Hidden Markov Model Inference Package
Hidden Markov Model Inference Package
R topics documented:
addStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
dmvnorm.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
dnorm.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
dpois.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
gammafit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hmmfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
hmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
hsmmfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1
2 addStates
hsmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
mstep.mvnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
mstep.norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
mstep.pois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
plot.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
plot.hsmm.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
predict.hmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
predict.hmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
predict.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
predict.hsmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
print.hmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
print.hmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
print.hsmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
reproai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
reprocows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
reproppa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
rmvnorm.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
rnorm.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
rpois.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
sim.mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
simulate.hmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
simulate.hsmmspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
smooth.discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
summary.hmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
summary.hsmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Index 34
Description
Add a colour coded horizontal bar representing the state sequence to a plot of (presumably time-
series) data.
Usage
Arguments
states A vector of integers representing the states traversed
x The time values where the states are observed ((1:length(states)-shiftx)/time.scale
if NULL)
ybot Vertical bottom limit of the bar.
ytop Vertical top limit of the bar.
dy Height of the bar.
greyscale If TRUE produces a bar in greyscale.
leg Array of state names, if present, produces a legend.
J Number of states
time.scale Resolution of the timescale
shiftx Shift the bar forward or backwards horizontal by shiftx distance.
Author(s)
Soren Hojsgaard sorenh@math.aau.dk
See Also
addStates
Examples
plot(rnorm(100),type='l')
addStates(rep(c(1,2),each=50))
plot(seq(0.01,1,.01),rnorm(100),type='l')
addStates(rep(c(1,2),each=50),seq(0.01,1,.01))
Description
Calculates the density of observations x for state j given the parameters in model. This is used for
a multivariate Gaussian emission distribution of a HMM or HSMM and is a suitable prototype for
user’s to make their own custom distributions.
Usage
dmvnorm.hsmm(x, j, model)
4 dnorm.hsmm
Arguments
x Observed value
j State
model A hsmmspec or hmmspec object
Details
This is used by hmm and hsmm to calculate densities for use in the E-step of the EM algorithm. It can
also be used as a template for users wishing to building their own emission distributions
Value
A vector of probability densities.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
See Also
mstep.mvnorm, rmvnorm.hsmm
Examples
J<-2
initial <- rep(1/J,J)
P <- matrix(c(.3,.5,.7,.5),nrow=J)
b <- list(mu=list(c(-3,0),c(1,2)),sigma=list(diag(2),matrix(c(4,2,2,3), ncol=2)))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dmvnorm.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rmvnorm.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.mvnorm)
Description
Calculates the density of observations x for state j given the parameters in model. This is used for
the Gaussian emission distribution of a HMM or HSMM and is a suitable prototype for user’s to
make their own custom distributions.
Usage
dnorm.hsmm(x, j, model)
dpois.hsmm 5
Arguments
x Observed value
j State
model A hsmmspec or hmmspec object
Details
This is used by hmm and hsmm to calculate densities for use in the E-step of the EM algorithm. It can
also be used as a template for users wishing to building their own emission distributions
Value
A vector of probability densities.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Description
Calculates the density of observations x for state j given the parameters in model. This is used for
a Poisson emission distribution of a HMM or HSMM and is a suitable prototype for user’s to make
their own custom distributions.
Usage
dpois.hsmm(x, j, model)
Arguments
x Observed value
j State
model A hsmmspec or hmmspec object
Details
This is used by hmm and hsmm to calculate densities for use in the E-step of the EM algorithm. It can
also be used as a template for users wishing to building their own emission distributions
Value
A vector of probability densities.
6 gammafit
Author(s)
Jared O’Connell jaredoconnell@gmail.com
See Also
mstep.pois, rpois.hsmm
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(lambda=c(1,3,6))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dpois.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rpois.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.pois)
Description
Estimates parameters for the Gamma distribution using the Method of Maximum Likelihood, works
with weighted data.
