0% found this document useful (0 votes)
105 views26 pages

Combined Example

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
105 views26 pages

Combined Example

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 26

Design of

Combined Footing

1
2
3
4
5
6
7
Example
• Given Column 1 size 30x 30
Reinf. 422
Column 2 size 40x 40cm
Reinf. 424
Ultimate soil bearing pressure , qult = 150kPa
fyk = 300MPa fyd = 300/1.15 = 260.87 MPa

C25 fck= 20MPafctk = 1.5 MPa,

Required:- Design of rectangular combined footing

8
800kN 1200kN
Property line 350m

9
• SOLUTION
• Proportioning of footing
R
800kN 1200kN
X’
15cm 350cm

• R = 800 +1200 = 2000kN


• RX’ = 1200 *350  X’ = (1200 *350)/2000 = 210cm
• a = 2 ( X’ + 15) = 450 cm

10
• qult = R/A = 2000/ (4.50*b)
• 150 = 2000/(4.50 *b)  b =2.96m
• Take b =3.00m
• Actual contact pressure
•  = R/ab = 2000/ (4.50*3.00) = 148.15kPa < qult ……….. ok

• Shear force and bending moment diagrams

11
0.30m 3.15m 0.40m 0.65m
800kN 1200kN

822.24kN 148.15*3=444.45kN/m
1.65m d

66.67kN

377.76kN
599.99kN-m
733.33kN

5.00kN-m
160.59kN-m
12
• Thickness of the footing
• Wide beam shear
• The magnitude of the wide beam shear is read off from the shear
force diagram at a distance of d from the face of the column.
• V = 444.45 (3.45 –d) -800 =733.35-444.45d
• Take d= 0.60m and  = min = 0.5/fyk = 0.5 /300 = 0.0017
• Then, V =466.68kN
• The wide beam shear resistance according to EBCS-2 is given
by
Vud = 0.25fctd k1k2 bwd (MN)
k1 = ( 1+50) = (1 +50*0.0017) =1.085
k2 = 1.6 – d =1.6 -0.6 = 1
Vud = 0.25 *1*1.085*1*3.0*0.60 =0.488MN =488kN>V …OK!

13
• Punching shear

1.5d +0.30 =1.2 1.5d +0.40 +0.65=1.95

3d+0.3=2.1

3d+0.4=2.2
300cm

1.5d +0.30 =1.2 1.5d +0.40 +0.65=1.95

450cm

• Perimeters Pr1 =1.2+1.2+2.1 =4.5m


Pr2 =1.95+1.95+2.2=6.1m
14
• Net shear force developed under column 1
V1= 800 -148.15*(1.2*2.1) =426.66kN
• Net shear force developed under column 2
V2 = 1200-148.15* (1.95*2.2)=564.43kN
• Punching shear resistance
Vup = 0.25fctd k1k2ud (MN)
d= 0.60m and  = min = 0.5/fyk = 0.5 /300 = 0.0017
k1 = ( 1+50) = (1 +50*0.0017) =1.085
k2 = 1.6 – d =1.6 -0.6 = 1
u1 = Pr1 =4.5m , u2 = Pr1 = 6.1m
• Punching shear resistance under column 1
• Vup = 0.25 *1000* 1.085*1*4.5*0.6=732.38kN > V1…… ok!

15
• Punching shear resistance under column 2
• Vup = 0.25 *1000* 1.085*1*6.1*0.6=992.78kN > V2………… ok!
• Moment capacity of concrete
M  0.32  f cd  bd 2
 0.32  11 .33  10 3  3.00  0.6 
2

 3915 .65 kN  m  M max ....Ok !

