ x – 10_
d –1
dx dx
x – 13 _
d –3 _ d x
dx
e
=_
d
dx
(12 cosec x cot x) – _
d
dx
(9e3x) – _
d
dx
(5.x–1)
= 12_
d
dx
cosec x cot x – 9_
dx
e – 5_
d 3x d –1
dx
x
= 12[cosec x_
d
dx
cot x + cot x_
d
dx
cosec x] – 9_ e – 5_
d 3x
dx
d –1
dx
x
1_ _log x x
10. y = –2 tan x + _
4
5
–_
2 + ln6 6
x √x
dy
_ _ 1 5 _
dx
= –2 sec2x + 4x ln 5
+_
3 + 6x
2x √x
dy 1
+ _25 .x − 2 + 6x
_7
_ = –2(sec x)2 + _ .x–1
dx 4 ln 5
2
dy _ 1
.x–1 + _5 .x − 2 + 6x)
_7
_ = d (–2(sec x)2 + _
dx 2 dx 4 ln 5 2
dx ( 2
dx ( 4 ln 5
1
.x −1) + _ .x ) + _
5 −2 _7
=_
d
dx
(–2(sec x)2) + _
d _ d _ d x
dx
(6 )
1 _
x + 52 _
_7
= –2_
d
dx
(sec x)2 + _ d –1 _
4 ln 5 dx
d −2 _
dx
d x
x + dx 6
1
(–1x–2) + _52 (− _72 x − 2) + 6x ln 6
_9
= –2(2 sec x sec x tan x) + _
4 ln 5
2
dy
_ 1 35 _
= –4 sec2x tan x – _ –_ + 6x ln 6
dx 2 4x 2 ln 5 4x 4√x
1. 1.1 a) y = x 3 + 3x 2
dy
_
dx
= 3x 2 + 6x
0 = 3x 2 + 6x
0 = 3x(x + 2)
∴ x = 0 or x = − 2
∴ y = 0 or y = (− 2)3 + 3(− 2)2
∴ y=4
Thus, the turning points of y = x 3 + 3x 2 are (0; 0) and (–2; 4)
b) Nature of turning points:
2
d y
_ = 6x + 6
dx2
For x = 0:
2
d y
_ = 6(0) + 6 = 6 > 0 ∴ Minimum (0; 0)
dx2
For x = − 2:
2
d y
_ = 6(− 2) + 6 = − 6 < 0 ∴ Maximum (–2; 4)
dx2
2
d y
_
c) =0
dx2
6x + 6 = 0
6x = − 6
x = −1
∴ y = (− 1) 3 + 3(− 1)2
= −1 + 3
=2
Point of inflection: (–1; 2)
d) x-intercept: y = 0 y
0 = x 2(x + 3) y = x3 – 3x2
6
∴ x = 0 or x = − 3
(–2; 4)
y-intercept: x = 0 4
∴ y=0 2
(–1; 2)
(–3; 0)
x
–3 –2 –1 (0; 0) 1 2 3
–2
–4
–6
1.2 a) y = x 3 − 4x 2 + 4x
dy
_
dx
= 3x 2 − 8x + 4
0 = 3x 2 − 8x + 4
_
− b ± √b 2 − 4ac
x = ____________
2a
∴ x = 2_3 or x = 2
∴ y = 1,19 or y = 0
Thus, the turning points of y = x 3 44x 2 + 4x are (2_3; 1,19) and (2; 0)
2
d y
_
b) = 6x − 8
dx2
For x = 2_3:
2
(3)
− 8 = − 4 < 0 ∴ Maximum (2_3; 1,19)
d y
_ = 6 2_
dx2
For x = 2:
2
d y
_ = 6(2) − 8 = 4 > 0 ∴ Minimum (2; 0)
dx2
2
d y
_
c) = 6x − 8 = 0
dx2
6x = 8
x = 34_
∴ y = (4_3) − 4(4_3) + 4(4_3)
3 2
64
=_
27
− 4(16
9)
_ + 16
_
3
= 0,593
Point of inflection: (4_3; 0,593)
d) x-intercepts: y = 0 y
0 = x 3 − 4x 2 + 4x y = x3 – 4x2 + 4x
0 = x(x 2 − 4x + 4) 3
0 = x(x − 2)(x − 2) 2
∴ x = 0 or x = 2 2
(__3 ; 1,19)
1 4
(__3 ; 0,593)
y-intercept: x = 0 (2; 0)
x
∴ y=0 –3 –2 –1 (0; 0) 1 2 3
–1
–2
–3
1.3 y = x3 – x2 – 3x + 3
a) y = x3 – x2 – 3x + 3
dy _
_
dx
= d (x3 – x2 – 3x + 3)
dx
= _
d 3
x –_
d 2 _ d
x – dx 3x + _
d
3
dx dx dx
= _
d 3
x –_
d 2
x – 3_
d
x+_
d
3
dx dx dx dx
= 3x2 – 2x – 3.1 + 0
dy
_
dx
= 3x2 – 2x – 3
dy
But _
dx
= 0 at the turning points,
3x2 – 2x – 3 = 0
_
− b ± √b 2 − 4ac
x=_ 2a
______________
− (− 2) ± √(− 2) 2 − 4(3)(− 3)
_________________
= 2(3)
_
2 ± √40
x=_ 6
_ _
2 + √40 2 − √40
x=_ 6
and x=_ 6
x = 1,387 x = –0,721
2
dy _
_ = d (3x2 – 2x – 3)
dx 2 dx
=_
d
dx
3x2 – _
d
dx
2x – _
d
dx
3
= 3_
d 2
dx
x – 2_
d
dx
x–_
d
dx
3
= 3.2x – 2.1 – 0
2
dy
_ = 6x – 2
dx 2
b)
( 3 ; 1 27 )
Stationary point (–0,721; 4,268) _1 25
_ (1,387; –0.417)
2 2 2
d 2y dy dy dy
Sign of _2 _ = –6,325 < 0
2
_ =02
_ = +6,325 > 0
dx dx dx dx 2
x = _13
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
6x – 2 = 0
6x = 2
x = _13
Substitute x = _13 into y = x3 – x2 – 3x + 3,
y = x3 – x2 – 3x + 3
25
y = 1_
27
Thus, the point of inflection of y = x3 – x2 – 3x + 3 is (_13 ; 1_
27 )
25
.
d) y
(–0,721; 4,268)
4
0; 3
2
( 3 ; 1 27 )
1
_ 25
_
y = x – x – 3x + 3
3 2
x
–4 –3 –2 –1 1 2 3 4
–1 (1,387; –0,417)
–2
= _
d
(–x3) – _d
6x2 – _d
3x + _d
5
dx dx dx dx
= –_
dx
x – 6_
d 3
dx
x – 3_
d 2 d
dx
x+_ d
dx
5
–3x2 – 12x – 3 = 0
x2 + 4x + 1 = 0
_
− b ± √b 2 − 4ac
x=_ 2a
___________
− (4) ± √(4) − 4(1)(1)
2
= ______________
2(1)
_
− 4 ± √12
x=_ 2
_ _
− 4 + √12 − 4 − √12
x=_ 2
and x=_ 2
x = –0,268 x = –3,732
= _d
(–3x2) – _d
12x – _d
3
dx dx dx
= –3_ d 2
dx
x – 12_d
dx
x–_ d
dx
3
= –3.2x – 12.1 – 0
d 2y
_ = –6x – 12
dx 2
b)
x = –2
Test value x = –3 x = –1
dy dy dy
Sign of _____
dx
_
dx
= +6 > 0 _
dx
= +6 > 0
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
–6x – 12 = 0
–6x = 12
x = –2
Substitute x = –2 into y = –x3 – 6x2 – 3x + 5,
y = –x3 – 6x2 – 3x + 5
= –(–2)3 – 6(–2)2 – 3(–2) + 5
y = –5
Thus, the point of inflection of y = –x3 – 6x2 – 3x + 5 is (–2; –5).
d) y
x
–6 –5 –4 –3 –2 –1 1 2
–2
–4
(–2; –5)
–6
–8
–10
–12
–14
1.5 y = 2x3 + x2 – 4x – 3
a) y = 2x3 + x2 – 4x – 3
dy _
_
dx
= d (2x3 + x2 – 4x – 3)
dx
=_
d
dx
2x3 + _
d 2 _
dx
d
x – dx 4x + _
d
dx
3
= 2_
d 3 _
dx
d 2
x + dx x – 4_
d
dx
x+_
d
dx
3
= 2.3x2 + 2x – 4.1 – 0
dy
_
dx
= 6x2 + 2x – 4
dy
But _
dx
= 0 at the turning points,
6x2 + 2x – 4 = 0
3x2 + x – 2 = 0
(3x – 2)(x + 1) = 0
3x – 2 = 0 and x + 1 = 0
3x = 2 x = –1
x = _23
Substitute x = –1 and x = _23 into y = 2x3 + x2 – 4x – 3,
y = 2x3 + x2 – 4x – 3
= 2(–1)3 + (–1)2– 4(–1) – 3
y=0
y = 2x3 + x2 – 4x – 3
= 2(_23 ) + (_23 ) – 4(_23 ) – 3
3 2
17
y = − 4_
27
=_
d
dx
6x2 + _
d
dx
2x – _
d
dx
4
= 6_
d 2
dx
x + 2_
d
dx
x–_
d
dx
4
= 6.2x + 2.1 – 0
2
dy
_ = 12x + 2
dx 2
b)
(− 6 ; − 2 54 ) ( 3 ; − 4 27 )
Stationary point (–1; 0) _1 17
_ _2 17
_
2 2 2
d 2y dy dy dy
Sign of _2 _ = –10 < 0
2
_ =0 2
_ = +10 > 0
dx dx dx dx 2
x = –_16
Inflection point
2
dy
c) But _2 = 0 at the point of inflection,
dx
12x + 2 = 0
12x = –2
x = − _61
17
y = − 2_
54
d) y
(–1; 0)
x
–4 –3 –2 –1 1 2 3 4
–1
–2
( 54 )
–_1 ; –2_
17
6
(0; –3)
–4
y = 2x3 + x2 – 4x – 3
( 3 ; –4 27 )
2
_ 17
_
–5
=_
d
(–3x3) + _
dx
d
11x2 – _
d
8x – _
dx
d
4 dx dx
= –3_x + 11_
d 3
dx
x – 8_
d 2 d
x–_
d
4
dx dx dx
2
= –3.3x + 11.2x – 8.1 – 0
dy
_
dx
= –9x2 + 22x – 8
dy
But _
dx
= 0 at the turning points,
–9x2 + 22x – 8 = 0
9x2 – 22x + 8 = 0
(9x – 4)(x – 2) = 0
9x – 4 = 0 and x–2=0
9x = 4 x=2
x = _49
y = –3x3 + 11x2 – 8x – 4
157
y = − 5_
243
y = –3x3 + 11x2 – 8x – 4
= –3(2)3 + 11(2)2 – 8(2) – 4
y=0
=_
d
(–9x2) + _
dx
d
22x – _
dx
d
8 dx
= –9_x + 22_
d 2 d
x–_
dx
d
8
dx dx
= –9.2x + 22.1 – 0
2
dy
_ = –18x + 22
dx 2
b)
( 9 ; − 5 243 ) (1 9 ; − 2 243 )
Stationary point _4 157
_ _2 200
_ (2; 0)
2 2 2
d 2y dy dy dy
Sign of _2 _ = +14 > 0 _ =0 _ = –14 < 0
dx dx 2 dx 2 dx 2
x = 1_29
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
–18x + 22 = 0
–18x = –22
11
x=_9
x = 1_29
11
Substitute x = _
9
into y = –3x3 + 11x2 – 8x – 4,
y = –3x3 + 11x2 – 8x – 4
= –3(_9)
+ 11(_9)
– 8(_
9)
3 2
11 11 11
–4
200
y = − 2_
243
d) y
y = –3x3 + 11x2 – 8x – 4
1
(2; 0)
x
–4 –3 –2 –1 1 2 3 4
–1
–2
(1_29 ; –2_
200
)
–3 243
(0; –4)
–5
(_49 ; –5_
157
)
–6 243
1.7 y = x3 – x2 – 8x + 12
a) y = x3 – x2 – 8x + 12
dy _
_
dx
= d (x3 – x2 – 8x + 12)
dx
= _
d 3
x –_
d 2 _ d
x – dx 8x + _
d
12
dx dx dx
= _
d 3
x –_
d 2
x – 8_
d
x+_
d
12
dx dx dx dx
= 3x2 – 2x – 8.1 + 0
dy
_
dx
= 3x2 – 2x – 8
dy
But _
dx
= 0 at the turning points,
3x2 – 2x – 8 = 0
(3x + 4)(x – 2) = 0
3x + 4 = 0 and x–2=0
3x = –4 x=2
x = − _43
x = − 1_13
Substitute x = − _43 and x = 2 into y = x3 – x2 – 8x + 12,
y = x3 – x2 – 8x + 12
= (− _43 ) – (− _43 ) – 8(− _43 ) + 12
3 2
14
y = 18_
27
y = x3 – x2 – 8x + 12
= (2)3 – (2)2 – 8(2) + 12
y=0
Thus, the turning points of y = x3 – x2 – 8x + 12 are (− 1_13 ; 18_
27 )
14
and (2; 0).
