Lithium-Ion Batteries: T Prem Kumar
Lithium-Ion Batteries: T Prem Kumar
Lithium-ion batteries
T Prem Kumar
premlibatt@yahoo.com
Common battery anodes
Zn Zn2+ + 2 e– 65.39 / 2 = F 820 mAh.g–1
Pb Pb2+ + 2 e– 207.20 / 2 = F 259 mAh.g–1
Li Li+ + e– 6.94 / 1 =F 3862 mAh.g–1
POTENTIAL CAPACITY
(DE, Volts) (Q, Coulomb, Faraday, Ah)
ENERGY
POTENTIAL
ENERGY
ENERGY
Likely cause:
Formation of lithium dendrites
due to rapid/non-uniform charging.
Deamliner fleets grounded.
Growth of lithium dendrites
Electrolyte
Cu Al Current
Current
Collector
Collector
Graphite LiMO2
Electrolyte
Cu Current Al Current
Collector Collector
Graphite LiMO2
LixC6 0.1 V
LiCoO2 3.7 V
LiNi1/3Co1/3Mn1/3O2 4V
Li4Ti5O12 1.5 V
LiMn2O4 4.1 V c
a
TiO2(B) 1.8 V
LiNi0.5Mn1.5O4 5V
Types of anode processes
(a) Lithium metal anode and intercalation cathode.
DISCHARGE: Lithium stripped from the anode gets
intercalated into the cathode.
CHARGE: Lithium is deintercalated from the cathode and
is deposited on the metal anode.
(Li-LiCoO2)
T. Prem Kumar, T.S.D. Kumari and A.M. Stephan, J. Ind. Inst. Sci. 89 (2009) 393.
Kish graphite
T.S.D. Kumari, A.J.J. Jebaraj, T.A. Raj, D. Jeyakumar and T. Prem Kumar, Energy 95 (2016) 483.
Kish graphite
Y.H. Lee, K.C. Pan, Y.Y. Lin, V. Subramanian, T. Prem Kumar, G.T.K. Fey, Mater. Lett. 57 (2003) 1113.
PVC kish graphite–voltage profiles
T.S.D. Kumari, A.J.J. Jebaraj, T.A. Raj, D. Jeyakumar and T. Prem Kumar, Energy 95 (2016) 483.
Li alloy-based electrodes
M° + xLi + xe- LixM
i5
del’électrolyte
2
Capacity (mAh/g)
Li
+
4i →
i4
13 S
Expansion (%)
13 S
3500
Li
Li
1.5
3i →
200
7S
3000
Li
3i
7S
1
Li
7→
Si
2500 100
12
7i
12 S
Li
0.5
Li
→
Si
2000 0
0 0 1000 2000 3000
0 1 2 3 4 5
1500 x in LixSi Capacity (mAh/g)
1000
500
0
In C Bi Zn Te Pb Sb Ga Sn Al As Ge Si
Alloy anodes
Electrochemical lithium alloying (1971)
Li–Al:
α-Li–Al (up to ~7 at.% Li) and β-Li–Al (~47–56 at.% Li; cycled)
∆V: 97% (graphite: 10.3%)—Zintl phases (Li+Al–)xAl0
Silicon nanopartilces
Si@C core-shell structures
Thin silicon films
Silicon nanotubes (3000+ mAhg; 6000+ cycles)
Silicon as an anode material
Positives
highest-known capacity: 4200 mAh/g (Li22Si5)*
2nd most abundant element on the earth’s crust
environmentally friendly.
Problem areas
inordinate volume expansion: ~400%**
poor electronic conductivity (1.2x10–5 S/cm).
Solutions
use of nano-sized silicon
use of conductive coating
*graphite: 372 mAh/g
**leads to electrochemical pulverization and cell failure
Nano SiC as a game-changer
T.S.D. Kumari, D. Jeyakumar and T. Prem Kumar, RSC Adv. 3 (2013) 15028.
