Prop Mod 3
Prop Mod 3
Dr. D. D. Ebenezer
1 13 Aug 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024
Dr. DD Ebenezer 1
13-08-2024
Dr. D. D. Ebenezer
3 Module 3
Today
• 3.1 Design Cycle for Propellers
• 3.2 Propeller families and series
Jul-Dec
2024
Dr. D. D. Ebenezer
4 Carlton
A design is a solution to a
constrained optimisation problem
Jul-Dec
2024
Dr. DD Ebenezer 2
13-08-2024
Dr. D. D. Ebenezer
5 Carlton. Chap 22. Propeller Design.
• The finished propeller depends for its success on the satisfactory integration of
several scientific disciplines: these are hydrodynamics, stress analysis, metallurgy
and manufacturing technology, with supportive inputs from mathematics, dynamics
and thermodynamics.
• It may not be possible to find a single unique solution for a particular propulsion
problem
• Propeller design and manufacture commences with the definition of the problem
and this implies that a sufficient and unambiguous specification for the propulsion
problem has been produced. This design specification must include the complete
definition of the inputs and required outputs, including any permissible deviations
from these definitions, as well as any constraints that may be placed on the design.
• The design loop (see Fig. 22.1 and 22.2 in Carlton) must be flexible enough should an
unresolvable conflict arise with the original definition of the design problem, to
allow for an appeal to be made to change the definition of the design problem.
Jul-Dec
2024
Dr. D. D. Ebenezer
6 3.1 Propeller Design
• Carlton
• Design Constraints – more than one. Eg. Limits on the max dia of prop,
efficiency, and radiated noise
• Design involves constrained optimization
Jul-Dec
2024
Dr. DD Ebenezer 3
13-08-2024
Dr. D. D. Ebenezer
7 3.1 Propeller Design
• Energy Efficiency Design Index (EEDI)
• CO2 production
Jul-Dec
2024
Dr. D. D. Ebenezer
8 USA Transportation 29%. World Shipping 3-4%
• The primary sources of greenhouse gas
emissions by economic sector in the
United States are:
• Transportation (29% of 2021 greenhouse
gas emissions) – The transportation sector
generates the largest share of greenhouse
gas emissions. Greenhouse gas emissions
from transportation primarily come from
burning fossil fuel for our cars, trucks,
ships, trains, and planes. Over 94% of the
fuel used for transportation is petroleum
based, which includes primarily gasoline
and diesel.
Jul-Dec
2024
Dr. DD Ebenezer 4
13-08-2024
Dr. D. D. Ebenezer
9
• Self-Study
• Hotel load is the amount of power
a ship needs to support its
everyday operations and keep it a
livable space. It's the electrical
load caused by all systems on a
ship other than propulsion, such
as lighting, air conditioning, and
galleys. Hotel load is independent
of the ship's forward speed.
Jul-Dec
2024
Dr. D. D. Ebenezer
10 EEDI
• Self-Study
Jul-Dec
2024
Dr. DD Ebenezer 5
13-08-2024
Dr. D. D. Ebenezer
11
• Methods to decrease
the Actual EEDI and
meet the
requirement
Jul-Dec
2024
Dr. D. D. Ebenezer
12 Propeller Type
• Efficiencies of various
types of propellers – see
L11S26.
Jul-Dec
2024
Dr. DD Ebenezer 6
13-08-2024
Dr. D. D. Ebenezer
13 Factors affecting choice of Propulsor
• Carlton
• Types of Propellers
• Fixed Pitch Prop
• Controllable Pitch Prop
• Ducted Prop
• Azimuth Prop
• Contra-rotating Prop
• Cycloidal Prop
Jul-Dec
2024
Dr. D. D. Ebenezer
14 Prop Design Basis
Jul-Dec
2024
Dr. DD Ebenezer 7
13-08-2024
Dr. D. D. Ebenezer
15 Mission Profile
• The mission profile (next slide) shows that a “single design point” approach
may not be enough
• Design = choosing diameter, pitch distribution, blade area, section forms …
Jul-Dec
2024
Dr. D. D. Ebenezer
16 Ship mission profiles
• Percentage of time in which the ship travels
at each speed
• MCR = Maximum Continuous Rating. It is the
maximum power output the engine can
produce while running continuously (one
year average) at safe limits and conditions. It
is specified on the engine nameplate and in
the Technical File of the marine diesel engine.