2
dy _
_ = d (3x2 – 2x – 8)
dx 2 dx
= _d
3x2 –_
d
2x – _
d
8
dx dx dx
= 3_ d 2
dx
x – 2_
d
dx
x–_
d
dx
8
= 3.2x – 2.1 – 0
2
dy
_ = 6x – 2
dx 2
b)
(− 1 3 ; 18 27 ) ( 3 ; 9 27 )
Stationary point _1 14
_ _1 7
_ (2; 0)
2 2 2
d 2y dy dy dy
Sign of _2 _ = –10 < 0
2
_ =02
_ = +10 > 0
dx dx dx dx 2
x = _13
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
6x – 2 = 0
6x = 2
x = _13
7
y = 9_
27
d) y
(–1_13 ; 18_
14
27
)
18
16
14
y = x3 – x2 – 8x + 12 (0; 12)
10
(_31 ; 9_7
27
)
8
6
4
2
(2; 0)
x
–4 –3 –2 –1 1 2 3 4
–2
–4
=_
d
(–x3) – _
dx
d
2x2 + _
d
dx
15x + _
d
36dx dx
= –_d 3
dx
x – 2_
d
dx
x2 + 15_d
dx
x + _36
d
dx
–3x2 – 4x + 15 = 0
3x2 + 4x – 15 = 0
(3x – 5)(x + 3) = 0
3x – 5 = 0 and x + 3 = 0
3x = 5 x = –3
x = _53
x = 1_23
22
y = 50_
27
Thus, the turning points of y = –x3 – 2x2 + 15x + 36 are (–3; 0) and (1_23 ; 50_
27 )
22
.
2
dy _
_ = d (–3x2 – 4x + 15)
dx 2 dx
= _d
(–3x2) – _d
4x + _d
15
dx dx dx
= –3_ d 2
dx
x – 4_
d
dx
x+_ d
dx
15
= –3.2x – 4.1 + 0
2
dy
_ = –6x – 4
dx 2
b)
(− 3 ; 25 27 ) (1 3 ; 50 27 )
Stationary point (–3; 0) _2 11
_ _2 22
_
2 2 2
d 2y dy dy dy
Sign of _2 _ = +14 > 0
2
_ =0 2
_ = –14 < 0
dx dx dx dx 2
x = –_23
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
–6x – 4 = 0
–6x = 4
x = − _23
11
y = 25_
27
d) y
(1_23 ; 50_
22
27
)
50
y = –x3 – 2x2 + 15x + 36
40
(0; 36)
30
(–_25 ; 11
25_
27
)
20
10
(–3; 0)
x
–5 –4 –3 –2 –1 1 2 3 4
= _
d
4x3 –_
d
8x2 – _
d
7x + _
d
17
dx dx dx dx
= 4_d 3
dx
x – 8_
d 2
dx
x – 7_
d
dx
x+_
d
dx
17
dy
But _
dx
= 0 at the turning points,
12x2 – 16x – 7 = 0
_
− b ± √b 2 − 4ac
x=_ 2a
________________
− (− 16) ± √(− 16) − 4(12)(− 7)
2
= ___________________
2(12)
_
16 ± √592
=_ 24
_ _
16 + √592 16 − √592
x=_ 24
and x = _ 24
x = 1,681 x = –0,347
Substitute x = –0,347 and x = 1,681 into y = 4x3 – 8x2 – 7x + 17,
y = 4x3 – 8x2 – 7x + 17
= 4(–0,347)3 – 8(–0,347)2 – 7(–0,347) + 17
y = 18,299
y = 4x3 – 8x2 – 7x + 17
= 4(1,681)3 – 8(1,681)2 – 7(1,681) + 17
y = 1,627
Thus, the turning points of y = 4x3 – 8x2 – 7x + 17 are (–0,347; 18,299) and
(1,681; 1,627).
2
dy _
_ = d (12x2 – 16x – 7)
dx 2 dx
= _d
12x2 –_
d
16x – _
d
7
dx dx dx
= 12_ d 2
dx
x – 16_
d
dx
x–_
d
dx
7
= 12.2x – 16.1 – 0
2
dy
_ = 24x – 16
dx 2
b)
( 3 ; 9 27 )
Stationary point (–0,347; 18,299) _2 26
_ (1,681; 1,627)
2 2 2
d 2y dy dy dy
Sign of _2 _ = –24,331 < 0
2
_ =02
_ = +24,331 > 0
dx dx dx dx 2
x = _23
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
24x – 16 = 0
24x = 16
x = _23
Substitute x = _23 into y = 4x3 – 8x2 – 7x + 17,
y = 4x3 – 8x2 – 7x + 17
26
y = 9_
27
d) y
(–0,347; 18,299)
(0; 17)
16
14
12
10 (_32 ; 9_
26
)
27
y = 4x3 – 8x2 – 7x + 17
8
2
(1,681; 1,627)
x
–4 –3 –2 –1 1 2 3 4
–1
–2
=_
d
(–5x3) + _
dx
d
9x2 – _
dx
d
2x + _
d
8 dx dx
= –5_x + 9_
d 3
dx
x – 2_
d 2 d
dx
x+_
d
8 dx dx
2
= –5.3x + 9.2x – 2.1 + 0
dy
_
dx
= –15x2 + 18x – 2
dy
But _
dx
= 0 at the turning points,
–15x2 + 18x – 2 = 0
15x2 – 18x + 2 = 0 _
− b ± √b 2 − 4ac
x=_ 2a
_______________
− (− 18) ± √(− 18) 2 − 4(15)(2)
__________________
= 2(15)
_
18 ± √204
x=_ 30
_ _
18 + √204 18 − √204
x=_ 30
and x = _ 30
x = 1,076 x = 0,124
= _d
(–15x2) + _d
18x – _d
2
dx dx dx
= –15_ d 2
dx
x + 18_d
dx
x–_ d
dx
2
= –15.2x + 18.1 – 0
2
dy
_ = –30x + 18
dx 2
b)
( 5 ; 8 25 )
Stationary point (0,124; 7,881) _3 24
_ (1,076; 10,039)
2 2 2
d 2y dy dy dy
Sign of _2 _ = +14,283 > 0
2
_ =02
_ = –14,283 < 0
dx dx dx dx 2
x = _35
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
–30x + 18 = 0
–30x = –18
x = _35
y = –5x3 + 9x2 – 2x + 8
24
y = 8_
25
14
12
(1,076; 10,039)
10
(_35 ; 8_
24
)
(0; 8) 25
(0,124; 7,881)
4
y = –5x3 + 9x2 – 2x + 8
2
x
–4 –3 –2 –1 1 2 3 4
–2
= _
d 3
x +_
d
2x2 – _
d
10x – _
d
30
dx dx dx dx
= _
d 3
x + 2_
d 2
x – 10_
d
x–_
d
30
dx dx dx dx
dy
But _
dx
= 0 at the turning points,
3x2 + 4x – 10 = 0
_
− b ± √b 2 − 4ac
x=_ 2a
______________
− (4) ± √(4) 2 − 4(3)(− 10)
________________
= 2(3)
_
− 4 ± √136
x=_ 6
_ _
− 4 + √136 − 4 − √136
x=_ 6
and x=_ 6
x = 1,277 x = –2,610
Substitute x = –2,610 and x = 1,277 into y = x3 + 2x2 – 10x – 30,
y = x3 + 2x2 – 10x – 30
= (–2,610)3 + 2(–2,610)2 – 10(–2,610) – 30
y = –8,055
y = x3 + 2x2 – 10x – 30
= (1,277)3 + 2(1,277)2 – 10(1,277) – 30
y = –37,426
Thus, the turning points of y = x3 + 2x2 – 10x – 30 are (–2,610; –8,055) and
(1,277; –37,426).
2
dy _
_ = d (3x2 + 4x – 10)
dx 2 dx
= _d
3x2 +_
d
4x – _
d
10
dx dx dx
= 3_ d 2
dx
x + 4_
d
dx
x–_
d
dx
10
= 3.2x + 4.1 – 0
2
dy
_ = 6x + 4
dx 2
b)
(− 3 ; − 22 27 )
Stationary point (–2,610; –8,055) _2 20
_ (1,277; –37,426)
2 2 2
d 2y dy dy dy
Sign of _2 _ = –11,622 < 0
2
_ =0 2
_ = +11,622 > 0
dx dx dx dx 2
x = –_23
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
6x + 4 = 0
6x = –4
x = − _23
Substitute x = − _23 into y = x3 + 2x2 – 10x – 30,
y = x3 + 2x2 – 10x – 30
20
y = − 22_
27
d) y
x
–5 –4 –3 –2 –1 1 2 3 4
–5
(–2,610; –8,055)
–10
–15
–20
(–_23 ; –22_
20
27
)
–25
(0; –30)
y = x3 + 2x2 – 10x – 30
–35
(1,277; –37,426)
= _
d
(–x3) – _d
4x2 – _d
3x – _d
2
dx dx dx dx
= –_
dx
x – 4_
d 3
dx
x – 3_
d 2 d
dx
x–_ d
dx
2
–3x2 – 8x – 3 = 0
3x2 + 8x + 3 = 0
_
− b ± √b 2 − 4ac
x=_ 2a
___________
− (8) ± √(8) − 4(3)(3)
2
= ______________ 2(3)
_
− 8 ± √28
x=_ 6
_ _
− 8 + √28 − 8 − √28
x=_ 6
and x=_ 6
x = –0,451 x = –2,215
= _d
(–3x2) – _d
8x – _d
3
dx dx dx
= –3_ d 2
dx
x – 8_
d
dx
x–_ d
dx
3
= –3.2x – 8.1 – 0
2
dy
_ = –6x – 8
dx 2
b)
(− 1 3 ; − 2 27 )
Stationary point (–2,215; –4,113) _1 20
_ (–0,451; –1,369)
2 2 2
d 2y dy dy dy
Sign of _2 _ = +5,292 > 0
2
_ =0 2
_ = –5,292 < 0
dx dx dx dx 2
x = –1_13
Inflection point
d 2y
c) But _2 = 0 at the point of inflection,
dx
–6x – 8 = 0
–6x = 8
x = − _43
x = − 1_13
y = –x3 – 4x2 – 3x – 2
20
y = − 2_
27
d) y
x
–5 –4 –3 –2 –1 1 2 3
(–0,451; –1,369)
(0; –2)
(–1_13 ; –2_
20
27
)
–4
(–2,215; –4,113)
–6
y = –x3 – 4x2 – 3x – 2
–8
2. 2.1
y
y = x3
x
–2 –1 1 2
–1
–2
2.2
y
y = x3 + 8
x
–2 –1 1 2
–1
x-intercept: y = 0
0 = x3 + 8
x 3 = –8
x = –2
y-intercept: x = 0
y=8
lim (_ )
3
= _46 27 + x
2
x→– 3 x −9
= _2
= lim (_
x→– 3 x − 9 )
3
(3) 3
x + 27
2
= lim [____________
(x + 3)(x − 3) ]
(x + 3)(x 2 − 3x + 9)
x→– 3
= lim [_ x−3 ]
2
x − 3x + 9
x→– 3
(− 3) 2 − 3(− 3) + 9
= ___________
(− 3) − 3
9+9+9
=_−3 − 3
27
=_
−6
= − _29
= − 4_12 (3)
1.3 lim (_
x→∞ x (5x + 2) )
4 2
3x + x
3
3(∞) 4 + (∞) 2
=_
3
(∞) (5(∞) + 2)
∞
=_
∞
lim (_ )
4 2
3x + x
3
x→∞ x (5x + 2)
= lim (_ )
4 2
3x + x
4 3
x→∞ 5x + 2x
4 2
3x
(_
_ +_
)
x
= lim _
x4 x4
4 3
5x 2x
x→∞ +_4 4
x x
(5+ x)
1
3+_
= lim __2
2
x
x→∞
1
3+_
=_
2
(∞)
2
5+_
(∞)
3+0
=_
5+0
= _35 (3)
_1
2. 2.1 (2 − 3x) − 2
_1
= [(2) + (− 3x)] − 2
(− 2 )(2) (− 3x) (− 2 )(− 2 )(2) (− 3x) (− 2 )(− 2 )(− 2 )(2) (− 3x)
_1 _1 − _32 1 _1 _3 − _52 2 _1 _3 _5 − _72 3
(2) − 2(− 3x) 0
_ ___________ _______________ ___________________
= 0!
+ 1!
+ 2!
+ 3!