Oxides
•TiO2 (2-D) and Li4Ti5O12 (1.0–2.8 V)
Tin anode
Patented: 12 elements
Sn, C, Si, Co, Mg, Al, B, P
Hydrides
0.6
CoP2
0.4
0.2 ?
0
H P N S O F
Polarization
H
H?<P<N<S<O<F
Energy efficiency
New Li-reactivity mechanisms:
Conversion reactions
2.5
1.5
CoO Co-Nano
particles
1
discharge 30 to
0.5
50Å
0
0 0.5 1 1.5 2 2.5 3
charge
x in 'LixCoO' 500Å
CoO + 2 e− + 2 Li+ Co0 + Li20
2 e- per Co
Today’s Li-ion cells Mn+ to M0 “Conversion reactions”
(130 mAh/g)
(150 mAh/g)
Cathode active materials
LiMn2O4
Cheaper, safety better than for Co & Ni
LiNiO2
Highest safety risk, good performance
LiCoO2
Good lifetime high safety risk
LiCo1/3Ni1/3Mn1/3O2
Popular material, wide range of variability for optimizing properties
LiFePO4
3.3 V material, cheap and safe
LiCoO2
LiCoIIIO2 → xLi+ + xe– + Li1–xCoIII1–xCoIVxO2
John B. Goodenough
First lithiated cathode
Theor. cap.: 274 mAh/g
Pract. cap: 140 mAh/g
3.6 V Co toxicity
LiMn2O4
C 372
Si 3575
Li 3862
LC 140
S 1675
O 3350
Porous FeS: >500 mAh/g
With Li
1.0 – 3.0 V
894 mAh/g (theor: for Fe + Li2S)
Li/FeS Nanocubes
1C: 439; 2.5C: 340; 5C: 256 mAh/g
With Na
0.02 – 2.5 V
530 mAh/g
J. Liu et al., Adv. Mater. 26 (2014) 6025. >20,000 cycles @ 200 mAh/g
Iron-based (oxy/hydroxy)sulfates
Li2Cu2O(SO4)2 (Cu3+/Cu2+: 4.7 V)
CuSO4+Li2SO4+CuO
Ar/500C
5 days
Li2Cu2O(SO4)2
208.6 mAh/g
M. Sun et al., Chem. Mater. 27 (2015) 3077. for the high-voltage plateau
Organic radical batteries
PTMA
poly[2,2,6,6-tetramethylpiperidinyloxy- TEMPO
4-yl methacrylate] 2,2,6,6-tetramethyl-N-oxyl]
Organic Li/Na batteries
LiF
6V
E (V) vs Li+/Li
LiNiVO4
E (V) vs H+/H2
5V
Li1-xNiO2, Li1-xCoO2
1.6
O2
4V 1.2
0.8
O2
H2O
LixMn2O’4 0.4
3V H2O
H2 0
LixTiS2 -0.4
2V LixMoO2 -0.8 H2
LixWO3
1V
pH
LixCoke 0 4 8 12
LixGraphite
0V Metal Li
Electrolytes
Key to success!
Protic Aprotic
Ethanol, phenol Benzene, propylene carbonate
The ideal electrolyte
Low cost, good transport properties,
large electrochemical stability window, low flammability.
Gel polymers
flexible packaging, lower cost, improved abuse tolerance.
BUT little progress towards gel cells! Syneresis.
Salts:
LiPF6, LiBF4, LiN(SO2CF2CF3)2 (LiBETI), LiBC4O8 (LiBOB),
LiPF3(CF2CF3)3 (LiFAP), LiN(SO2CF3)2 (LiTFSI).
Solvents
High boiling point
Low viscosity
High dielectric constant
ss
Rs 6,000,000,000
ss
Solid electrolyte interphase (SEI)
Key to success of the Li-ion technology: electrolyte
Insulating
Prevents shorting between anode and cathode inside the cell.
Porous
Allows transport of ions between the electrodes.
Wettable.
Stable
Thermally, chemically & electrochemically stable.