• Calculation of reinforcement
– Long direction
The reinforcement shall be calculated for the maximum moment
Mmax = 599.99kN-m

16
f  2M 
  cd 1  1  2 
f yd  f cd bd 
11 .33  2  599 .99 
  1  1    0.0022   min
11 .33  10 3  3.0  0.6 
2
260 .87  
As  bd  0.0022  300  60  39 .6cm 2

Use  = 20, as = 3.14cm2


No. of bars , n= 39.6/3.14 =12.6 , use 13 bars
Spacing = (300-2*5)/ (n-1) =24.2cm

Use 13  20 c/c 240mm

17
– Short direction

l1 = (3-0.3)/2 = 1.35m l2 = (3-0.4)/2


, = 1.30m

a’+d/2= 2.55 m a’+d= 0 .35 m


0.3+0.3=0.60m 0.4+0.6=1.0m

Effective width at exterior and interior columns being a+d/2 and


a+d, respectively

18
• Contact pressure under columns 1 and 2
800
1   444 .44 kN / m 2
3.00 X 0.60

1200
2   400 kN / m 2
3.00 X 1.00

• Bending moment
• M1 =444.44 *1.35*0.60*1.35/2 = 243kN-m

• M2 = 400 * 1.30 *1.00 * 1.30/2 = 338kN-m

19
• Calculation of Reinforcements
– Under column 1
Moment capacity of concrete
M  0.32  f cd  bd 2
 0.32  11 .33  10 3  0.60  0.58 
2

 731 .79 kN  m  M 1 ....Ok !

f  2M 
  cd 1  1  2 
f yd  f cd bd 
11 .33  2  243 
  1  1    0.0049   min ....ok !
11 .33  10 3  0.60  0.58 
2
260 .87  
As  bd  0.0049  60  58  17 .05 cm 2
20
Use  = 20, as = 3.14cm
No. of bars , n= 17.05/3.14 =5.4 , use 6 bars
Spacing = (60-5)/ (n-1) =9.2cm
Use 6  20 c/c 90mm

– Under column 2
Moment capacity of concrete
M  0.32  f cd  bd 2
 0.32  11 .33  10  1.00  0.58 
3 2

 1219 .65 kN  m  M 2 ....Ok !

21
f cd  2M 
 1  1  2 
f yd  f cd bd 
11 .33  2  338 
 1  1    0.0040   min ....ok !
260 .87  11 . 33  10 3
 1  0 . 58 2

As  bd  0.0040  100  58  23 .20 cm 2

Use  = 20, as = 3.14cm


No. of bars , n= 23.20/3.14 =7.4 , use 8 bars
Spacing = (100)/ (n-1) =14.3cm
Use 8  20 c/c 140mm
• The reinforcement between the two strips will be nominal
reinforcement to prevent shrinkage cracks
• Short direction
• Asmin = min bd = 0.0017 *255 *58 =25.14cm2
22
Use  = 20, as = 3.14cm
No. of bars , n= 25.14/3.14 = 8 , use 8 bars
Spacing = (245)/ (7)
=35cm < 400mm (smax for secondary bars)……. ok
Use 8  20 c/c 350mm
•Long direction
Asmin = min bd = 0.0017 *300 *60 =30.60cm2
No. of bars , n= 30.16/3.14 = 9.7 , use 10 bars
Spacing = (300-10)/ (9)
=32.2cm < 400mm (smax for secondary bars)……. ok
Use 10  20 c/c 320mm

23
•Cantilever portion
–Bottom reinforcement , long direction
–Critical moment from bending moment diagram is M =160.59kN-m
f  2M 
  cd 1  1  2 
f yd  f cd bd 
11 .33  2  160 .59 
  1  1    0.00057   min
11 .33  10 3  3  0.60 
2
260 .87  
As   min bd  0.0017  300  60  30 .60 cm 2

Use  = 20, as = 3.14cm


No. of bars , n= 30.6/3.14 =9.7 , use 10 bars
Spacing = (300-2*5)/ 9 =32.22cm
Use 10  20 c/c 320mm

24
Short direction
Provide minimum reinforcement
• Asmin = min bd = 0.0017 *35 *58 =3.45cm2
• No. of bars , n= 3.45/3.14 =1.1 , use 2 bars
Spacing = (25)/ 2 =12.5cm
Use 2  20 c/c 125mm

• Development length
• Short direction
• Under column 1
 f yd 2  260 .87
ld    130 .44 cm
4 f bd 4 1
25
• Available development length, la =135-5=130cm < ld
Bend the bars upward with a minimum length of 10cm
• Under column 2

 f yd 2  260 .87
ld    130 .44 cm
4 f bd 4 1

• Available development length, la =130-5=125cm < ld


Bend the bars upward with a minimum length of 10cm

26

You might also like