+…
= lim (− 3x 2 − 4x − 3xh − 2h − h 2)
h→0
f ʹ(x) = _
d
dx
(–x3) – _
d
dx
(2x2)
= –_
d 3
dx
x – 2_
d 2
dx
x
= –(3x2) – 2(2x)
y = –5 cos_5x
Therefore,
dy
_
dx
=1
du _
5
_
du
–5. –sin u
dy _
_ dy
dx
= × _
du
du
dx
4.2 y = ex.sin x
dy
_
dx
= ex (cos x + sin x) (4)
ln_x
4.3 y = _
√x
_1
Let f (x) = ln x and g(x) = x 2
g(x)_
dy ______________
d
f(x) − f(x)_
d
g(x)
_ =
dx dx
dx (g(x)) 2
(2 )
(x 2) _1 − (ln x) _1 x − 2
(x)
_1 _1
= _____________
(x 2)
_1 2
x − 2 − _1 x − 2 ln x
_1 _1
=_
2
x
( ) 1 − _1 ln x
− _1
x 2
=_
2
x
1 − _12 ln x
=__
x√x
_
( )
1
√x 1 − _ ln x
=_
2
x2
_
dy _ ( )
_ = √x 2 − ln x (4)
dx 2x 2
1
5. 5.1 y = tan x + log3x – 4e–x – _5
x
y = tan x + log3x – 4e – x–5 –x
dy _
_
dx
= d (tan x) + _
d
dx
(log3x) – _
d
(4e–x ) – _
d –5
(x )dx dx dx
=_
d
dx
tan x + _
d
dx
log3x – 4_ e –_
d –x
dx
d –5
dx
x
1
= sec2x + _
x ln 3
– 4(e–x. –1) – (–5x–6)
dy
_ 1 4 5
= sec2x + _ +_ +_ x ln 3 ex
dx x6
dx ( x ln 3 ) dx ( e ) dx ( x )
2
dy _
_ 1 4 5
2 =
d
(sec2x) + _
d _
dx
+_
d _
x +_
d _
6
dx
dx ( ln 3
=_
d
dx
(sec2x) + _
d _ 1
.x −1) + _
d
dx
(4e–x) + _
d
dx
(5x–6)
1 _
=_
d
dx
(sec x) 2 + _
ln 3 dx
x + 4_
d −1
e + 5_
d –x
dx
d –6
dx
x
1 (
= (2 sec x sec x tan x) + _
ln 3
−1x −2) + 4(e–x. –1) + 5(–6x–7)
2
dy 1 4 _
_ = 2 sec2x tan x – _ –_ – 30 ex
(6)
dx 2 x 2 ln 3 x7
_
y = ln(_6x ) – √e x + cosec x – 2 log x
2
5.2 2
y = ln(_6x ) – e 2 + cosec x – x2
_x
(e ) + _
dx dx ( ( 6 )) dx
dy _
_ d _2x
_x – _
= d
ln d
dx
(cosec x) – _
d 2
dx
(x )
ln (_6x ) – _
_x
=_
d
dx
d 2 _
dx
d
e + dx cosec x – _
d 2
dx
x
(6 )
= _1_x ._16 – (e 2._12 ) + (–cosec x cot x) – 2x
_x
dy _
= 1 – _1 e 2 – cosec x cot x – 2x
_x
_
dx x 2
dx ( x ) dx ( 2 )
2
dy _
_ 1
d _ 1 _2x
2 = –_
d _
e –_ d
(cosec x cot x) – _
d
(2x) dx dx
dx
dx ( 2 ) dx
1 2 _x
=_ (x ) – _
d –1
dx
d _
e –_
d
(cosec x cot x) – _
d
dx
(2x)
x – 12 _
_x
=_
d –1 _
dx
d 2 _
dx
d
e – dx cosec x cot x – 2_
d
dx
x
x – 12 _
_x
=_
d –1 _
dx
d 2
dx
e –[cosec x_
d
dx
cot x + cot x_
d
dx
cosec x] – 2_
d
dx
x
1 _1 2 _x
= −_ 3 2
2 – e – [–cosec x – cosec x cot x] – 2
4
x
1 _1 2 _x
= −_ 3 2
2 – e – [–cosec x – cosec x(cosec x –1)] – 2
4
x
1 _1 2 _x
= −_ 3 3
2 – e – [–cosec x – cosec x + cosec x] – 2
4
x
1 _1 2 _x
= −_ 3
2 – e – [–2 cosec x + cosec x] – 2
4
x
d 2y
_ 1 _1 2 _x
2 = −_ 4
3
2 – e + 2 cosec x – cosec x – 2 (6)
dx x
6. 6.1 y = x3 – 4x2 + x + 6
dy _
_
dx
= d (x3 – 4x2 + x + 6)
dx
=_
d 3 _
x – d 4x2 + _
dx
d
x+_
d
dx
6 dx dx
=_x – 4_
d 3
dx
d 2 _
x + dx+_
d
6 dx dx dx
2
= 3x – 4.2x + 1 + 0
dy
_
dx
= 3x2 – 8x + 1
dy
But _
dx
= 0 at the turning points,
3x2 – 8x + 1 = 0
_
− b ± √b 2 − 4ac
x=_ 2a
_____________
− (− 8) ± √(− 8) 2 − 4(3)(1)
________________
= 2(3)
_
8 ± √52
x=_ 6
_ _
8 + √52 8 − √52
x=_ 6
and x = _ 6
x = 2,535 x = 0,132
Substitute x = 0,132 and x = 2,535 into y = x3 – 4x2 + x + 6,
y = x3 – 4x2 + x + 6
= (0,132)3 – 4(0,132)2 + (0,132) + 6
y = 6,065
y = x3 – 4x2 + x + 6
= (2,535)3 – 4(2,535)2 + (2,535) + 6
y = –0,879
Thus, the turning points of y = x3 – 4x2 + x + 6 are (0,132; 6,065)
and (2,535; –0,879). (6)
dy
_
6.2 dx
= 3x2 – 8x + 1
d 2y
_ =_
d
(3x2 – 8x + 1)
dx 2 dx
=_
d
dx
3x2 – _
d
dx
8x + _
d
dx
1
= 3_
d 2
dx
x – 8_
d
dx
x+_
d
dx
1
= 3.2x – 8.1 + 0
2
dy
_ = 6x – 8
dx 2
2
dy
6.3 _2 = 6x – 8
dx
d 2y
But _2 = 0 at the point of inflection,
dx
6x – 8 = 0
6x = 8
x = _43
x = 1_13
y = x3 – 4x2 + x + 6
16
y = 2_
27
6.4 x-intercept(s), y = 0:
y = x3 – 4x2 + x + 6
0 = x3 – 4x2 + x + 6
From the factor theorem y = 0 when x = –1. Therefore, x + 1 is a factor of
y = x3 – 4x2 + x + 6.
Thus, the quadratic is
x2 – 5x + 6 = 0
Therefore,
0 = x3 – 4x2 + x + 6
0 = (x + 1)(x2 – 5x + 6)
0 = (x + 1)(x – 2)(x – 3)
x + 1 = 0 or x – 2 = 0 or x–3=0
x = –1 x=2 x=3
(–1; 0) (2; 0) (3; 0)
y-intercept, x = 0:
y = x3 – 4x2 + x + 6
= (0)3 – 4(0)2 + (0) + 6
y=6
(0; 6) (4)
6.5 y
3
y = x3 –4x2 + x + 6 (1_13 ; 2_
16
)
27
2
1
(–1; 0) (2; 0) (3; 0)
x
–3 –2 –1 1 2 3 4 5
–1
(2,535; –0,879)
–2 (5)
TOTAL: [70]
6 Integral calculus
After they have completed this module, students should be able to:
• understand the concept of integration as a summation function (definite
integral) and as a process of anti-differentiation (indefinite integral);
• apply standard forms of integrals as a process of anti-differentiation;
• integrate functions given on the formula sheet:
– k x n, n real with n ≠ − 1
– _k, k a nx, k e nx with a ≥ 0, k, n ∈ ℝ
x
– k sin(bx) and k cos(bx) with b and k ∈ ℝ;
• integrate polynomials consisting of terms of the above forms;
• apply integration to determine the magnitude of an area included by a
curve and the x-axis, or by a curve, the x-axis and the ordinates x = a and
x = b, where a and b are integers;
• using the definite integral with two limits to calculate the area bounded
by the graph, the x-axis and values given to define the area; areas include
areas above the x-axis, areas below the x-axis and joined areas above and
below the x-axis:
A = ∫ a y dx or A total = ∫ a y dx + ∫ c y dx; and
b b d
• calculate the intersection points of two curves, and sketch the two graphs
on the same system of axes indicating the area bounded by the two
intersection points calculated and show the representative strip used to
calculate the area.
Introduction
In this module students will analyse and represent mathematical and contextual
situations using integrals and find areas under curves by using integration rules.
Integration can also be used to find areas, volumes and central points.
Integration and differentiation are the two main branches of calculus. Integration is an
important concept in mathematics and it is the inverse process of differentiation.
The term ‘integral’ may also be referred to as the anti-derivative. Integrals and
derivatives have numerous applications in science and engineering, for example to
calculate surface areas and to formulate physical laws of electrodynamics.
Pre-knowledge
• Laws of exponents
Law Deductions/Definition
x m × x n = x m+n x −m = _1
xm
x m ÷ x n = x m−n
1
_ = xm
(x m)n = x mn x −m
(x)
m
(xy) = x × y _x − m = _y
(y)
m m m
(y)
m
_x m = _
x
ym x0 = 1
m
_ n
_
x n = √x m ; x > 0; n > 0
• Logarithmic laws
• Trigonometric identities
• Standard derivatives
f(x) f′(x)
k 0
kx n n.k x n−1
ka x k a x ln a
k a nx n.k a nx ln a
ke x ke x
k e nx n.k e nx
k ln x _k
x
k ln(nx) _k
x
k log ax _
k
x ln a
k log a(nx) _
k
x ln a
k sin(nx) nk cos(nx)
k cos(nx) − nk sin(nx)
k tan(nx) nk sec 2(nx)
k cot(nx) − nk cosec 2(nx)
k sec(nx) nk sec(nx).tan(nx)
k cosec(nx) − nk cosec(nx).cot(nx)
It is essential to be able to sketch and recognise the following graphs dealt with in
Module 3: Sketch graphs.