Usage
gammafit(x, wt = NULL)
Arguments
x A vector of observations
wt Optional set of weights
Value
shape The shape parameter
scale The scale parameter (equal to 1/rate)
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Choi, S. and Wette, R. (1969), Maximum likelihood estimation of the parameters of the gamma
distribution and their bias, Technometrics, 11, 683-96-690.
hmmfit 7
Examples
gammafit(rgamma(1000,shape=10,scale=13))
Description
Estimates parameters of a HMM using the EM algorithm.
Usage
hmmfit(x,start.val,mstep=mstep.norm,lock.transition=FALSE,tol=1e-08,maxit=1000)
Arguments
x A hsmm.data object (see Details)
start.val Starting parameters for the model (see Details)
mstep Re-estimates the parameters of density function on each iteration
lock.transition
If TRUE will not re-estimate the transition matrix
maxit Maximum number of iterations
tol Convergence tolerance
Value
start A vector of the starting probabilities for each state
a The transition matrix of the embedded Markov chain
emission A list of the parameters of the emission distribution
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Jared O’Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observa-
tion Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL
http://www.jstatsoft.org/v39/i04/.
Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recog-
nition, Proceedings of the IEEE, 77, 257-286.
See Also
predict.hmm
8 hmmspec
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dnorm.hsmm)
model
plot(h1$loglik,type='b',ylab='Log-likelihood',xlab='Iteration')
summary(h1)
Description
Creates a model specficiation for a hidden Markov model
Usage
hmmspec(init, trans, parms.emission, dens.emission, rand.emission=NULL,mstep=NULL)
Arguments
init Distribution of states at t=1 ie. P(S=s) at t=1
trans The transition matrix of the Markov chain
parms.emission A list containing the parameters of the emission distribution
dens.emission Density function of the emission distribution.
rand.emission The function used to generate observations from the emission distribution
mstep Re-estimates the parameters of density function on each iteration
hsmmfit 9
Value
A hmmspec object
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Jared O’Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observa-
tion Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL
http://www.jstatsoft.org/v39/i04/.
Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recog-
nition, Proceedings of the IEEE, 77, 257-286.
See Also
simulate.hmmspec, simulate.hmmspec, hmmfit, predict.hmm
Description
Estimates parameters of a HSMM using the EM algorithm.
Usage
hsmmfit(x,model,mstep=NULL,M=NA,maxit=100,
lock.transition=FALSE,lock.d=FALSE,graphical=FALSE)
Arguments
x A hsmm.data object (see Details)
model Starting parameters for the model (see hsmmspec)
mstep Re-estimates the parameters of density function on each iteration
maxit Maximum number of iterations
M Maximum number of time spent in a state (truncates the waiting distribution)
lock.transition
If TRUE will not re-estimate the transition matrix
lock.d If TRUE will not re-estimate the sojourn time density
graphical If TRUE will plot the sojourn densities on each iteration
10 hsmmfit
Value
start A vector of the starting probabilities for each state
a The transition matrix of the embedded Markov chain
emission A list of the parameters of the emission distribution
waiting A list of the parameters of the waiting distribution
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Jared O’Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observa-
tion Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL
http://www.jstatsoft.org/v39/i04/.
Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of
Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003
See Also
hsmmspec,simulate.hsmmspec,predict.hsmm
Examples
J <- 3
init <- c(0,0,1)
P <- matrix(c(0,.1,.4,.5,0,.6,.5,.9,0),nrow=J)
B <- list(mu=c(10,15,20),sigma=c(2,1,1.5))
d <- list(lambda=c(10,30,60),shift=c(10,100,30),type='poisson')
model <- hsmmspec(init,P,parms.emission=B,sojourn=d,dens.emission=dnorm.hsmm)
train <- simulate(model,r=rnorm.hsmm,nsim=100,seed=123456)
plot(train,xlim=c(0,400))
start.poisson <- hsmmspec(init=rep(1/J,J),
transition=matrix(c(0,.5,.5,.5,0,.5,.5,.5,0),nrow=J),
parms.emission=list(mu=c(4,12,23),
sigma=c(1,1,1)),
sojourn=list(lambda=c(9,25,40),shift=c(5,95,45),type='poisson'),
dens.emission=dnorm.hsmm)