• The 90% MCR is usually the contractual
output for which the propeller is designed.
• Ships usually operate at the nominal
continuous rating (NCR) which is 85% of
90% of the MCR. Thus, the usual output at
which ships are operated is around 75% to
Jul-Dec 77% of MCR. (0.85*0.9 = 0.765)
2024
Dr. DD Ebenezer 8
13-08-2024
Dr. D. D. Ebenezer
17 Propeller Design Design basis =
power absorbed
by prop, prop rpm,
• Carlton. Fig. 22.22. ship speed
1of2
• Example of a simplified
design procedure
No
Jul-Dec Yes
2024
Dr. D. D. Ebenezer
18 Propeller Design
• Carlton. Fig. 22.22.
2of2
• Example of a No
simplified design
Yes
procedure
Jul-Dec
2024
Dr. DD Ebenezer 9
13-08-2024
Dr. D. D. Ebenezer
19
Jul-Dec
2024
Dr. DD Ebenezer 10
23-08-2024
Dr. D. D. Ebenezer
1 23 Aug 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024
Dr. DD Ebenezer 1
23-08-2024
Dr. D. D. Ebenezer
3 Module 3
Earlier
• 3.1 Design Cycle for Propellers
Today
• 3.2 Propeller families and series
• 3.3a Design using 𝐵 − δ charts
Later
• 3.3b Design using 𝐵 − δ charts. Numerical Example.
• 3.4 Cavitation Limit
Jul-Dec
2024
Dr. D. D. Ebenezer
4
Jul-Dec
2024
Dr. DD Ebenezer 2
23-08-2024
Dr. D. D. Ebenezer
5
• Carlton
Jul-Dec
2024
Dr. D. D. Ebenezer
6
Formats for (Series) Prop Data
• Molland Chap 12.1.2 and 12.1.3. Formats with various dependent and
independent variables.
Jul-Dec
2024
Dr. DD Ebenezer 3
23-08-2024
Dr. D. D. Ebenezer
7 Prop Power Coefficient
• Carlton
• Prop Power Coefficient, 𝐵
• Prop Power Coefficient 𝐶
• 𝐵 =𝐶
• In many charts, 𝑃 has units
of hp and N is in rpm
• For 𝑃 see Carlton 22.6.1
• Power = force*velocity = kg (m/s2) (m/s)
• Some 𝐵 − 𝛿 charts show 1 imperial hp = 76 kg m/s. It
should be 76.07 kgf m/s or 745.7 watts. 1 metric hp =
Jul-Dec 735.5 watts.
2024
Dr. D. D. Ebenezer
8 Wageningen B4.40 propeller. Z = 4. BAR = 0.40
Molland
Fig.
16.5.
𝐵 and δ
are
P/D
dimen-
sional
Jul-Dec
2024
Dr. DD Ebenezer 4
23-08-2024
Dr. D. D. Ebenezer
9 𝐵 − δ chart
• In the 𝐵 − δ chart, 𝐵 is on the x axis and 𝑃/𝐷 is on the y axis.
• Constant δ and constant efficiency, 𝜂, (contour) lines are shown.
• 𝐵 is often an input for the prop design
• Use 𝐵 and find the δ and 𝑃/𝐷 at the maximum efficiency
• A dashed line runs through the max efficiency points. Its equation is known.
Jul-Dec
2024
Dr. D. D. Ebenezer
Principal Standard Series
• Carlton. Charts and equations are based on experiments. B series is the most widely used one.