Graph Equation
1. Straight line y = mx + c or ax + by + c = 0
_ _
2. Circle or semi-circles x 2 + y 2 = r 2; y = ± √r 2 − x 2 ; x = ± √r 2 − y 2
1. ∫ x5 dx 2. ∫ 4x2 dx
6 3
4x
=_
x
6
+c =_3
+c
or _16 x6 + c or _43 x3 + c
3. ∫ 2 dx 4. ∫ da
= 2x + c =a+c
2
5. ∫_2 dx 6. ∫ 3 dy
x
= 3y + c
= ∫ 2x–2 dx
−1
2x
=_−1
+c
= − _2x + c
7. ∫ 0,23 dr 8. ∫ – 3x4 dx
5
= 0,23r + c − 3x
=_ +c
5
or = − _53 x5 + c
9. ∫_
dx
3 10. 3∫ x3 dx
x
4
1
= ∫_3 dx = 3._
x
4
+c
x
= ∫ x–3 dx = _34 x4 + c
−2
=_
x
−2
+c
1
= −_ 2 + c
2x
_
11. – 2 ∫ 3x dx 12. ∫ √x 2 dx
2
3x
= – 2._2
+c = ∫ x dx
2
= – 3x2 + c =_
x
2
+c
or _12 x2 + c
_
1
13. ∫ 3√x 3 dx 14. ∫ _ 2 dx
3x
_3
= ∫ 3.x 2 dx = ∫ _13 x–2 dx
_3 + 1
= 3._x −2+1
+c
2
3_ +1
= _13 ._x
−2 + 1
+c
2
−1
= _13 ._
x
_5
= 3._
x
+c
2
−1
+c
5_
2
1
= −_ +c
= 3._2 x 2 + c
_5 3x
5
_
= _65 √x 5 + c
4
15. ∫ _5 dx 16. ∫ xπ dx
x
π+1
= ∫ 4x–5 dx =_
x
π+1
+c
−4
4x
=_−4
+c
1
= −_4 + c
x
= − _18 t2 + c
_
19. ∫ a dx 20. ∫ √5x dx
= ∫ ax0 dx _ _1
= ∫ √5 x 2 dx
= ax + c _ _3
= √ 5 ._
x
+c
2
3
_
2
_2 _
_ 3
= √5 . 3 √x + c
_ _
2√5
=_3
√x 3 + c
1. ∫ _7x dx 2. ∫ 2x–1 dx
= 7 ln x + c = 2 ln x + c
3. ∫ _1r dr 4. 1
∫_
3x
dx
= ln r + c = _13 ln x + c
5. 4∫ _
dx
4x
6. ∫ _a2 da
= 4._14 ln x + c = 2 ln a + c
= ln x + c
7. ∫ − _3x dx 8. ∫_
dx
x
= – 3 ln x + c = ln x + c
1. ∫ 5x dx 2. ∫ 43x dx
x 3x
5 4
=_
ln 5
+c =_
3 ln 4
+c
3. ∫ 7–x dx 4. ∫ 4(2)3x dx
−x 3x
7 4.2
=_
− ln 7
+c =_
3 ln 2
+c
1
= –_
7 x ln 7
+c
∫(_12 ) da
a 1
5. 6. ∫_
10 −x
dx
a
(2)
1_
= ∫ 10x dx
= ___ +c
ln _1 10 x
2
=_
ln 10
+c
7. ∫ 5.45x dx 8. ∫ πx dx
5x x
5.4 π
=_
5 ln 4
+c =_
ln π
+c
x
4
=_
ln 4
+c
− 4 ln 3
+c =_3.2
+c
− 5 ln 2
−4x
− 2.3
=_ ln 3
+c 3
=_
5x +c
− 5.2 ln 2
−2
=_ +c
3 4x ln 3
11. ∫ (1_5) dx
2x
12. ∫ 24t dt
4t
2
(5)
1 2x
_ =_ +c
= _ +c 4 ln 2
2 ln(_1)
5
13. ∫ e −x dx 14. ∫ 2e 7x dx
−x
e
=_
−1
+c = 2∫ e 7x dx
x
1
= −_
ex
+c = 2∫(e 7) dx
7x
e
= 2._
7 lne
+c
7x
e
= 2._
7.1
+c
= 2_7 e 7x + c
15. ∫ e x+ln 3 dx
= ∫ e x.e ln 3 dx
= e ln 3 ∫ e x dx
= 3∫ e x dx
= 3e x + c
= 4 cos _2x + c
= sin 3x + c = 2 sin 2θ + c
1.5 ∫ 3 sin ax
_ dx
4
1.6 ∫–2 cos _21 x dx
ax
3 cos _ 2 sin 1_ x
= −_
a_
4
+c = −_
1_
2
+c
4 2
12
= −_
a
ax
cos _
4
+c = − 4 sin 1_2 x + c
1
1.7 ∫ _
sec 4x
dx 1.8 ∫ 2 sin x cos x dx
= ∫ cos 4x dx = ∫ sin 2x dx
sin 4x cos 2x
=_ 4
+c = −_ 2
+c
4
1.9 −∫ _
cosec x
dx
= −∫ 4 sin x dx
= 4 cos x + c
_________________
2. 2.1 ∫ √(1 + cos x)(1 – cos x) dx Differentiate to check:
_
= ∫ √1 – cos 2x dx _
d
(– cos x + c)
dx
= ∫ sin x dx = –_
d
dx
cos x + _
d
dx
c
= – cos x + c = – (– sin x) + 0
= sin x
2.2 ∫ (cos 2 _2x – sin 2 _2x ) dx _
d
dx
(sin x + c)
= ∫ cos x dx =_
d
dx
sin x + _
d
dx
c
= sin x + c = cos x + 0
= cos x
sec x sin 2x _
2.3 ∫ ______________ 2 dx d
dx
(– cos x + c)
(1 – cos 2x)(1 + cot x)
1
_ .2 sin x cos x
= ∫ ___________
cos x
2 2 dx = –_
d
dx
cos x + _
d
dx
c
2sin x cosec x
2 sin x
= ∫_ 2 _ 1 dx = – (– sin x) + 0
2sin x.
sin 2x
= ∫ sin x dx = sin x
= – cos x + c
2.4 ∫ (_ 1 + tan x )
cos x + sin x
dx =_
d
dx
(sin x + c)
( )
cos x + sin x
=∫ _ sin x
_
dx =_
d
dx
sin x + _
d
dx
c
1 + cos x
( )
cos x + sin x
=∫ _cos x + sin x
_
dx = cos x + 0
cos x
= ∫ (_
cos x + sin x _
1 x + sin x )
× cos cos x
dx = cos x
= ∫ cos x dx
= sin x + c
dx ( 28
.e + c)
4x
1 4x
1. 1.1 ∫ _
e
7
dx Verify: _
d _
1_
= _71 ∫ e 4x dx =_ d 4x _ d
28 dx
.e + dx c
1 4x
u = 4x =_
28
.e .4 + 0
du = 4 dx = _17 .e 4x
_1 du = dx
4
∴ _71 ∫ e 4x dx
= _17 ∫ e u._14 du
1
=_
28
∫ e u du
1 u
=_
28
.e + c
1 4x
=_
28
.e + c
(2.e 2 + c)
1
_ _x
1.2 ∫ e 2x dx –1
Verify: _
d
dx
_x
= 2_
d 2 _ d
_x
= ∫ e 2 dx dx
e + dx c
= 2.e 2._12 + 0
_x
u = _2x
du = _12 dx
_x
= e2
2du = dx
_x
∴ ∫e2
= ∫ e u.2 du
= 2∫ e u du
= 2eu + c
_x
= 2e 2 + c
dx ( 36
1.3 ∫ _ 1
– 9x + ln 4
dx Verify: _
d _
.e + c)
1 9x
e
1_
= ∫ e 9x –ln 4 dx =_ d 9x _
36 dx
d
.e + dx c
1 9x
= ∫ e 9x.e –ln 4 dx =_
36
.e .9 + 0
= ∫ e 9x.e ln 4 dx = _14 .e 9x
–1
_1
= ∫ e 9x.e ln 4 dx
= ∫ e 9x._14 dx
= _14 ∫ e 9x dx
u = 9x
du = 9 dx
_1 du = dx
9
∴ _14 ∫ e 9x dx
= _14 ∫ e u._19 du
1
=_
36
∫ e u du
1 u
=_
36
.e + c
1 9x
=_
36
.e + c
dx ( 3 ln 5
. 5 + c)
3x
2_
1.4 ∫ 2.5 3x dx Verify: _
d _
2 _
= 2∫ 5 3x dx =_ d 3x _
3 ln 5 dx
d
5 + dx c
2
u = 3x =_
3 ln 5
.5 3x ln 5.3 + 0
du = 3 dx = 2.53x
_1 du = dx
3
∴ 2∫ 5 3x dx
= 2∫ 5 u._13 du
= _23 ∫ 5 u du
u
= _23 ._5
ln 5
+c
3x
= _23 ._5
ln 5
+c
dx ( 80
1.5 _18 ∫ sin 10x dx Verify: _
d _
– 1 .cos 10x + c)
1_
u = 10x = –_ d
80 dx
cos 10x + _
d
dx
c
1
du = 10 dx = –_
80
.– sin 10x.10 + 0
1
_
10
du = dx = _18 sin 10x
dx ( 7
7x
1.6 2∫ cos _
9
dx Verify: _
d _ 18 7x
.sin _
9
+ c)
7x 18 _ 7x _
u=_
9
=_ d
7 dx
sin _
9
d
+ dx c
du = _79 dx 18
=_7
7x _
.cos _ .7 + 0
9 9
_9 du = dx 7x
= 2 cos _
7 9
7x
∴ 2∫ cos _
9
dx
= 2∫ cos u._97 du
18
=_
7
∫ cos u du
18
=_
7
.sin u + c
18 7x
=_
7
.sin _
9
+c
dx ( 3
1.7 ∫ cos (_π2 + 3x) dx Verify: _
d _ 1
cos 3x + c)
1_
= – ∫ sin 3x dx =_ d
3 dx
cos 3x + _
d
dx
c
du = 3 dx = – sin 3x
_1 du = dx
3
∴ – ∫ sin 3x dx
= – ∫ sin u._13 du
= – _13 ∫ sin u du
= – _13 .– cos u + c
= _13 cos 3x + c
dx ( 2
1.8 ∫ (cos 4x – sin 4x) dx Verify: _
d _ 1
sin 2x + c)
= ∫ cos 2x dx = cos 2x
u = 2x
du = 2 dx
_1 du = dx
2
∴ ∫ cos 2x dx
= ∫ cos u._12 du
= _21 ∫ cos u du
= _21 .sin u + c
= _12 sin 2x + c
dx ( 3
2. 8
2.1 ∫ _
3x dx Verify: _
d _
– 8 .e –3x + c)
e
= 8∫ e –3x dx = – _83 _
d – 3x _
dx
d
e + dx c
u = – 3x = – _83 .e –3x.– 3 + 0
du = – 3 dx = 8.e –3x
– _13 du = dx
∴ 8∫ e –3x dx
= 8∫ e u.– _13 du
= – _83 ∫ e u du
= – _83 .e u + c
= – _83 .e –3x + c
_
dx ( 6
– _5 .e – 5 + c)
5 6x
_
2.2 ∫ √ e –6x dx Verify: _
d
_1
= ∫ (e –6x) 5 dx = – _56 _
6x
_
dx
e +_
d –5 d
dx
c
= – _56 .e – 5 .– _65 + 0
6x
_ 6x
_
= ∫ e – 5 dx
6x 6x
_
u = –_
5
= e–5
du = – _65 dx
– _56 du = dx
6x
_
∴ ∫ e – 5 dx
= ∫ e u.– _56 du
= – _56 ∫ e u.du
= – _56 .e u + c
= – _56 .e – 5 + c
6x
_
dx ( 4 ln 3
+ c)
– 4x
2.3 ∫ (3 x) –4 dx Verify: _
d
– _1 ._
3
1 _
= ∫ 3 –4x dx = –_ d – 4x _
4 ln 3 dx
d
3 + dx c
1
u = – 4x = –_
4 ln 3
.3 –4x ln 3.– 4 + 0
du = – 4 dx = 3–4x
– _14 du = dx
= ∫ 3 u.– _14 du
∴ ∫ 3 –4x dx
= – _14 ∫ 3 u du
u
= – _14 ._3
ln 3
+c
– 4x
= – _14 ._
3
ln 3
+c
_
dx ( 12 ln 6
. 6 + c)
2x
1 _
2.4 ∫ √6 4x –2 dx Verify: _
d _
_1
= ∫ (6 4x –2) 2 dx
1 _
=_ d 2x _
12 ln 6 dx
d
6 + dx c
1
= ∫ 6 2x –1 dx =_
12 ln 6
.6 2x(ln 6)(2) + 0
= ∫ 6 2x.6 –1 dx = _16 .6 2x
= ∫ 6 2x._16 dx
= _61 ∫ 6 2x dx
u = 2x
du = 2 dx
_1 du = dx
2
∴ _16 ∫ 6 2x dx
= _16 ∫ 6 u._12 du
1
=_
12
∫ 6 u du
u
1 _
=_ .6 +c
12 ln 6
2x
1 _
=_ .6 +c
12 ln 6
dx ( 5
2.5 ∫ sin(_π2 – _
2)
5x
dx Verify: _
d _ 2 5x
sin _
2
+ c)
5x
= ∫ cos _
2
dx = _25 _
d
dx
5x _
sin _
2
d
+ dx c
5x
u=_
2
= _25 .cos _
5x _
.5 + 0
2 2
du = _52 dx 5x
= cos _
2
_2 du = dx
5
5x
∴ ∫ cos _
2
dx
= ∫ cos u._25 du
= _52 ∫ cos u du
= _52 .sin u + c
= _25 sin _
5x
2
+c
dx ( 8
sin 2x
2.6 ∫ _
sec 2x
dx Verify: _
d _
– 1 cos 4x + c)
sin 2x
= ∫__ 1 dx = – _18 _
d
dx
cos 4x + _
d
dx
c
cos 2x
= _21 ∫ sin 4x dx
u = 4x
du = 4 dx
_1 du = dx
4
∴ _21 ∫ sin 4x dx
= _18 ∫ sin u du
= _18 .– cos u + c
= – _18 cos 4x + c
dx ( 27
2.7 _13 ∫ (cos 7x cos 2x – sin 7x sin 2x) dx Verify: _
d _ 1
sin 9x + c)
1_
= _13 ∫ cos(7x + 2x) dx =_ sin 9x + _
d d
27 dx dx
c
1
= _13 ∫ cos 9x dx =_
27
.cos 9x.9 + 0
u = 9x = _13 cos 9x
du = 9 dx
_1 du = dx
9
∴ _13 ∫ cos 9x dx
dx ( 8
2.8 ∫ 4 sin 2x cos 2x cos 4x dx Verify: _
d _
– 1 cos 8x + c)
= ∫ sin 8x dx = sin 8x
u = 8x
du = 8 dx
_1 du = dx
8
∴ ∫ sin 8x dx
= ∫ sin u._18 du
= _18 ∫ sin u du
= _18 .– cos u + c
= – _18 cos 8x + c
6 −2
=_
x
6
–_
x
−2
+ 5x + c
= _16 x6 + _
1
2 + 5x + c
2x
_3 2
2x πx
= 2 ln x – _ +_ +c
2
3_ 2
2
_
4
= 2 ln x – _3 √x 3 + _12 πx2 + c
1.7 ∫ (8 – _4x – _
1
3x
– 23x) dx
12 − 1
= ∫ (8 – _ 3x
– 23x) dx
11
= ∫ (8 – _
3x
– 23x) dx
3x 3x
11
= 8x – _
3
ln x – _2
3 ln 2
+c or = 8x – 4 ln x – _13 ln x – _2
3 ln 2