M=500
# not run (takes some time)
# h.poisson <- hsmmfit(train,start.poisson,mstep=mstep.norm,M=M)
# plot(h.poisson$loglik,type='b',ylab='Log-likelihood',xlab='Iteration') ##has it converged?
# summary(h.poisson)
# predicted <- predict(h.poisson,train)
# table(train$s,predicted$s) ##classification matrix
# mean(predicted$s!=train$s) ##misclassification rate
d <- cbind(dunif(1:M,0,50),dunif(1:M,100,175),dunif(1:M,50,130))
start.np <- hsmmspec(init=rep(1/J,J),
hsmmspec 11
transition=matrix(c(0,.5,.5,.5,0,.5,.5,.5,0),nrow=J),
parms.emission=list(mu=c(4,12,23),
sigma=c(1,1,1)),
sojourn=list(d=d,type='nonparametric'),
dens.emission=dnorm.hsmm)
# not run (takes some time)
# h.np <- hsmmfit(train,start.np,mstep=mstep.norm,M=M,graphical=TRUE)
# mean(predicted$s!=train$s) ##misclassification rate
#J <- 2
#init <- c(1, 0)
#P <- matrix(c(0, 1, 1, 0), nrow = J)
#B <- list(mu = list(c(2, 3), c(3, 4)), sigma = list(matrix(c(4, 2, 2, 3), ncol = 2), diag(2)))
#d <- list(shape = c(10, 25), scale = c(2, 2), type = "gamma")
#model <- hsmmspec(init, P, parms.emis = B, sojourn = d, dens.emis = dmvnorm.hsmm)
#train <- simulate(model, c(1000,100), seed = 123, rand.emis = rmvnorm.hsmm)
Description
Usage
hsmmspec(init,transition,parms.emission,sojourn,dens.emission,
rand.emission=NULL,mstep=NULL)
Arguments
Details
The sojourn argument provides a list containing the parameters for the available sojourn distribu-
tions. Available sojourn distributions are shifted Poisson, Gamma and non-parametric.
In the case of the Gamma distribution, sojourn is a list with vectors shape and scale (the Gamma
parameters in dgamma), both of length J. Where J is the number of states. See reprocows for an
example using Gamma sojourn distributions.
In the case of shifted Poisson, sojourn is list with vectors shift and lambda, both of length J. See
hsmmfit for an example using shifted Poisson sojourn distributions.
In the case of non-parametric, sojourn is a list containing a M x J matrix. Where entry (i,j) is
the probability of a sojourn of length i in state j. See hsmmfit for an example using shifted non-
parametric sojourn distributions.
Value
An object of class hsmmspec
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Jared O’Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observa-
tion Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL
http://www.jstatsoft.org/v39/i04/.
Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of
Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003
See Also
hsmmfit ,simulate.hsmmspec, predict.hsmm
Description
Re-estimates the parameters of a multivariate normal emission distribution as part of the EM al-
gorithm for HMMs and HSMMs. This is called by the hmm and hsmm functions. It is a suitable
prototype function for users wishing to design their own emission distributions.
Usage
mstep.mvnorm(x, wt)
mstep.norm 13
Arguments
x A vector of observed values
wt A T x J matrix of weights. Column entries are the weights for respective states.
Details
Users may write functions that take the same arguments and return the same values for their own
custom emission distributions.
Value
Returns the emission slot of a hmmspec or hsmmspec object
Author(s)
Jared O’Connell jaredoconnell@gmail.com
See Also
dmvnorm.hsmm, rmvnorm.hsmm
Examples
J<-2
initial <- rep(1/J,J)
P <- matrix(c(.3,.5,.7,.5),nrow=J)
b <- list(mu=list(c(-3,0),c(1,2)),sigma=list(diag(2),matrix(c(4,2,2,3), ncol=2)))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dmvnorm.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rmvnorm.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.mvnorm)
Description
Re-estimates the parameters of a normal emission distribution as part of the EM algorithm for
HMMs and HSMMs. This is called by the hmm and hsmm functions. It is a suitable prototype
function for users wishing to design their own emission distributions.
Usage
mstep.norm(x, wt)
14 mstep.pois
Arguments
x A vector of observed values
wt A T x J matrix of weights. Column entries are the weights for respective states.