Jul-Dec
2024
Dr. DD Ebenezer 5
23-08-2024
Dr. D. D. Ebenezer
11
Typical
optimum
prop
efficiencies
Jul-Dec
2024
Dr. D. D. Ebenezer
12 Standard Series Propellers
Jul-Dec
2024
Dr. DD Ebenezer 6
23-08-2024
Dr. D. D. Ebenezer
13 Standard Series Propellers
• Molland
Jul-Dec
2024
Dr. D. D. Ebenezer
14 Standard Series Propellers. Wageningen
Jul-Dec
2024
Dr. DD Ebenezer 7
23-08-2024
Dr. D. D. Ebenezer
15 Standard Series Propellers. Japanese AU Series.
Jul-Dec
2024
Dr. D. D. Ebenezer
16 Gawn
• Data presented by Gawn
Jul-Dec
2024
Dr. DD Ebenezer 8
23-08-2024
Dr. D. D. Ebenezer
17 Standard Series Propellers. Gawn
• The Blade Example of a non-filleted pole (left)
and a filleted pole (right)
Area Ratio,
BAR, can
be greater
than one.
Explain.
• Note the
radii of the
fillets (in
inches)
Jul-Dec
2024
Dr. D. D. Ebenezer
18 Gawn
Jul-Dec
2024
Dr. DD Ebenezer 9
23-08-2024
Dr. D. D. Ebenezer
19 KCA Gawn-Burrill Series
• Tested at various
cavitation
numbers
Jul-Dec
2024
Dr. D. D. Ebenezer
20 KCA Gawn-Burrill Series
Jul-Dec
2024
Dr. DD Ebenezer 10
23-08-2024
Dr. D. D. Ebenezer
21 CPP and Ducted Propellers
• Images on the next slide
Jul-Dec
2024
Dr. D. D. Ebenezer
22 Controllable Pitch Propeller
• https://global.kawasaki.com/en/mobility/marine/machinery/propeller.html
• Mechanisms inside the boss make it possible to change the pitch by rotating the blade about
an axis
• The blades are bolted to the hub
Jul-Dec
2024
Dr. DD Ebenezer 11
23-08-2024
Dr. D. D. Ebenezer
23 Ducted Propellers
Jul-Dec
2024
Dr. D. D. Ebenezer
24
Jul-Dec
2024
Dr. DD Ebenezer 12
23-08-2024
Dr. D. D. Ebenezer
25 Pumpjet Propulsor
• L. Lu et al. Numerical investigations of tip clearance flow characteristics of a
pumpjet propulsor, IJNAOE, 2018.
Jul-Dec
2024
Dr. D. D. Ebenezer
26
• Sub with
pumpjet
propulsion
Jul-Dec
2024
Dr. DD Ebenezer 13
23-08-2024
Dr. D. D. Ebenezer
27 Pumpjet Propulsors
• https://www.shapeways.com/product/6ZFNQFA3G/1-144-pump-jet-
seawolf-submarine-propeller
3D views of a pumpjet propulsor.
Jul-Dec
2024
Dr. D. D. Ebenezer
28 AUV Propeller
Jul-Dec
2024
Dr. DD Ebenezer 14
23-08-2024
Dr. D. D. Ebenezer
29 AUV
• Figure 1. Portable AUV construction. 1: Propeller, 2: communication sonar, 3:
Global Positioning System (GPS), 4: wireless antenna, 5: strobe light, 6: rings
for the crane, 7: vertical rudder, 8: horizontal wing, 9: Doppler Velocity Log
and inertial navigation system, 10: bathymetric side scan sonar and 11: CCD.
Jul-Dec
2024
Dr. D. D. Ebenezer
30
Jul-Dec
2024
Dr. DD Ebenezer 15
23-08-2024
Dr. D. D. Ebenezer
31
Jul-Dec
2024
Dr. D. D. Ebenezer
Symbols
32
• 𝐾 = Thrust Coefficient = 𝑇 / (𝜚𝑛 𝐷 ) • QPC = 𝑃 / 𝑃
Dr. DD Ebenezer 16
23-08-2024
Dr. D. D. Ebenezer
33 Inputs for Prop Design aka Prop Design Basis
• aka = also known as
• The inputs usually used for the design are 1) the power absorbed = power
delivered to the prop or the resistance of the ship 2) ship speed 3) shaft rps
Jul-Dec
2024
Dr. D. D. Ebenezer
34 Propeller Design
• What is propeller design?
• It is the design or selection of all the details of the propeller that is optimum
(max efficiency) or best subject to the constraints. Design begins with inputs
and constraints and ends with design drawings based on which manufacturing
drawings can be prepared.
• What are the required inputs?