+c
3x
11 2
= 8x – _3
ln 2 – _
3 ln 2
+c
_
1.8 ∫ (3.4–2x – x–1 – _
x 4)
3 1
dx 1.9 ∫ (√x 3 + 4x–1 – _ 3 – a) dx
2x
– _12 x–3
_3
∫ (3.4 – 2x –1 –4
– x – 3x ) dx = ∫ (x + 4x 2
–1
– a) dx
−2x −3
3. 4 3x
=_ – ln x – _
_5 −2
− 2 ln 4 −3
+c =_
x
+ 4 ln x – _12 ._
2 x
– ax + c
5_ −2
2
3 1
=_ – ln x + _3 + c
_
= _25 √x 5 + 4 ln x + _
1
2x
− 2. 4 ln 4 x
2 – ax + c
4x
1.10 ∫(2x–2 + _
1
– 3 + _3x ) dx
x2
= – _3x – 3x + 3 ln x + c
−x
(3)
_1 2 4x
1
_
2x 2 _
=_ + 6x – _
3. 2
+_ +c
1_
2
2 4 ln 2 − ln (_1)
3
_ 3. 2 1 4x
= 4√x + 3x2 – _ –_ +c
(3 ) ln (3)
x
4 ln 2 1_ 1_
2.2 ∫(bx + _
bx )
1
2
5x + 2x − 1
2. 2.1 ∫ _ x
dx dx
= ∫(5x + 2 – _1x ) dx =_
bx 2
+ _b1 ln x + c
2
2
5x
=_2
+ 2x – ln x + c
5
t + 3t − 1
2.3 ∫ (x2 + 3)(x – 4) dx 2.4 ∫ _ 5 dt
t
= ∫ (x – 4x +3x – 12) dx
3 2
= ∫ (1 + 3t–4 – t –5) dt
4 3 2
4x 3x
=_
x
–_ +_
−3 −4
4 3 2
– 12x + c 3t
=t+_ –_
t
+c
−3 −4
or _14 x4 – _43 x3 + _32 x2 – 12x + c = t – _13 + _
1
4 + c
t 4t
_
2.5 ∫ (3 – √x )2 dx 2.6 ∫ x(x2 – _3x ) dx
_ _
= ∫ (3 – √x )(3 – √x ) dx = ∫ (x3 – 3) dx
_ _
= ∫ (9 – 3√x – 3√x + x) dx 4
_1
=_
x
4
– 3x + c
= ∫ (9 – 6x 2 + x) dx
_3 2
or _14 x4 – 3x + c
6x
= 9x – _ +_
x
+c
2
3_ 2
2
_
= 9x – 4√x 3 + _12 x2 + c
3.1 ∫(x_ ) dx
2
− 9x +8
3. _ 3.2 ∫(e −x − e x)2 dx
√x
= ∫(_ ) dx
= ∫(e −x − e x)(e −x − e x) dx
2
− 9x_ + _
x_ _ 8_
√x √x √x
= ∫(e −2x − 2e 0 + e 2x) dx
= ∫(x − 9x 2 + 8x −2) dx
_3 _1 1_
2
_3 1_
−1_2
= ∫(e −2x − 2 + e 2x) dx
= ∫ x dx − 9∫ x dx + 8∫ x dx
2 2
−2x 2x
e e
_3+1 _1+1 −1_2+1
=_
−2
− 2x + _2
+c
x x x
= __ − 9._ + 8._
2 2
+c 1
3
+11_ 1_
+1 −2 + 1 = −_ _1 2x + c
2 2 2x − 2x + 2 e
2e
2_ 2
_ _ _
= 5
x √x − 6x √x + 16√x + c
= ∫(_ ) dx
2
π+1 n1+1 1 x sin 2x
_
2 −
x
π
x
=_ −_ − _1._
x
π + 1 ln π n n + 1
− n ln x + c x 2
x
1
−1
x cos 2x
=_
−1
+_ 2
+c
3.7 ∫(3 cos 1_2 x + b sin ax) dx 3.8 ∫(sin − 3.10 −3x) dx
2 2
_ x + cos x
sec x
=_
3 sin 1_ x
2 cos ax
− b_ +c = ∫(sec
_ 1
x
− 3.10 −3x) dx
1_ a
2
= ∫(cos x − 3.10 −3x) dx
= 6 sin 1_2 x − _ab cos ax + c
−3x
3.10
= sin x − _
− 3 ln 10
+c
−3x
10
= sin x + _
ln 10
+c
1
= sin x + (_) 3x
+c
ln 10 10
= 2∫ sin 2x dx – ∫__x6 dx – 2∫ e x dx
u = 2x
du = 2 dx
_1 .du = dx
2
= ∫ sin u du – ∫ _6x dx – 2∫ e x dx
= – cos u – 6 ln x – 2.ex + c
= – cos 2x – 6 ln x – 2ex + c
dx ( 4
Verify: _
d _
– 1 e –4x – _92 x + _94 sin 2x + c)
= – _14 _
dx
e – 92 _
d – 4x _ d
dx
x + _94 _
d
dx
sin 2x + _
d
dx
c
= ∫ [_
2(sin x – 3) ]
4(sin 3x – 27)
dx
= ∫ [___________________] dx
4(sin x – 3)(sin 2x + 3 sin x + 9)
2(sin x – 3)
= ∫ [2(sin 2x + 3 sin x + 9] dx
= – ∫ cos 2x dx + 6∫ sin x dx + ∫ 19 dx
↓
u = 2x
du = 2 dx
_1 du = dx
2
dx ( 2
Verify: _
d _
– 1 sin 2x – 6 cos x + 19x + c)
= – _12 _
d
dx
sin 2x – 6_
d
dx
cos x + 19_
d
dx
x+_
d
dx
c
= – cos 2x + 6 sin x + 19
= [_ = [_ – x] 31
2 ]
2 2 5x 3
2x
3
0
= (_ – (3)) – (_ – (1))
5 (3) 3 5 (1) 3
= [x2] 20 3 3
= (2)2 – (0)2
= (42) – (_23 )
=4
= 41_13
1.3 ∫ 21 (x3 + 2x2 – 5) dx
= [_ – 5x]
4 3 2
2x
x
4
+_3 1
= (_ – 5(2)) – (_ – 5(1))
2 4
2 (2)
1
3 4
2 (1)3
4
+_
3 4
+_
3
= (4 + _
16
3
– 10) – (_14 + _23 – 5)
= (– 6 + _3 ) ( 12
16 3+8
– _ – 5)
= – _23 + 4_1
12
– 8 + 49 _
=_ 12
= 41
12
5
= 3_
12
_
1.4 ∫ 42 (√x – _
1
+ 4x3) dx
x3
_1
= ∫ 42 (x 2 – x–3 + 4x3) dx
= [_
3_ – − 2 + 4 ]
_3 −2 4
4
x2 _ x 4x
_
2
2
= (_23 (4) 2 1
+ (4)4) – (_23 (2) 2 + _
1
)
_3 _3
+ _ 4
2 + (2)
2 (4) 2 2 (2)
= (261,365) – (18,011)
= 243,354
_5
1.5 ∫ 53 (x −3) dx
= [_
− 2_ ]
−_32 5
x
3 3
= (– 0,513) – (– 0,721)
= 0,208
1
= [ln x]0,5
= (ln 1) – (ln 0,5)
= 0,693
1.7 ∫ 0 5–2x dx
_1
2
= [_ ]
__
−2x
5 2
− 2 ln 5
0
= (_
− 2 ln 5 ) ( − 2 ln 5 )
−2( 21_ ) −2(0)
5 5
– _
= (_
− 2 ln 5 ) ( − 2 ln 5 )
−1
5 1
– _
= (_
− 10 ln 5 ) ( 2 ln 5 )
1
+ _ 1
= – 0,062 + 0,311
= 0,249
1.8 ∫ 21 (3x –1 + 2x) dx
2
= [3 ln x + _
ln 2 ]
x
2
1
= (3 ln 2 + _
ln 2 ) ( ln 2 )
2
2 2
– 3 ln 1 + _
ln 2 ) ( ln 2 )
= (3 ln 2 + _4
– 0+_2
= 4,965
1.9 ∫−12(4x – 1)2 dx
= ∫−12(4x – 1)(4x – 1) dx
= ∫−12(16x2 – 8x + 1) dx
= [_ + x]
3 2 1
16 x 8x
3
–_2
−2
= (_ (1 ) – 4(12) + (1)) – (_
16 3
3
16
3
(– 23) – 4(– 22) + (– 2))
= (_
16
3
– 4 + 1) – (− _
128
3
– 16 – 2)
= 2,333 – (– 60,667)
= 62,9997
= 63
t 2 + 2t − 1
1.10 ∫ 32 _ 2 dt
t
= ∫ (1 + _2t – t –2) dt
3
2
= [t + 2 ln t – _
−1]
−1 3
t
2
= [t + 2 ln t + _1t ]
3
= (3 + 2 ln 3 + _13 ) – (2 + 2 ln 2 + _12 )
= 5,531 – 3,886
= 1,645
= [_13 ._ – _13 y]
3
y2
2
0
= [_ – _13 y]
3
y2
6
0
= (_96 – 1)
= 0,5
1.12 ∫ 32 (_x )
x+2 2
dx
(x + 2)(x + 2)
= ∫ 32 _2 dx
x
= ∫ 32 (_ ) dx
2
x + 4x + 4
2
x
= ∫ 32 1 + 4x–1 + 4x–2 dx
= [x + 4 ln x + 4._
−1 ]
−1 3
x
2
= [x + 4 ln x – _4x ]
3
= (3 + 4 ln 3 – _43 ) – (2 + 4 ln 2 – _42 )
= 6,061 – 2,773
= 3,288
20
w = ∫ 0,2 _
0,5
2. V
dV
0,5
= [20 ln V]0,2
3
_
2 √2 1 51
=∫ _3 _ dx =_
_ ∫ _ dx
x
–1 √ x √17 3
_ 2 _1
= √2 ∫ x – 3 dx
3
_ [ln | x|]
1 5
–1 =_ 3
√17
[ – _13 + 1 ]
_ x –_13 + 1 2
_ [(ln 5) – (ln 3)]
1
3
= √2 _ =_
√17
–1
= 0,124
_ 3 _2 2
√2 [_2 x 3]
3
=
–1
_
= √2 [(_32 (2) 3) – (_32 (– 1) 3)]
3 _2 _2
= 1,110
–1
π
_ _____________________
3.3 ∫ e x + ln 3 dx 3.4 ∫ _π √(1 + cos x)(1 – cos x) dx
4
–3 12
π
_ _
–1 x
= ∫ e .e ln 3
= ∫ _π √1 – cos 2x dx
4
dx
–3 12
π
_
–1
= e ln 3∫ e x dx = ∫ _π sin x dx
4
–3 12
–1
= 3∫ e x dx = [– cos x] _4π
π
_
–3
12
= [(– cos ( 4 )) –
_π
(– cos (12))]
π
_
= 3[e x] –3
–1
= 0,954
_π
3.5 ∫ _π cos 3x dx
3
12
π
_
= – ∫ _π sin 3x dx
3
12
u = 3x
du = 3 dx
_1 du = dx
3
π
_
= – ∫ _π sin u._13 du
3
12
π
_
= – _31 ∫ _π sin u du
3
12
π
_
= – _31 [– cos u] _3π
12
π
_
= – _13 [ – cos 3x] _3π
12
= – 0,569
3π
_
2
3π
_
3π
_
= _13 ∫ _π cos 9x dx
4
u = 9x
du = 9 dx
_1 du = dx
9
3π
_
3π
_
1
=_ ∫ cos u du
4
27 _π
2
3π
_
1
=_
27
[sin u] _π4
2
3π
_
1
=_
27
[ sin 9x] _π4
2
27 [(
1
=_ sin (9._4 )) (
3π
– sin (9._π2 ))]
= – 0,011
3.7 ∫ (_
x)
1 42 2_
3x
–_ 2 +
_ dx
1 x √
[ – 2 + 1]
–2 + 1 – _1 + 1
2
= _13 .ln | x | – 4._
x
–2 + 1
+ 2._
x 2
_1
1
_
= [_13 ln | x | + _4x + 4√x ]
2
1
_ _
= [(_13 ln (2) + _4
(2)
+ 4√(2) ) – (_13 ln (1) + _4
(1)
+ 4√(1) )]
= – 0,112
4π
= ∫ _π (___________________) dx
4π
_
5 4[(sin x – 3)(sin 2x + 3 sin x + 9)]
5
2(sin x – 3)
4π
_
4π
4π
4π
_
2
5
= 46,473
1. ∆A = y∆x 2. ∆A = y∆x
A = ∫ 20 y dx A = ∫ 21 x3 dx
= [_
4]
2
= ∫ 20 (– x2 + 2x) dx
4
x
1
= [− _ 2 ]
3 2 2
2x
x
+_
= (_
4) (4)
4 4
2 1
3
0 – _
= [− _13 x3 + x2]
2
= 3,75 units2
0
= − _83 + 4
= 1,333 units2
3. 3.1 y = 2x + 2 y
x-intercept: y = 0 6 y = 2x + 2
0 = 2x + 2
(x; y)
2x = – 2
∴ x = –1 2
y-intercept: x = 0 –1 2
x
∆x
∴y=2
3.2 ∆A = y∆x
A = ∫ 20 y dx
= ∫ 20 (2x + 2) dx
= [_ + 2x]
2 2
2x
2
0
2 2
= [x + 2x] 0
4. y = – x2 + 2x + 3 y
x-intercept: y = 0
(1; 4)
0 = – x2 + 2x + 3 4
y = – x2 + 2x + 3
2 3
0 = x – 2x – 3
0 = (x – 3)(x + 1)
∴ x = 3; x = – 1
x
–1 ∆x 3
y-intercept: x = 0
∴y=3
−b
TP: x = _
2a
−2
=_
2(−1)
=1
y = – (1)2 + 2(1) + 3
=4
∴ TP: (1; 4)
∆A = y∆x
A = ∫−31 y dx
= ∫−31(– x2 + 2x + 3) dx
= [− _ + 3x]
3 2 3
2x
x
3
+_2
−1
= (9) – (– 1_23 )
5. ∆A = y∆x
A = ∫ 10 (x2 – x) dx
= [_ 2]
3 2 1
x
3
–_
x
0
= (_ 2 )
3
(1) (1) 2
3
–_ – (0)
= |_13 – _12 |
= 0,167 units2
6. 6.1
y
xy = 3 3
1
∆x x
–3 –2 –1 1 2 3
–1
–2
(x; y)
–3
6.2 ∆A = y∆x
A = – ∫ 31 y dx
= – ∫ 31 (− _3x ) dx
= – [– 3 ln x] 31
= – [(– 3 ln 3) – (– 3 ln 1)]
= – [(– 3,296) – (0)]
= 3,296 units2
= 3,155 or 0,845
f (3,155) = – 3,079
f (0,8450) = 3,079
7.2 ∆A = y∆x
A1 = ∫ 20 y dx
= [_ – 2x3 + 4x2]
4 2
x
4
0
= 4 units2
A2 = – ∫ 42 y dx
= – [_ – 2x3 + 4x2] 42
4
x
4
= – [(0) – (4)]
= 4 units2
∴ Total area = A1 + A2
= (4 + 4) units2
= 8 units2
Alternative:
A1 = 4 units2 × 2
Total A = 8 units2
= –2
y = (– 2)2 + 4(– 2) + 3
=4–8+3
= –1
∴ TP: (– 2; – 1)
8.2 ∆A = y∆x
A = – ∫−−13(x2 + 4x + 3) dx
= – [_ + 2x2 + 3x]
3 −1
x
3
−3
= – [(_13 (– 1)3 + 2(– 1)2 + 3(– 1)) – (_13 (– 3)3 + 2(– 3)2 + 3(– 3))]
= 2∫ cos x dx
4
0
π
_
= 2[sin x] 04
= 2[sin(π_4) − sin 0]
= 2[_
1_
− 0]
√2
= 1,414 units2
dy
9.2 Find __
dx
to get the TP.