Details
Users may write functions that take the same arguments and return the same values for their own
custom emission distributions.
Value
Returns the emission slot of a hmmspec or hsmmspec object
mu Vector of length J contain the means
sigma Vector of length J containing the variances
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Description
Re-estimates the parameters of a Poisson emission distribution as part of the EM algorithm for
HMMs and HSMMs. This is called by the hmm and hsmm functions. It is a suitable prototype
function for users wishing to design their own emission distributions.
Usage
mstep.pois(x, wt)
Arguments
x A vector of observed values
wt A T x J matrix of weights. Column entries are the weights for respective states.
Details
Users may write functions that take the same arguments and return the same values for their own
custom emission distributions.
Value
Returns the emission slot of a hmmspec or hsmmspec object
lambda Vector of length J containing the Poisson parameters for each state j
plot.hsmm 15
Author(s)
See Also
rpois.hsmm, dpois.hsmm
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(lambda=c(1,3,6))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dpois.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rpois.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.pois)
Description
Usage
Arguments
x A hsmm object
... Arguments passed to plot
Author(s)
Description
Produces a plot of the observed sequences, and displays a coloured bar signifying the hidden states
(if available)
Usage
## S3 method for class 'hsmm.data'
plot(x, ...)
Arguments
x A hsmm.data object
... Arguments passed to plot.ts
Author(s)
Jared O’Connell jaredoconnell@gmail.com
See Also
addStates
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b, dens.emission=dnorm.hsmm)
Description
Predicts the underlying state sequence for an observed sequence newdata given a hmm model
predict.hmm 17
Usage
## S3 method for class 'hmm'
predict(object, newdata,method = "viterbi", ...)
Arguments
object An object of class hmm
newdata A vector or list of observations
method Prediction method (see details)
... further arguments passed to or from other methods.
Details
If method="viterbi", this technique applies the Viterbi algorithm for HMMs, producing the most
likely sequence of states given the observed data. If method="smoothed", then the individually
most likely (or smoothed) state sequence is produced, along with a matrix with the respective prob-
abilities for each state.
Value
Returns a hsmm.data object, suitable for plotting.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recog-
nition, Proceedings of the IEEE, 77, 257-286.
See Also
hmmfit,hmmspec
Examples
##See examples in 'hmmfit'
18 predict.hmmspec
Description
Predicts the underlying state sequence for an observed sequence newdata given a hmmspec model
Usage
## S3 method for class 'hmmspec'
predict(object, newdata,method = "viterbi", ...)
Arguments
object An object of class hmm
newdata A vector or list of observations
method Prediction method (see details)
... further arguments passed to or from other methods.
Details
If method="viterbi", this technique applies the Viterbi algorithm for HMMs, producing the most
likely sequence of states given the observed data. If method="smoothed", then the individually
most likely (or smoothed) state sequence is produced, along with a matrix with the respective prob-
abilities for each state. This function differs from predict.hmm in that it takes the output from
hmmspec ie. this is useful when users already know their parameters and wish to make predictions.
Value
Returns a hsmm.data object, suitable for plotting.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recog-
nition, Proceedings of the IEEE, 77, 257-286.
predict.hsmm 19
See Also
hmmspec
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dnorm.hsmm)
train <- simulate(model, nsim=300, seed=1234, rand.emis=rnorm.hsmm)
mean(predict(model,train)$s!=train$s) #error rate when true model is known
Description
Predicts the underlying state sequence for an observed sequence newdata given a hsmm model
Usage
## S3 method for class 'hsmm'
predict(object, newdata, method = "viterbi", ...)
Arguments
object An object of type hsmm
newdata A vector or dataframe of observations
method Prediction method (see details)
... further arguments passed to or from other methods.
Details
If method="viterbi", this technique applies the Viterbi algorithm for HSMMs, producing the
most likely sequence of states given the observed data. If method="smoothed", then the individu-
ally most likely (or smoothed) state sequence is produced, along with a matrix with the respective
probabilities for each state.