Flexible and dimensionally stable.
Shutdown separators
PP: 165C
PE: 135C
Softening of PE by heat
generated on cell abuse
blocks pores in the separator.
Irreversible
Tri-layer PP-PE-PP membrane
PE: polyethylene; PP: polypropylene
Conducting current collectors
Chemically resistant
For production
• Slurry viscosity must remain constant over long periods
• Very high solubility in the slurry solvent
• Easily shaped in a roll press without spring back
• Resistant to chipping during electrode slitting
Binders
Pouch cells
Good cooling character
High energy density
Problem: Tightness of the film
Prismatic cells
Easy stacking in battery packs
Combines characteristics of the other cell designs
High energy/power designs
High-energy cell design:
thick electrodes; less passive components.
anode
cathode
separator
Electrode preparation
QC: Viscosity, QC: thickness QC: thickness, QC: thickness, QC: burr and
dispersion adhesion roller gap, tension control,
Control Risks: non- porosity cutting wheel
uniform Risks: blisters, condition
Risks: shorts, coating, shorts, poor adhesion, Risk: poor cell
lumps, dryout dryout lithium plating performance Risk: shorts
Cell assembly, formation & testing
http://w3.siemens.com/markets/global/en/batterymanufacturing/applications/process/pages/default.aspx
O2 and H2O
content
< 1 ppm
A.K. Shukla, T.S.D. Kumari and T. Prem Kumar, in Nanotechnology for Energy Sustainability,
Vol. 2, Baldev Raj, M.H. Van de Voorde and Y.R. Mahajan (eds.), Wiley-VCH, Weinheim, Germany
(2017) p. 353.
A.K. Shukla and T. Prem Kumar, Wiley Interdisc. Rev. Energy Environ. 2 (2013) 14.
Nanomaterials give new lease of life
to lithium-ion batteries
Improved electrode kinetics
Small particle size: short diffusion paths for ions and electrons.
Large surface areas: high contact area with electrolyte.
→ high lithium-ion flux across the interface.
. Therefore, higher capacity and power.
Increased reactivity
(Chemical potential at the nanoscale has an extra contribution
from surface free energy: μ0(r) = μ0(r=∞) + 2(γ/r)V, where γ is
the effective surface tension, V is the partial molar volume, and r
is the effective grain radius. The excess surface free energy
(2(γ/r)V) contributes to the high electro-activity toward Li storage
and surface reactions).
Nanocomposite polymer electrolytes
2
Potentiel vs. Li (V)
3.5
3.5
3.0 1.5
2.5
2.5
500 nm 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4.0 x dans LixFePO4
Pot. vs. Li (V)
0.5
3.53.5
3.0 0
0 400 800 1200 1600
2.52.5 50 nm
Nano Q (mAh/g)
2.0
00.0 0.2 0.3 0.4
0.1 0.2 0.6 0.7
0.4 0.5 0.6 0.8 0.9 1.01
0.8
x in xLi FePO4
in LixFePO 50 nm LiCoO2/Sn-C
x 4
Compact Structures
3.5 Universality of the mechanism
Voltage (V vs Li/Li )
+
2.5
2
CoS + 2 Li ⇌ Co° + Li2S
CoO + 2 Li ⇌ Co° + Li2O
1.5
0.5
RuO2 + 4 Li ⇌ Ru° + 2 Li2O
CoCl2 + 2 Li ⇌ Co° + 2 LiCl
0
0 0.5 1 1.5 2 2.5 3
charge
500Å
2–3 x capacity gain
CoO + 2 e− + 2 Li+ Co + Li2O 0
2 e- per Co
Conversion anodes
Common belief: interstitial-free
3d metal oxides are unsuitable
for intercalation chemistry.
*J. Mater. Chem., 2012, 22, 17278; **J. Mater. Chem. A, 2013,1, 1141-1147
Impossible yesterday,
possible today!
QUARTZ:
a lithium-insertion anode material