d
__
dx
= − 2 sin x
y = 2 cos x
dy
For turning points, let __
dx
= 0:
− 2 sin x = 0
x = sin −10
x = 0° or x = 180°
y-value when x = 0°:
y = 2 cos 0°
=2
y-value when x = 180°:
y = 2 cos 180°
= −2
∴ Turning points: (0° ; 2) and (180° ; − 2)
y
d
_
9.3 = − 2 cos x
dx 2
= − 2 cos 0°
= −2
2
d
_y
or: = − 2 cos x
dx 2
= − 2 cos 180°
=2
Maximum: (0° ; 2)
Minimum: (180° ; − 2)
3 y = 3 sin x
x
90° 180° 270° 360°
–3
∆ A = y∆ x
180°
A = 2∫ 0° 3 sin x dx
180°
= 2[− 3 cos x] 0°
10.2 y = cos 2x, the x-axis and the ordinates x = π_2 and 2π
y
1 y = cos 2x
x
π
__ 3π
__ 3π
__
2 4 π 2
2π
–1
∆ A = y∆ x
3π
_
A = − ∫ π_ cos 2x dx
4
− [sin2 ] π_
3π
_
_ 2x 4
=
2
= − 1_2[sin 2(3π
4) (2)]
_ − sin 2 π_
= − 1_2[sin_
3π
2
− sin π] or = − 1_2[sin 270° − sin 180°]
= − 1_2[− 1 − 0]
= 1_2
∴ A = 1_2 × 6
A T = 3 units2
|
A = ∫ y dx
0
−10
| • Area below the x-axis
= ∫ (_31 x − 3) dx
| |
0
−10
|
= [_16 x 2 − 3x] |
0
−10
A = 46_23 units2
11.2 xy = −12
x = –6 x = –2 y
12
∴ y = −_ x
x y
(x; y) 5
– 7,000 1,714
– 6,000 2,000 x
∆x 5
– 5,000 2,400
– 4,000 3,000 xy = – 12
–5
– 3,000 4,000
– 2,000 6,000
– 1,000 12,000
0,000 ERROR
1,000 – 12,000
2,000 – 6,000
3,000 – 4,000
4,000 – 3,000
5,000 – 2,400
6,000 – 2,000
7,000 – 1,714
∆A = y∆x
A = ∫ −6 y dx
−2
• Area above the x-axis
= ∫ −6 (− _x)
−2 12
dx
= [−12 ln | x |] −6
−2
y-intercept, x = 0: y
y = x2 + 3x − 4
5
= (0)2 + 3(0) − 4
y = −4
∴ (0; −4)
∆x
Axis of symmetry, x = − _b
2a
: x
(– 4; 0) (1; 0)
x = −_b
2a
(3) (0; – 4)
= −_
2(1)
(x; y)
(– _3 ; – _
25
4
)
2
x = −1_12 – 10
Turning point(s):
y = x2 + 3x − 4
y = − 6_14
∴ (− _32 ; − 6_14 )
∆A = |y∆x|
|
A = ∫ y dx
1
−4
| • Area below the x-axis or −∫ y dx
1
−4
= |∫ (x 2 + 3x − 4) dx|
1
−4
|
= [_13 x 3 + _32 x 2 − 4x] |
1
−4
A = 20_56 units2
11.4 y = (x − 4)2 + 3 y x=8
x-intercepts, y = 0:
y = (x − 4)2 + 3
0 = (x − 4)2 + 3
25
−(x − 4)2 = 3 y = (x – 4)2 + 3
Axis of symmetry:
y = (x − 4)2 + 3
∴x−4=0
x=4
Turning point(s):
y = (x − 4)2 + 3
Since the coefficient of the bracket is positive, therefore y = 3 is a minimum
value.
∴ (4; 3)
∆A = y∆x
8
A = ∫ y dx • Area above the x-axis
0
= ∫ [(x − 4) 2 + 3] dx
8
= ∫ [(x 2 − 8x + 19] dx
8
= [_13 x 3 − 4x 2 + 19x]
8
A = 66_23 units2
11.5 y = x3 + 3x2 − 2
x-intercepts, y = 0:
y = x3 + 3x2 − 2
0 = x3 + 3x2 − 2
Consider the factors of the constant term.
x = ±1 and x = ±2
f (x) = x3 + 3x2 − 2
f (−1) = (−1)3 + 3(−1)2 − 2
f (−1) = 0
∴ x + 1 is a factor
2
x + 2x − 2
______________
x + 1| x 3 + 3x 2 + 0x − 2
x 3 + 1x 2 ↓
_
2x 2 + 0x
2x 2 + 2x
_
−2x − 2
_
−2x −2
_ ∙ ∙
∴ (x + 1)(x2 + 2x − 2) = 0
x+1=0 or x2 + 2x − 2 = 0
_
−b ± √b 2 − 4ac
x = −1 x=_ 2a
____________
−(2) ± √(2) − 4(1)(−2)
2
∴ (−1; 0) = ______________
2(1)
_
−2 ± 2√3
x=_ 2
_ _
x = −1 +√3 or x = −1 − √3
x = 0,732 x = −2,732
∴ (0,732; 0) ∴ (−2,732; 0)
y-intercept, x = 0:
x = –2 y
y = x3 + 3x2 − 2
4
0 = (0)3 + 3(0)2 − 2 y = x3 + 3x2 – 2
3
y = −2 (– 2; 2)
2
∴ (0; −2)
1
(– 2,732; 0) ∆x (0,732; 0)
Turning point(s): x
–4 –3 1 2 3 4
y = x3 + 3x2 − 2 (x; y)
dy
∴ _ = 3x2 + 6x = 0
dx
(0; – 2)
–3
3x(x + 2) = 0 (– 1; 0)
–4
3x = 0 or x+2=0
x=0 x = −2
Substitute x = 0 and x = −2 into y = x3 + 3x2 − 2.
y = (0)3 + 3(0)2 − 2 = −2 ∴ (0; −2)
y = (−2)3 + 3(−2)2 − 2 = 2 ∴ (−2; 2)
∆A = |y∆x|
|
A = ∫ y dx
0
−1
| • Area below the x-axis or A = −∫ y dx
−1
0
= |∫ (x 3 + 3x 2 − 2) dx|
0
−1
|
= [_14 x 4 + x 3 − 2x] |
0
−1
A = 1_14 units2
Therefore,
Atotal = 2 × A
= 2 × _54
Atotal = 2_12 units2
∴ (0; −3)
(– 3;0) ∆x (1; 0)
Turning point(s): x
–4 2
y = − (x + 3)(x − 1)2 (0; – 3)
y = − x3 − x2 + 5x − 3
dy (x; y) – 10
∴_
dx
= −3x2 − 2x + 5 = 0 (– _53 ; – _
256
27
)
3x2 + 2x − 5 = 0
(3x + 5)(x − 1) = 0
3x + 5 = 0 or x−1=0
3x = −5 x=1
x = −1_32
Substitute x = −1_23 and x = 1 into y = − (x + 3)(x − 1)2.