Value
Returns a hsmm.data object, suitable for plotting.
newdata A vector or list of observations
s A vector containing the reconstructed state sequence
N The lengths of each sequence
p A matrix where the rows represent time steps and the columns are the probability
for the respective state (only produced when method="smoothed")
20 predict.hsmmspec
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of
Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003
See Also
hsmmfit,predict.hsmmspec
Examples
##See 'hsmmfit' for examples
Description
Predicts the underlying state sequence for an observed sequence newdata given a hsmm model
Usage
## S3 method for class 'hsmmspec'
predict(object, newdata, method = "viterbi",M=NA, ...)
Arguments
object An object of type hsmmspec
newdata A vector or dataframe of observations
method Prediction method (see details)
M Maximum number of time spent in a state (truncates the waiting distribution)
... further arguments passed to or from other methods.
Details
If method="viterbi", this technique applies the Viterbi algorithm for HSMMs, producing the
most likely sequence of states given the observed data. If method="smoothed", then the individu-
ally most likely (or smoothed) state sequence is produced, along with a matrix with the respective
probabilities for each state. This method is different to predict.hsmm in that it takes the output from
hsmmspec as input ie. it is useful for people who already know their model parameters.
print.hmm 21
Value
Returns a hsmm.data object, suitable for plotting.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of
Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003
See Also
hsmmspec, predict.hsmm
Examples
J <- 3
init <- c(0,0,1)
P <- matrix(c(0,.1,.4,.5,0,.6,.5,.9,0),nrow=J)
B <- list(mu=c(10,15,20),sigma=c(2,1,1.5))
d <- list(lambda=c(10,30,60),shift=c(10,100,30),type='poisson')
model <- hsmmspec(init,P,parms.emission=B,sojourn=d,dens.emission=dnorm.hsmm)
train <- simulate(model,r=rnorm.hsmm,nsim=100,seed=123456)
mean(predict(model,train,M=500)$s!=train$s) #error rate when true model is known
Description
Prints the slots of a hmm object
Usage
## S3 method for class 'hmm'
print(x, ...)
22 print.hsmmspec
Arguments
x An object of type hmm
... further arguments passed to or from other methods.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Description
Prints the parameters contained in the object
Usage
## S3 method for class 'hmmspec'
print(x, ...)
Arguments
x An object of type hmmspec
... further arguments passed to or from other methods.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Description
Prints the parameters contained in the object
Usage
## S3 method for class 'hsmmspec'
print(x, ...)
Arguments
x An object of type hsmmspec
... further arguments passed to or from other methods.
reproai 23
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Description
This is an auxilliary data set to the cows data set containing times of artificial insemination for
respective cows. Only the day of insemination was recorded so time of day is always midday.
Usage
reproai
Format
reproai is a dataframe with 12 rows and id being the cow’s id and days.from.calving recording
the number of days from calving when insemination occurred.
Source
Danish Cattle Research Centre
References
Peters, A. and Ball, P. (1995), "Reproduction in Cattle," 2nd ed.
Description
This data set contains hourly observations on progesterone and an activity index at hourly intervals
since calving on seven dairy cows.
Usage
reprocows
Format
reprocows is a data frame containing 13040 rows. id is the cow ID, progesterone is a measure-
ment of the hormone in ng/L taken from a milk sample, activity is a relative measure of activity
calculated from a pedometer.
There are a large number of missing values as progesterone is measured only at milking time (and at
a farm manager’s discretion). Missing values in activity occur due to hardware problems can occur
with pedometers.
24 reproppa
Source
Danish Cattle Research Centre
References
Peters, A. and Ball, P. (1995), "Reproduction in Cattle," 2nd ed.
Examples
data(reprocows)
data(reproai)
data(reproppa)
tm = 1600
J <- 3
init <- c(1,0,0)
trans <- matrix(c(0,0,0,1,0,1,0,1,0),nrow=J)
emis <- list(mu=c(0,2.5,0),sigma=c(1,1,1))
N <- as.numeric(table(reprocows$id))
train <- list(x=reprocows$activity,N=N)
class(train) <- "hsmm.data"
tmp <- gammafit(reproppa * 24)
M <- max(N)
d <- cbind(dgamma(1:M,shape=tmp$shape,scale=tmp$scale),
# ppa sojourn directly estimated from ppa data set
dunif(1:M,4,30),
# oestrus between 4 and 30 hours
dunif(1:M,15*24,40*24))
#not-oestrus between 15 and 40 days
Description
This data set contains the observed length of post-partum anoestrus (in days) for 73 dairy cattle.