• Essential: 1) The speed of the ship 2) the resistance of the ship or the power delivered to the
prop
• The shaft rpm (see the prev slide) is often an input
• Additional: Desirable or undesirable frequencies, Thrust deduction, Velocity in the plane of
the prop, or the wake fraction,
Dr. DD Ebenezer 17
23-08-2024
Dr. D. D. Ebenezer
35 Steps in the Design of a Prop. See worked example.
1. Choose a type of prop. Eg. B Series.
2. Choose the number of blades. Eg. Z = 4
3. Choose a Blade Area Ratio. Eg. 0.40
. .
4. Use the inputs [𝑃 , 𝑁, 𝑉 = (1 − 𝑤 )𝑉 ] to find 𝐵 = 𝑁𝑃 /𝑉 . 𝑃 in hp, 𝑁 in
rpm, 𝑉 in knots.
5. Find the optimum efficiency by using a 𝐵 − δ chart or Eq. 22.2 in Carlton.
6. Find the corresponding 𝑃/𝐷 and δ = 𝑁𝐷/𝑉 . Use δ to find the dia, 𝐷.
7. Repeat for various Blade Area Ratios
8. Repeat for various number of blades
9. Repeat for various Series
Jul-Dec
2024
10. Find the ‘best’ propeller with the max efficiency
Dr. D. D. Ebenezer
36 Carlton
• 22.6.1 Determination of dia
• 22.6.2 Determination of P/D
• 22.6.3 Determination of open
water efficiency
Jul-Dec
2024
Dr. DD Ebenezer 18
23-08-2024
Dr. D. D. Ebenezer
37 Wageningen B4.40 propeller. Z = 4. BAR = 0.40
Molland
Fig.
16.5.
𝐵 and δ
are
dimen-
sional
Jul-Dec
2024
Dr. D. D. Ebenezer
38 Carlton
• See IntTest02.m
• Fig. 22.11 is shown later
Jul-Dec
2024
Dr. DD Ebenezer 19
23-08-2024
Dr. D. D. Ebenezer
39 Carlton
Jul-Dec
2024
Dr. D. D. Ebenezer
40
Jul-Dec
2024
Dr. DD Ebenezer 20
23-08-2024
Dr. D. D. Ebenezer
41 Design Considerations. Read Carlton Sec. 22.7
1. Direction of Rotation
2. Blade Number
3. Diameter, Pitch-Diameter Ratio and Rotational Speed
4. Blade Area Ratio
5. Section Form
6. Cavitation
7. Skew
8. Hub Form
9. Shaft Inclination
10. Duct Form
11. The Balance Between Propulsion Efficiency and Cavitation Effects
12. Propeller Tip Considerations
13. Propellers Operating in Partial Hull Tunnels
14. Composite Propeller Blades
Jul-Dec
2024
Dr. D. D. Ebenezer
42 Direction of Rotation
Jul-Dec
2024
Dr. DD Ebenezer 21
23-08-2024
Dr. D. D. Ebenezer
43 Carlton. Chap 22.
Jul-Dec
2024
Dr. D. D. Ebenezer
44
Jul-Dec
2024
Dr. DD Ebenezer 22
23-08-2024
Dr. D. D. Ebenezer
45
Jul-Dec
2024
Dr. D. D. Ebenezer
46 Carlton. Chap 22.
Jul-Dec
2024
Dr. DD Ebenezer 23
23-08-2024
Dr. D. D. Ebenezer
47 Carlton. Chap 22.
Jul-Dec
2024
Dr. D. D. Ebenezer
48 Carlton. Chap 22.
Jul-Dec
2024
Dr. DD Ebenezer 24
23-08-2024
Dr. D. D. Ebenezer
49 Carlton. Chap 22.
Jul-Dec
2024
Dr. DD Ebenezer 25
02-09-2024
Dr. D. D. Ebenezer
1 02 Sep 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024
Dr. DD Ebenezer 1
02-09-2024
Dr. D. D. Ebenezer
3 Module 3
Earlier
• 3.1 Design Cycle for Propellers
• 3.2 Propeller families and series
• 3.3a Design using 𝐵 − δ charts
Today
• 3.3b Design using 𝐵 − δ charts. Numerical Example.