|
A = ∫ y dx
1
−3
|
= |∫ [−(x + 3)(x − 1) ] dx |
1 2
−3
= |∫ [−x − x + 5x − 3] dx |
1 3 2
−3
|
= [− _14 x 4 − _13 x 3 + _52 x 2 − 3x] |
1
−3
= |[− _14 (1) 4 − _13 (1) 3 + _52 (1) 2 − 3(1)] − [− _14 (−3) 4 − _13 (−3) 3 + _52 (−3) 2 − 3(−3)]|
A = 21_13 units2
Area above the x-axis,
∆A = y∆x
A = ∫ −3,5 y dx
−3
= ∫ −3,5 [− (x + 3)(x − 1) 2] dx
−3
= ∫ −3,5 [− x 3 − x 2 + 5x − 3] dx
−3
−3,5
[−4(−3) − 3(−3)]
= _1 4
− _1 (−3) 3 + _5 (−3) 2
3 2
y-intercept, x = 0: y (x = 4)
= ∫ 0 [x 3 − 9x 2 + 24x + 4] dx
4
= [_14 (4) 4 − 3(4) 3 + 12(4) 2 + 4(4)] − [_14 (0) 4 − 3(0) 3 + 12(0) 2 + 4(0)]
A = 80 units2
1. A = ∫ −1 [(− x 2 + 6) − (x 2 − 2x + 2)] dx
2
= ∫ −1 [− x 2 + 6 − x 2 + 2x − 2] dx
2
= ∫ −1 [− 2 x 2 + 2x + 4] dx
2
2
= [− _ ]
3 2
2x + _
2 x + 4x
3 2 −1
= [− _23 x 3 + x 2 + 4x]
2
−1
= (− 16 ) (3 + 1 − 4)
2
_+4+8 − _
3
= (− 16 ) (3 − 3)
_ + 12 − 2
3
_
= 9 units 2
2. x 2 = 3x − 2 y y1 = x2
0 = x 2 − 3x + 2 y2 = 3x – 2
4
0 = (x − 2)(x − 1) (2; 4)
x = 2; x = 1
(x; y2)
y = 4; y = 1
(x; y1)
∴ (2; 4) and (1; 1)
(1; 1)
A = ∫ 1 (3x − 2 − x 2) dx
2
x
3 2
1 ∆x 2
= [_ 3]
2
3 x − 2x − _
x
2 1
= (3_
(2)2
2 − 2(2 ) − (_
2)3
3 ) − (
(1)2
3_
2 − 2(1) − 3 )
(_
1)3 –2
3. − x 2 − 2x = x y
∴ x 2 + 3x = 0 2
x(x + 3) = 0 g(x) = –x2 – 2x f (x) = x
1
x = 0; x = − 3 (x; y2)
x
y = 0; y = − 3 –3 –2 –1 1 2
∴ (0; 0) and (( − 3; − 3) –1
(x; y1)
A = ∫ −3 [(− x 2 − 2x) − x] dx
0
–2
∆x
= ∫ −3(− x 2 − 3x) dx
0
–3
(–3; –3)
2 0
= [− _ 2 ]
3
3x
x −_
3 −3
= 0 − (−(_3 − 2 )
− 3) 3 (− 3)3 2
_
= 0 − (27 2)
_ − 27
3
_
− 1_4 x 2 + 9 − 6 + x = 0 y2 = – __14 x2 + 9
− 1_4 x 2 + x + 3 = 0 (x; y1)
2
x − 4x − 12 = 0
∆x
(x − 6)(x + 2) = 0
∴ x = 6; x = − 2
x
∴ y = 0; y = 8 –6 6
∴ (6; 0); (−2; 8)
A = ∫ −2 [− 1_4 x 2 + 9 − (6 − x)] dx
6
= ∫ −2 [− 41_ x 2 + 3 + x] dx
6
2 6
= [− 1_4 . _ 2]
3
x + 3x + _
x
3 −2
= (− _1 (6) 3 + 3(6) + (_
12
6)2
2 ) − (− 1 (− 2) 3 + 3(− 2) + (_
_
12 2 )
− 2)2
= (− 18 + 18 + 18) − (0,667 − 6 + 2)
= 21,333 units 2
= ∫ [3x 3 – 6.x –1 + 3] dx
= 3∫ x 3 dx – 6∫ _1x dx + ∫ 3 dx
3+1
= 3._
x
3+1
– 6 ln x + 3x + c
= _34 x 4 – 6 ln x + 3x + c (5)
_
1.2 ∫(_
1
+ 3_ sin 3x + 3√x − 10.10 x + _ 1
− 2x 0) dx
x3 2 sec 2x
x
−1 1_ 10.10
_ + 1_ sin 2x − 2x + c
3_
=_ 2 − 2 cos 3x + 2x −
2
ln 10 2
(7)
2x
1.3 ∫(_ ) dx
2 2
cos x + sin x
cos 2x
1
= ∫_ 2 dx
cos x
= ∫ sec 2x dx
= tan x + c (3)
= 3∫ cos 4x dx − 3∫ e 2x dx + 4∫ 3 −x dx
2x −x
= 3_4 sin 4x − _
3e
2
− 4._3
ln 3
+c
∫ 1 [(_1x + 3x – 4)] dx
4
2. 2.1
= ∫ 1 [3x – _x – 11] dx
4 4
= [3._ – 4 ln x – 11x]
1+1 4
x
1+1 1
[ 2 – 4 ln x – 11x]
4
3x 2
_
=
1
= – 16,045 (5)
2.2 ∫ 1 (5_x + 2) dx
3
3
= [5 ln x + 2x] 1
= (5 ln(3) + 2(3)) − (5 ln(1) + 2(1))
= 9,493 (3)
_π
2.3 ∫ 0 2 sin θ cos θ dθ
2
π
_
= ∫ 02 sin 2θ dθ
_π
= [− _ 2 ]
cos 2θ 2
= − _21[cos π − cos 0]
= − _21[− 1 − 1]
= − _21[ − 2]
=1 (4)
π
_
–3
π
_
= [2._ – 3 + 1 ] – _π
5x –3 + 1 9
– cos 3x 8
3
– 2._
5 ln 8
+ 2._
x
3
π
_
[– 3 x 2 ] – _π
= _2 cos 3x – _ 2
.8 5x – 1 9
_
5 ln 8
3
[ ] [ ]
2
cos(3._π9 ) 2 5(_π9 ) 1
– – _23 cos (3.– _π3 ) – _ 2
.8 5(– 3 ) – _
1
π
_
= –_ – _ . 8 – _
(9) (– 3 )
3 5 ln 8 π
_ 2
5 ln 8 π 2
_
= – 15,545 (5)
_
S = ∫ 1 (√t − 5)2 dt
4
3.
_ _
= ∫ 1 (√t − 5)(√t − 5) dt
4
_ _
= ∫ 1 (t − 5√t − 5√t + 25) dt
4
_
= ∫ 1 (t − 10√t + 25) dt
4
= [_ + 25t]
2 _3 4
t 20t
−_
2
2 3 1
= (_ + 25(4)) − (_ + 25(1))
_3 3_
4 2
20(4) (1)2 20(1)2
−_ −_
2
2 3 2 3
= 35,834 (3)
4. 4.1 A = ∫ 21 y dx
= ∫ 21 (– x + 2) dx
= [– _ + 2x]
2 2
x
2
1
= (– _ + 2(2)) – (– _ + 2(1))
(2) 2 (1) 2
2 2
= [_ – 6x2]
4 3 0
x
4
+_
x
3
−4
= 0 – (– 53,33)
= 53,33 units2
A2 = ∫ 30 (x3 + x2 – 12x) dx
= [_ – 6x2]
4 3 3
x
4
+_
x
3
0
= |– 24,75 – 0|
= |– 24,75|
= 24,75 units2
AT = 78,08 units2 (6)
5. 5.1 y = 3.e2x y
x y 25
– 1,500 0,149
20
– 1,000 0,406
– 0,500 1,104 15
0,000 3,000 10
x = –1
0,500 8,155
(x; y) 5 x = 0,5
1,000 22,167
x
– 1,5 ∆x 0 1
∆A = y∆x
0,5
A = ∫ –1 y dx • Area above the x-axis
0,5
= ∫ –1 3.e 2 x dx
0,5
= [_2 ]
2x
3e
–1
= [_ 2 ] [ 2 ]
2(0,5) 2(– 1)
3e 3e
– _
Turning point(s):
y = – (x – 2)2 – 1
Since the coefficient of the bracket is negative, therefore y = – 1 is a maximum
value.
∴ (2; – 1)
∆A = |y∆x|
A = | ∫ 0 y dx|
2
• Area below the x-axis
= | ∫ 0 [– (x – 2) 2 – 1] dx|
2
= | ∫ 0 [– x 2 + 4x – 5] dx|
2
|
= [– _ + 2x 2 – 5x] |
3 2
x
3 0
|
= [– _
3
+ 2(2) 2 – 5(2)] – [– _
(2) 3
3
+ 2(0) 2 – 5(0)]
(0) 3
|
A = 4_23 units2 (6)
5.3 y = x(x2 – 3)
y
_ _ x
–2 – √3 –1 0 1 √3 2 2,5
–1
–2
x-intercepts, y = 0:
y = x(x2 – 3)
0 = x(x2 – 3)
_ _
0 = x(x + √3 )(x – √3 )
_ _
0=x or 0 = x + √3 or 0 = x – √3
_ _
– √3 = x √3 = x
_ _
∴ (0; 0) ∴ (– √3 ; 0) ∴ (√3 ; 0)
y-intercept, x = 0:
y = x(x2 – 3)
y = (0)((0)2 – 3)
y=0
∴ (0; 0)
Turning point(s):
y = x(x2 – 3)
y = x3 – 3x
dy
_
dx
= 3x2 – 3 = 0
x2 – 1 = 0
(x + 1)(x – 1) = 0
x+1=0 or x – 1 = 0
x = –1 x=1
Substitute x = – 1 and x = 1 into y = x(x2 – 3).
y = (– 1)((– 1)2 – 3) = 2 ∴ (– 1; 2)
2
y = (1)((1) – 3) = – 2 ∴ (1; – 2)
Area below the x-axis,
∆A = |y∆x|
_
A = | ∫ 0 y dx|
√3
= | ∫ 0 [x 3 – 3x] dx|
√3
| |
_
[ 4 – 2 ]0
√3
x4 _
_ 3x 2
=
_ _
= [_|
(√3 ) 4 _
2 ] [ 4
3(√3 ) 2
2 ] |
4 2
(0) 3(0)
4
– – _–_
A = 2_14 units2
= ∫ √_3 [x 3 – 3x] dx
2,5
2,5
= [_ 2 ]
4 2
3x
x
4
–_ _
√3
_ _
= [_ 2 ] [ 4 2 ]
(2,5) 4
√3 3(2,5) 2
3 √3 ( )4 ( )2
4
–_ – _ –_
41
A = 2_
64
units2
Therefore,
ANET = 2_14 + 2_
41
64
57
ANET = 4_
64
units2 (8)
6. x2 = x + 2 y
y1 = x
2
x2 − x − 2 = 0 y2 = x + 2
4
(x − 2)(x + 1) = 0
∴ x = 2; x = − 1 3 (x; y2)
∴ y = 4; y = 1
2
∴ (2; 4); (− 1; 1)
1
A = ∫ −1 [(x + 2) − x 2] dx
2
(x; y1)
= ∫ −1(x + 2 − x 2) dx x
2
–2 –1 ∆x 1 2
= [__ 3]
2
x2 x3
2
+ 2x − __
–1
= (___ 3 ) ( 2 3 )
(2) 2
(2)3 (− 1)2 (− 1)3
2
+ 2(2) − ___ − ____ + 2 (− 1) − ____
= (2 + 4 − _3 ) − (_2 − 2 + _3 )
8 1 1
QUESTION 1
1.1 Given: x + 3y – 2z = – 13
2x – 6y + 3z = 32
3x – 4y – z = 12
Solve for y by using determinants. (8)
1.2 Simplify
_____ the following
____ ___ and leave your answer in a + bj form:
√–144 + √169 – √–1 . (2)
1.3 Given: z = – 1 – 4j
1.3.1 Calculate the modulus and the argument of z. The argument must be
positive. Show ALL steps. (3)
1.3.2 Express z in polar form. (1)
1.3.3 Represent z on an Argand diagram. (1)
1.4 Solve for x and y:
3 – 2j 1 – 3j
x + yj = _ _
1 – j – 1 + 3j (5)
[20]
QUESTION 2
2.1 Prove that: _ 2 sin x + 1
sin 2x + cos x = sec x (3)
2.2 If tan x = _5 3_
12 and tan y = 4 , with both x and y acute angles, determine without
using a calculator, sin(x – y). (3)
2.3 Given: 2 cos 2θ + 5 sin θ = – 1; 0° ≤ θ ≤ 360°
Solve for θ. (5)
2.4 Simplify (sec θ + tan θ)2 (3)
2.5 Derive a formula for tan 2θ. (3)
2.6 Determine cot 105° WITHOUT using a calculator. (3)
[20]
QUESTION 3
3.1 3.1.1 Sketch the graph of y = – x 2 – 2x + 3 (3)
3.1.2 Is the graph of y = – x 2 – 2x + 3 continuous? (1)
3.1.3 What is the domain of the graph y = – x 2 – 2x + 3? (1)
3.2 Sketch the graph of x = ln y (3)
3.3 Sketch the graph of 3x 2 = 9y 2 + 27 (2)
[10]
QUESTION 4
4.1 Differentiate from first principles: y = – x 2 – x + 1 (5)
4.2 Given: y = 4 cos(7x + 2)
Differentiate by the use of the chain rule or function of a function. (4)
Given: (2y – 3)
2 4
4.3
Use the binomial theorem to expand to FOUR terms. (5)
4.4 Differentiate with respect to x:
y = 2 sec 3x – 4 cosec 2x + 6 ln x + p (4)
3
4.5 Given: y = 2x – 8x
Calculate, using differentiation, the coordinates of the maximum and minimum
turning points. Distinguish between the maximum and minimum turning points
by the use of the second derivative. (7)
[25]
QUESTION 5
5.1 Determine:
_
π
dy
_
y dx
ax n nax n–1
ka x ka x ln a
k ln x _k
x
sin x cos x
cos x – sin x
tan x sec 2x
cot x – cosec 2x
sec x sec x tan x
cosec x – cosec x cot x
dx
= u(x)v′(x) + u′(x)v(x) ka
ln a
+c
( )
y = u_ x
v(x)
∫ sin x dx = – cos x + c
dy ( ) ( )
x u′ x – u x v′ x ( ) ( )
∴_ = v___________ ∫ cos x dx = sin x + c
dx v(x) 2 [ ]
A OX = ∫ a y dx
dy _
_ dy du b
dx
= ×_ du dx
A = ∫ a (y2 – y1) dx
b
∫ ax n dx = _
n+1
ax
n+1 + c
| |
1 3 –2
1.1 |D| = 2 –6 3 ✓ • Expand using any row or column
3 –4 –1
= +(1) – 6
–4 | |
3 – (3) 2 3 + (–2) 2 – 6 ✓
–1 3 –1 |
3 –4 | | |
• Positional sign (element) | minor
of element for the entire row or
column
= 1(6 + 12) – 3(– 2 – 9) – 2(– 8 + 18)
= 18 + 33 – 20
= 31 ✓
| |
1 – 13 – 2
|D y| = 2 32 3 ✓ • | D y|: replace the ‘y’ column by
3 12 – 1 inserting the constant column in its
place
|
12 – 1 3 –1 |
= (+ 1) 32 3 – (– 13) 2 3 + (– 2) 2 32 ✓
3 12 | | | |
= 1(– 32 – 36) + 13(– 2 – 9) – 2(24 – 96)
= – 68 – 143 + 144
= –67 ✓
D
∴y=_y
D ✓
=_
– 67
31
= – 2,161 ✓ (8)
= tan –1(4_1)
= 75,964° ✓
Note Im
–4
z = 4,123 255,964°
Modulus = 4,123
Argument = 255,964° ✓ (3)
1.3.2 z = 4,123 255,964° (1)
1.3.3 Im
1
Re
–1
–4
(1)
(
3 – 2j ) 1 – 3j
1.4 x + yj = _ _
1 – j – 1 + 3j ( )
= (_ )( ) _
– (1 + 3j)(1 – 3j) ✓
3 – 2j 1 + j 1 – 3j 1 – 3j
• Rationalise each fraction by
(1–j 1+j )( ) ( )( )