Usage
reproppa
rmvnorm.hsmm 25
Format
reproppa a vector containing 73 integers.
Source
Danish Cattle Research Centre
References
Peters, A. and Ball, P. (1995), "Reproduction in Cattle," 2nd ed.
Description
This generates values from a multivariate normal distributed emission state j given parameters in
model.
Usage
rmvnorm.hsmm(j, model)
Arguments
j An integer representing the state
model A hmmspec or hsmmspec object
Details
This is essentially a wrapper for rnorm. Users may build functions with the same arguments and
return values so they can use their own custom emission distributions.
Value
A single value from the emission distribution.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
See Also
dmvnorm.hsmm, mstep.mvnorm
26 rnorm.hsmm
Examples
J<-2
initial <- rep(1/J,J)
P <- matrix(c(.3,.5,.7,.5),nrow=J)
b <- list(mu=list(c(-3,0),c(1,2)),sigma=list(diag(2),matrix(c(4,2,2,3), ncol=2)))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dmvnorm.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rmvnorm.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.mvnorm)
Description
This generates values from a normally distributed emission state j given parameters in model.
Usage
rnorm.hsmm(j, model)
Arguments
Details
This is essentially a wrapper for rnorm. Users may build functions with the same arguments and
return values so they can use their own custom emission distributions.
Value
Author(s)
Description
This generates values from a Poisson distributed emission state j given parameters in model.
Usage
rpois.hsmm(j, model)
Arguments
j An integer representing the state
model A hmmspec or hsmmspec object
Details
This is essentially a wrapper for rpois. Users may build functions with the same arguments and
return values so they can use their own custom emission distributions.
Value
A single value from the emission distribution.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
See Also
mstep.pois, dpois.hsmm
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(lambda=c(1,3,6))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dpois.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rpois.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.pois)
28 simulate.hmmspec
Description
Simulates a Markov chain
Usage
sim.mc(init, transition, N)
Arguments
init The distribution of states at the first time step
transition The transition probability matrix of the Markov chain
N The number of observations to simulate
Value
A vector of integers representing the state sequence.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Examples
p <- matrix(c(.1,.3,.6,rep(1/3,3),0,.5,.5),ncol=3,byrow=TRUE)
init <- rep(1/3,3)
sim.mc(init,p,10)
Description
Simulates data from a hidden Markov model
Usage
## S3 method for class 'hmmspec'
simulate(object, nsim, seed = NULL, rand.emission=NULL,...)
simulate.hmmspec 29
Arguments
object A hmmspec object
nsim An integer or vector of integers (for multiple sequences) specifying the length
of the sequence(s)
seed seed for the random number generator
rand.emission The function used to generate observations from the emission distribution
... further arguments passed to or from other methods.
Details
If nsim is a single integer then a HMM of that length is produced. If nsim is a vector of integers,
then length(nsim) sequences are generated with respective lengths.
Value
An object of class hmmdata
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recog-
nition, Proceedings of the IEEE, 77, 257-286.
See Also
hmmspec, link{predict.hmm}
Examples
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dnorm.hsmm)
train <- simulate(model, nsim=100, seed=1234, rand.emis=rnorm.hsmm)
plot(train)
30 simulate.hsmmspec
Description
Simulates values for a specified hidden semi-Markov model
Usage
## S3 method for class 'hsmmspec'
simulate(object, nsim, seed = NULL,rand.emission=NULL,...)
Arguments
object A hsmmspec object
nsim An integer or vector of integers (for multiple sequences) specifying the number
of states to generate per sequence
seed seed for the random number generator
rand.emission The function used to generate observations from the emission distribution
... further arguments passed to or from other methods.