• 3.4a Cavitation Limit
Jul-Dec
2024
Dr. D. D. Ebenezer
4
Jul-Dec
2024
Dr. DD Ebenezer 2
02-09-2024
Dr. D. D. Ebenezer
5 Molland. Numerical Example.
• Design using a 𝐵 − δ chart
Jul-Dec
2024
Dr. D. D. Ebenezer
6
• If the optimum diameter is less than the allowed
diameter, use the opt dia. Otherwise, use the
Jul-Dec
2024
Dr. DD Ebenezer 3
02-09-2024
Dr. D. D. Ebenezer
7 Wageningen B4.40 propeller. Z = 4. BAR = 0.40
Molland
Fig. 16.5.
𝐵 and δ
are
dimen-
sional
P/D
Jul-Dec
2024
Dr. D. D. Ebenezer
8 Wageningen B Series
• For the Wageningen B Series propeller, charts are available for only the
combinations of Z and BAR shown in Carlton Table 6.4
Jul-Dec
2024
Dr. DD Ebenezer 4
02-09-2024
Dr. D. D. Ebenezer
9 Optimal B Series Propeller
• Choose many values of Z. Say Z = 3, 4, 5,
• For each value of Z, use the charts for many values of BAR= 𝐴 /𝐴 . Choose the values of BAR from
Carlton Table 6.4. For each combination of Z and BAR, there is a separate chart.
• Find the maximum efficiency for each propeller from the chart and fill the table below
• If the diameter corresponding to the max efficiency is greater than the allowed diameter, find the
efficiency for the specified values of 𝐷, 𝐵 and δ and enter it in the table below.
• Find the Z and BAR for the highest efficiency in the table
Wageningen B Series
BAR = 𝐴 /𝐴 0.35 0.50 0.65
Z=3
𝜂
BAR 0.40 0.55 0.70
Z=4
𝜂
BAR 0.45 0.6 0.75
Z=5
Jul-Dec 𝜂
2024
Dr. D. D. Ebenezer
10
• From the inset in Fig. 22.11a, note that as the BAR =
𝐴 /𝐴 increases, the optimum diameter decreases
• From the inset in Fig. 22.11b, note that as the BAR
increases, the optimum P/D is nearly constant and the
optimum efficiency reduces
BAR = 𝐴 /𝐴
Jul-Dec
2024
Dr. DD Ebenezer 5
02-09-2024
Dr. D. D. Ebenezer
11
Dr. D. D. Ebenezer
12 Carlton. 3rd Ed. P 82.
• 𝐵 − δ chart
cannot be used
when the 𝑉
tends to zero.
For tugs and
trawlers, 𝑉 is
very low.
• Max 𝐵 is 80
in the B4.40
chart. Min 𝐵
is about 2. The
scale is non-
Jul-Dec
linear.
2024
Dr. DD Ebenezer 6
02-09-2024
Dr. D. D. Ebenezer
13
G&G. Cavitation at a
blade section
Jul-Dec
2024
Dr. D. D. Ebenezer
14
Jul-Dec
2024
Dr. DD Ebenezer 7
02-09-2024
Dr. D. D. Ebenezer
3.4 Cavitation Limit
15 Ghose and Gokarn
• Cavitation occurs when the pressure drops below the vapour pressure.
• The answer in G&G is correct. See the next slide for the explanation and details.
Jul-Dec
2024
Dr. D. D. Ebenezer
16 Explanation for Example 1 in G&G. See L14S13&14
• Cavitation occurs on a blade section when the relative velocity is 32 m/s. This velocity is
based on only the velocity of advance and the rotational speed. When the water flows over a
blade section at radius 𝑟, it accelerates, the velocity increases to a certain value and the
pressure drops to the vapour pressure. Find the location on the blade where the pressure
equals the vapour pressure to find where cavitation occurs.
• When 𝑉 + 2𝜋𝑛𝑟 = 𝑉 = 32 cavitation occurs
• Bernoulli’s theorem: 𝑝 + 0.5𝜌𝑉 = 𝑝 + 𝜌𝑔ℎ + 0.5𝜌𝑉 = 141.546e3 + 0.5𝜌32 = K =
Constant
• 𝐾 = 141.546e3 + 0.5 ∗ 1025 ∗ 32 = 666.346e3
• When cavitation begins, 𝑝 + 0.5𝜌𝑉 = K and 𝑝 = 𝑝 = 1.704e3.