multiplying by the conjugate of the
denominator
3 + j – 2j 2 1 – 6j + 9j 2
=_
1 – j2
–_
1 – 9j 2
✓ • Multiply out and add like terms
3 + j – 2(– 1) 1 – 6j + 9(– 1)
=_
1 – (– 1)
–_
1 – 9(– 1)
• j 2 = –1
5+j – 8 – 6j
=_ _
2 – 10
( ) ( )
5 5 + j – 1 – 8 – 6j
= ____________
10
25 + 5j + 8 + 6j
=_
10
33 + 11j
=_
10
_+_
= 33 11
10 10 j ✓
∴ x = 33
_ and
10
_
y = 11
10
= 3,3 ✓ = 1,1 ✓ • Equate real terms and imaginary
terms. (5)
[20]
QUESTION 2
2.1 LHS = _ 2 sin x + 1
sin 2x + cos x
= 2____________
2 sin x + 1
sin xcos x + cos x ✓ • Double angle identity sin 2x = 2 sin xcos x
=_ 2 sin x + 1
cos x(2 sin x + 1)
✓ • Factorise
=_ 1
cos x ✓
2.2 sin(x – y) y
= sin x cos y – cos x sin y ✓
=_
5 4_ 12 _ 3_
13 . 5 – 13 . 5 ✓ 13
5
_ – 36
= 20 _
65 65 x x
12
= –_
16
65 ✓ (3)
y
5
3
y x
4
(
1 + sin θ 1 + sin θ )( )
= ____________
(1 – sin θ)(1 + sin θ)
• Factorise top and bottom
= 1_ + sin θ
1 – sin θ
✓ (3)
=_2 tan θ
1 – tan 2θ
✓ (3)
60° r 45° r
1 1
( )
= cos
_ 60° + 45°
sin(60° + 45°)
Alternatively
= _______________
cos 60° cos 45° – sin 60° sin 45°
sin 60° cos 45° + cos 60° sin 45° ✓½
cot 105° = _ 1
tan 105°
_1 × __ √3
1__ – __ × __
1__
__
=_ 1
tan(45° + 60°)
= _________
2 √2
__
2 √2
✓½
√3
__ __
1 1_ × __
1__
× __ + _ 1
2 √2 2 √2 = ___________
tan 45° + tan 60°
__ 1 – tan 45°tan 60°
___ √3__
1__ – ___
= ______
2√__2 2√2
√3__
___ = ___________
1 – tan 45° tan 60°
2√2
+ ___
1__
2√2
tan 45° + tan 60°
__ __
1– 1 √( )
3
= ______
1–√
__3
____ __
= ___
2__√2
• Everything over 1 + √3
√3 +__ 1
____
2√2 LCM 1 – √__
__
3 ____
__
__ __
= ____ × 1 – √__3
1 + √3 1 – √3
• Rationalise
1–√
__3 × ____
= ____ 2__√2
• Invert denominator
2√2 √3 + 1 __
1_______
– 2√3 + 3
1__– √3
__ __
3 –1
= 1–3
= ____
√3 + 1
× √3 – 1 • Rationalise ____
√__
__
4 – 2√3
__
√3 – 3 – 1 + √3
__ = _____
–2
= __________
3–1
__
2√3 – 4
__ = – 2 + √3
= _____
2
__
__
(√3 – 2)
2______ = √3 – 2
= 2 • Factorise
__
= √3 – 2 ✓
(3)
[20]
QUESTION 3
3.1 3.1.1 y = – x 2 – 2x + 3 • Exponent of y = 1; exponent of x = 2
∴ parabola
x-intercepts (y = 0)
– x 2 – 2x + 3 = 0
x 2 + 2x – 3 = 0
(x + 3)(x – 1) = 0
∴ x = – 3 or x = 1
y-intercept (x = 0)
y=3
– –2 ( )
Turning point: x = _
–b _
2a = – 2 = – 1
y = f (– 1) = –(– 1)2 – 2(– 1) + 3 = 4
y
✓
4
(–1, 4)
3 ✓
1
✓½ ✓½
x
(–3, 0) (1, 0)
(3)
3.2 x = ln y y
x = log e y
ex = y ✓ ✓
y = e x or x = ln y
✓
1
x
(3)
3.3 3x 2 = 9y 2 + 27 y
2
_
3x 9 2 27
27 =_ y +_ 27 27 √3
__ ✓
2 3x 2 = 9y 2 + 27
y
x_2 _
9 – =1 3 ✓
x
–3 3
__
–√ 3 (2)
[10]
QUESTION 4
4.1 y = –x 2 – x + 1
f(x) = – x 2 – x + 1
f(x + h) = –(x + h)2 – (x + h) + 1 ✓
= –(x 2 + 2xh + h 2) – x – h + 1
= – x 2 – 2xh – h 2 – x – h + 1 ✓
f(x + h) – f(x) = – x 2 – 2xh – h 2 – x – h + 1 – (– x 2 – x + 1) ✓
= – x 2 – 2xh – h 2 – x – h + 1 + x 2 + x – 1
= – 2xh – h 2 – h ✓
(x + h) – f(x)
f_
h
= – 2x – h – 1
f(x + h) – f(x)
_ = – 2x – 1 ✓
lim
h→0 h
• Substitute h = 0 (5)
(2y – 3)
2 4
4.3
✓4 ✓ 4(3) (2y 2)2 (– 3)2 ✓ 4(3)(2)(2y 2) (– 3)3 ✓
= (2y ) + 4(2y ) (– 3) + _
2 2 3
2! +_ 3! +…
( ) ( ) 12 4y 4 (9) 24 2y 2 (– 27)
= 16y 8 + (– 12)(8y 6) + _2 +_3×2 +…
= 16y 8 – 96y 6 + 216y 4 – 216y 2 + … ✓ (5)
4.5 y = 2x 3 – 8x
dy
For turning points _
dx
= 6x 2 – 8 = 0 ✓
∴ Critical values of x are 6x 2 = 8
x 2 = 8_6 = 4_3
_
x = ± √34_
∴ x = ± 1,155 ✓
d2 y
For the nature of the turning points, examine _
dx 2
2
d y
_ dy
_
dx 2
= 12x ✓ • dx
= 6x 2 – 8 ✓
2
d y
_
At x = 1,155 dx 2
= 12(1,155) ✓½
positive ∴ it will have a minimum turning point
Min T.P (1,155; f(1,155))
= (1,155; –6,158) ✓ • substitute y = 2(1,155)3 – 8(1,155)
= –6,158
2
d y
_
At x = – 1,155 dx 2
= 12(–1,155) ✓½
negative ∴ it will have a maximum turning point
Max T.P (–1,155; f(–1,155))
= (–1,155; 6,158) ✓ • substitute y = 2(– 1,155)3 – 8(– 1,155)
= 6,158 (7)
[25]
QUESTION 5
_
π
5.3 5.3.1
y
y = 2.3 2x
✓
2 ✓
✓
x
∆x 2
(3)
✓
= ∫ 0 2.3 2x dx ✓
2
2
= [_
2 ln 3]
2x
2.3
✓
0
= (_
ln 3) (ln 3)
2(2) 2(0)
3
– _
3
x
1 ∆x 2 3
(4)
5.4.2 Area = ∫ 1 (y2 – y1) dx
2
= ∫ 1 (– x + 3 – 2_x) dx ✓
2
= [– x_2 + 3x – 2 ln x] ✓
2 2
= (– 2 + 6 – 2 ln 2) – (– 1_2 + 3 – 0)
= 0,114 units 2 ✓ (4)
[25]
TOTAL: 100
Glossary
A
Acute angle – an angle that lies between 0 and π_4 radians, or between 0° and 90°
Angle of inclination – the angle between the line and the positive x-axis
Area – the amount of space inside the boundary of a flat (two-dimensional)
object
Argand diagram – a graphical representation of complex numbers
Axis – a horizontal line and a vertical line that intersect at the origin are used to
describe the position of points in a coordinate system
Axis of symmetry – a line that divides the graph into two symmetrical halves
C
Cartesian coordinate system – a system in which the location of a point is given
by coordinates that represent its distance from the axes
Centre point – the point inside the circle that is the same distance from all
points on the circle
Coefficient – a number that is multiplied by a variable
Complex numbers (ℂ) – numbers that can be expressed in the form a + bi,
where a and b are real numbers; the imaginary part is i; in the expression a + bi,
a is the real part and b is the imaginary part of the complex number
Congruent – has exactly the same shape and size
Coordinates – a set of values that shows the exact position of a point in relation
to the axes
Co-terminal angle – an angle in standard position (angle with the initial side on
the positive x-axis) that have a common terminal side
D
Delta – the symbol used to indicate a change in value or the differences in values
Dependent variable – the output value of a function that is dependent on the
input value
Derivative – the gradient of a curve at any point, or the gradient of the tangent
to the curve at that point; the instantaneous rate of change of a function
Determinant – a function of which the input is a square matrix and the output is
a number
Diameter – the distance from one side of the circumference of a circle, through
the centre of the circle, to the other side
Differentiate – the process of finding the derivative of a function
E
Equation – a mathematical statement that two equations have the same value
Exponent – shows how many times something is multiplied by itself
F
Frequency – the number of cycles completed by a graph over a given interval
Function – a rule or relationship for which any input value results in one unique
output value
G
Gradient – the slope or steepness and is the ratio of vertical change to horizontal
change
I
Imaginary number – a complex number that can be written as a real number
multiplied by an imaginary unit i, defined by i 2 = − 1
Imaginary numbers (핀) – the square root of negative numbers
Inclination – the slope or gradient of a line
Independent variable – the input value of a function that does not depend on
anything
Inflection point – a point where the concavity of a curve changes; can be a
stationary point, but not always
Integers (ℤ) – positive and negative numbers
Irrational numbers (ℚʹ) – any number that cannot be written as a fraction in
the form a_b, b ≠ 0 with a, b ∈ ℤ
L
Limit – the value that a function or sequence approaches as the input
approaches some value
Logarithm – a number that is the exponent by which another fixed value, the
base, must be raised to produce that number, so a logarithm is an exponent
M
Midpoint – the point exactly halfway along a line segment, which divides the
line segment into two equal pieces
N
Natural numbers (ℕ) – numbers used for counting; starts at 1
P
Phase shift – indicates how far the function is shifted horizontally from the
usual position
Q
Quadratic equation – any equation in the form ax 2 + bx + c = 0, where x
represents an unknown (variable) and a, b and c are constants, with a ≠ 0
R
Radian – the angle at the centre of an angle subtended by an arc of the same
length as the radius
Radius – the distance from the centre to any point on a circle
Rational numbers (ℚ) – any number that can be written as a fraction in the
form a_b, b ≠ 0 with a, b ∈ ℤ
Real numbers (ℝ) – rational and irrational numbers
S
Secant – a line that intersects a circle at two points
Second derivative – the derivative of the derivative; it tells us about the
concavity of the graph
Simultaneous equations – two or more equations with the same variables; when
there are at least as many equations as variables they may be solvable
Stationary point – a point where the derivative of the function is zero; i.e. the
gradient at a stationary point is zero
T
Tangent – a line that intersects a circle at only one point
Turning point – the point at which the graph has a maximum or minimum
value
V
Variable – a letter that represents or stands for a number
W
Whole numbers (ℕ0) – natural numbers plus the number 0