Details
If nsim is a single integer then a HSMM of that length is produced. If nsim is a vector of integers,
then length(nsim) sequences are generated with respective lengths. Note thate length is the num-
ber of states visited, each state will have a sojourn time typically >1 so the vector will be longer
than nsim
Value
An object of class hmmdata
Author(s)
Jared O’Connell jaredoconnell@gmail.com
References
Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of
Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003
smooth.discrete 31
See Also
hsmmfit, hsmmspec, predict.hsmm
Examples
J <- 3
init <- c(0,0,1)
P <- matrix(c(0,.1,.4,.5,0,.6,.5,.9,0),nrow=J)
B <- list(mu=c(10,15,20),sigma=c(2,1,1.5))
d <- list(lambda=c(10,30,60),shift=c(10,100,30),type='poisson')
model <- hsmmspec(init,P,parms.emission=B,sojourn=d,dens.emission=dnorm.hsmm)
train <- simulate(model,rand.emis=rnorm.hsmm,nsim=100,seed=123456)
plot(train,xlim=c(0,400))
Description
The smooth.discrete() function provides a simple smoothing of a time series of discrete values
measured at equidistant times. Under the hood of smooth.discrete() is a hidden Markov model.
Usage
smooth.discrete(y, init = NULL, trans = NULL, parms.emission = 0.5,
method = "viterbi", details = 0, ...)
Arguments
y A numeric vector
init Initial distribution (by default derived from data; see the vignette for details)
trans Transition matrix (by default derived from data; see the vignette for details)
parms.emission Matrix describing the conditional probabilities of the observed states given the
latent states. (See the vignette for details).
method Either "viterbi" or "smoothed". The viterbi method gives the jointly most likely
sequence; the smoothed method gives the sequence of individually most likely
states.
details Controlling the amount of information printed.
... Further arguments passed on to the "hmmfit" function.
Details
The parameters are estimated using the Baum-Welch algorithm (a special case of the EM-algorithm).
32 summary.hmm
Value
A list with the following components:
Author(s)
S<c3><b8>ren H<c3><b8>jsgaard <sorenh at math.aau.dk>
See Also
hmmspec, hmmfit
Examples
## Please see the vignette
Description
Prints the estimated parameters of a hmm object
Usage
## S3 method for class 'hmm'
summary(object, ...)
Arguments
object A hmm object
... further arguments passed to or from other methods.
Value
An object of class ’summary.hmm’
Author(s)
Jared O’Connell jaredoconnell@gmail.com
summary.hsmm 33
Description
Returns a summary object for a hsmm object
Usage
## S3 method for class 'hsmm'
summary(object, ...)
Arguments
object An object of type hsmm
... further arguments passed to or from other methods.
Author(s)
Jared O’Connell jaredoconnell@gmail.com
Index
∗ datasets reprocows, 23
reproai, 23 reproppa, 24
reprocows, 23 rmvnorm.hsmm, 4, 13, 25
reproppa, 24 rnorm.hsmm, 26
∗ models rpois.hsmm, 6, 15, 27
smooth.discrete, 31
sim.mc, 28
addStates, 2, 16 simulate.hmmspec, 9, 28
simulate.hsmmspec, 10, 12, 30
createTransition (smooth.discrete), 31 smooth.discrete, 31
summary.hmm, 32
dmvnorm.hsmm, 3, 13, 25 summary.hsmm, 33
dnorm.hsmm, 4 summary.smoothDiscrete
dpois.hsmm, 5, 15, 27 (smooth.discrete), 31
gammafit, 6
hmmfit, 7, 9, 32
hmmspec, 8, 29, 32
hsmmfit, 9, 12, 20, 31
hsmmspec, 10, 11, 21, 31
mstep.mvnorm, 4, 12, 25
mstep.norm, 13
mstep.pois, 6, 14, 27
plot.hsmm, 15
plot.hsmm.data, 16
predict.hmm, 7, 9, 16
predict.hmmspec, 18
predict.hsmm, 10, 12, 19, 21, 31
predict.hsmmspec, 20, 20
predict.smoothDiscrete
(smooth.discrete), 31
print.hmm, 21
print.hmmspec, 22
print.hsmmspec, 22
print.smoothDiscrete (smooth.discrete),
31
reproai, 23
34