• Therefore, 0.5𝜌𝑉 = K − 1.704𝑒3 = 666.346e3 − 1.704e3 = 664.642e3
Dr. DD Ebenezer 8
02-09-2024
Dr. D. D. Ebenezer
17 Cavitation Number. Various Definitions.
Jul-Dec
2024
Dr. D. D. Ebenezer
18
Jul-Dec
2024
Dr. DD Ebenezer 9
02-09-2024
Dr. D. D. Ebenezer
19
Cavitation Number.
Values based on
Various Definitions.
Jul-Dec
2024
Dr. D. D. Ebenezer
20
Jul-Dec
2024
Dr. DD Ebenezer 10
02-09-2024
Dr. D. D. Ebenezer
21
Jul-Dec
2024
Dr. DD Ebenezer 11
03-09-2024
Dr. D. D. Ebenezer
1 03 Sep 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024
Dr. DD Ebenezer 1
03-09-2024
Dr. D. D. Ebenezer
3 Module 3
Earlier
• 3.1 Design Cycle for Propellers
• 3.2 Propeller families and series
• 3.3a Design using 𝐵 − δ charts
• 3.3b Design using 𝐵 − δ charts. Numerical Example.
• 3.4a Cavitation Limit
Today
• 3.4b Cavitation Limit Charts
Jul-Dec
2024
Dr. D. D. Ebenezer
4 Pressure Distribution L10S06
• 𝑃 = free-stream static pressure = Reference pressure
• Positive angle of attack . High stagnation pressure near the nose.
• High (positive) pressure at the face. Local pressure > 𝑃 .
• Low (negative) pressure at the back. Local pressure < 𝑃 .
• Excess pressure = Pressure – Ref Pressure is shown. Far away
from the airfoil, the excess pressure is zero and the pressure is
equal to the reference pressure.
• Negative pressure means that the pressure is less than the
reference pressure
Dr. DD Ebenezer 2
03-09-2024
Dr. D. D. Ebenezer
L14S16
5 Explanation for Example 1 in G&G.
• Cavitation occurs on a blade section when the relative velocity is 32 m/s. This velocity is
based on only the velocity of advance and the rotational speed. When the water flows over a
blade section at radius 𝑟, it accelerates, the velocity increases to a certain value and the
pressure drops to the vapour pressure. Find the location on the blade where the pressure
equals the vapour pressure to find where cavitation occurs.
• When 𝑉 + 2𝜋𝑛𝑟 = 𝑉 = 32 cavitation occurs
• Bernoulli’s theorem: 𝑝 + 0.5𝜌𝑉 = 𝑝 + 𝜌𝑔ℎ + 0.5𝜌𝑉 = 141.546e3 + 0.5𝜌32 = K =
Constant
• 𝐾 = 141.546e3 + 0.5 ∗ 1025 ∗ 32 = 666.346e3
• When cavitation begins, 𝑝 + 0.5𝜌𝑉 = K and 𝑝 = 𝑝 = 1.704e3.
• Therefore, 0.5𝜌𝑉 = K − 1.704𝑒3 = 666.346e3 − 1.704e3 = 664.642e3
Dr. D. D. Ebenezer
6 • Historical
Cavitation Criteria
Criteria for no
Cavitation
• Thrust/𝐴 < 78
• 𝑣 = 𝜔𝑅 < 61 m/s
• Burrill (1943)
Criterion
• Keller (1966)
Criterion
• When several
criteria are in use,
check all of them
Jul-Dec
2024
Dr. DD Ebenezer 3
03-09-2024
Dr. D. D. Ebenezer
7 G&G. Burrill’s Cavitation Diagram
• G&G
When the cavitation number increases the upper limit for the
thrust loading coefficient increases
Jul-Dec
2024
Dr. D. D. Ebenezer
8 Carlton Burrill’s Cavitation Diagram
• This figure is from Carlton and has more
details than the fig in G&G
Jul-Dec
2024
Dr. DD Ebenezer 4
03-09-2024
Dr. D. D. Ebenezer
9
𝜏 is based on 𝐴 . But
BAR = 𝐴 /𝐴 ≅ 𝐴 /𝐴
Jul-Dec
2024
Dr. D. D. Ebenezer
10
• Curve-fit
equations for
Burrill’s diagram
Jul-Dec
2024
Dr. DD Ebenezer 5
03-09-2024
Dr. D. D. Ebenezer
11 2.9 Prevention of Cavitation
Jul-Dec
2024
Dr. D. D. Ebenezer
12 Cavitation Bucket
Jul-Dec
2024
Dr. DD Ebenezer 6
03-09-2024
Dr. D. D. Ebenezer
13 𝑃 −𝑃
𝐶 =
0.5𝜌𝑉
𝑃 −𝑃 ∆𝑝
= = <0
0.5𝜌𝑉 𝑞
• 𝑡/𝐶 is max
thickness / Chord
Length
• When 𝑡/𝐶 is
small, the angle
of attack in the
non-cavitating
region is small
but a lower value
of −𝐶 is
allowed
Note the minus sign in −𝐶 and in L14S14
Eqs. (6.3) and (6.4)
Jul-Dec
2024
Dr. D. D. Ebenezer
14
Burrill. See
the next slide
for details
• Note that Z
is not
mentioned
in the
analysis
Jul-Dec
2024
Dr. DD Ebenezer 7
03-09-2024
Dr. D. D. Ebenezer
15 Design using Burrill’s Cavitation Criterion
2. Use 𝜎 . and the Burrill chart or Eq. (6.14) to find the max thrust loading coeff 𝜏
3. Use the expression for 𝜏 in Eq. (6.10) to find the projected area 𝐴
4. Use 𝐴 and Eq. (6.11) to find the developed area 𝐴 ≅ expanded area 𝐴
5. Calculate the expanded blade area ratio 𝐴 /𝐴 = 𝐴 / 𝜋𝐷 /4
Jul-Dec
2024
Dr. D. D. Ebenezer
16
Jul-Dec
2024
Dr. DD Ebenezer 8
03-09-2024
Dr. D. D. Ebenezer
17 Twin Screw. Design using Keller’s Cavitation Criterion.
Dr. D. D. Ebenezer
18 Twin Screw. Design using Keller’s Cavitation Criterion.
Two propellers
Z = number of blades
Jul-Dec
2024
Dr. DD Ebenezer 9
03-09-2024
Dr. D. D. Ebenezer
19
Dr. D. D. Ebenezer
20 Angle of Attack and Cavitation
Jul-Dec
2024
Dr. DD Ebenezer 10
03-09-2024
Dr. D. D. Ebenezer
21
Jul-Dec
2024
Dr. D. D. Ebenezer
22
• See L15S21 for definition
of angles
Jul-Dec
2024
Dr. DD Ebenezer 11
03-09-2024
Dr. D. D. Ebenezer
23
Jul-Dec
2024
Dr. D. D. Ebenezer
24 Angle of Attack and Cavitation
Jul-Dec
2024
Dr. DD Ebenezer 12
03-09-2024
Dr. D. D. Ebenezer
25
Jul-Dec
2024
Dr. DD Ebenezer 13
09-09-2024
Dr. D. D. Ebenezer
1 Dr. D. D. Ebenezer 09 Sep 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
09/09/2024
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. DD Ebenezer 1
09-09-2024
Dr. D. D. Ebenezer
3 Module 3
Earlier
• 3.1 Design Cycle for Propellers
• 3.2 Propeller families and series
• 3.3 Design using 𝐵 − δ charts
• 3.4 Cavitation Limit
Today
• 3.5 Design using 𝐾 and 𝐾 charts. Part I
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
4
Molland. Ship Resistance and Propulsion. Chap. 16. Propulsor Design Data
Carlton. Marine Propellers and Propulsion. Chap. 6.5 Standard Series Data
Jul-Dec
2024
Dr. D. D. Ebenezer 09/09/2024
Dr. DD Ebenezer 2
09-09-2024
Dr. D. D. Ebenezer
5
1. Use the resistance, 𝑅,
and the speed of the
ship, 𝑉 .
• Molland
2. Find the required thrust,
• Before choosing
𝑇 = 𝑅/(1 − 𝑡), and the
the number of velocity of advance,
blades, choose the 𝑉 = 𝑉 (1 − 𝑤 ). These
Series. are the inputs for design.
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
6 Prop Design. Molland.
• For fixed 𝐷 and BAR,
• Molland: search in 2D space 𝑃/𝐷 , 𝑛 for the optimum prop
• Ebenezer: search in 2D space 𝑃/𝐷 , 𝐽 which is equivalent to 𝑃/𝐷 , 𝑛 as 𝑉 and 𝐷
are known.
Thrust = 486 kN
Dia = 5 m
Table 16.2 is on the next slide
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. DD Ebenezer 3
09-09-2024
Dr. D. D. Ebenezer
7 Design Approach 1. Molland
1. Assume 𝐷 after considering constraints.
2. Choose 3 reasonable values of 𝑛. See Table 16.2. Ebenezer: Don’t do what
Molland has done! Choose 𝑛 such that 𝐽 is 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, etc.
3. For 𝐷, 𝑛 , (𝐷, 𝑛 ), (𝐷, 𝑛 )
1. Calculate 𝐽 and 𝐾 for each set
2. From the chart, find 𝑃/𝐷 and 𝜂 for 𝑖 = 1, 2, 3
3. Draw a plot of 𝑛 vs 𝜂 . Interpolate and find the 𝑛 at which 𝜂 is max
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
8 Molland Method – 3 interpolations
1. Choose a rps, 𝑛.
2. Calculate 𝐾 and 𝐽. Place a dot on the chart at (𝐽, 𝐾 )
3. Find the only (𝑃/𝐷)∗ at which the required 𝐾 and 𝐽 are met. This
involves finding a 𝐾 line that passes through your dot. See next 4 slides.
Interpolate 𝐾 (𝑃/𝐷) at a fixed 𝐽 to find (𝑃/𝐷). This (𝑃/𝐷) and the other
5 elements of the 6D space define a propeller that will deliver the 𝑇 at 𝑉 .
4. Find the 𝜂 of this prop. This involves the second interpolation as 𝑃/𝐷
found in the previous step will not be in the chart. See the next 4 slides.
5. Vary the rps, 𝑛. Interpolate the values of 𝜂 (𝑛) to find the 𝑛 at which the
𝜂 is max. This is the third interpolation. Then find the optimum 𝑛.
6. To make the interpolation easier, digital 𝐾 − 𝐽 can be used.
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. DD Ebenezer 4
09-09-2024
Dr. D. D. Ebenezer
9 Wageningen B4.40 Propeller
𝐾 Solid line
10𝐾 Dashed line
𝑱 = 0.627
𝜂 Solid line with a max (inverted U)
𝜂 = 0.57
,η
𝐾 = 0.263
Jul-Dec
2024 𝑱 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
10
𝑱 = 0.627
𝜂 = 0.570
𝐾 =
0.263
Jul-Dec
2024 P/D values are in parenthesis. Magenta (0.9), Cyan (1), Black (1.1), Red (1.2), Blue (1.3), Green (1.4)
Dr. D. D. Ebenezer
Dr. DD Ebenezer 5
09-09-2024
Dr. D. D. Ebenezer
11
𝑱 = 0.561
𝜂 = 0.582
𝐾 =
0.210
Jul-Dec
2024 P/D values are in parenthesis. Magenta (0.9), Cyan (1), Black (1.1), Red (1.2), Blue (1.3), Green (1.4)
Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
12
𝑱 = 0.508
𝜂 = 0.575
𝐾 =
0.172
Jul-Dec
2024 P/D values are in parenthesis. Magenta (0.9), Cyan (1), Black (1.1), Red (1.2), Blue (1.3), Green (1.4)
Dr. D. D. Ebenezer
Dr. DD Ebenezer 6
09-09-2024
Dr. D. D. Ebenezer
13 Interpolated Results
• Data from Molland Table 16.2 is plotted on this slide
• A 2nd order polynomial that fits the 𝐽 − 𝜂 data is found using Matlab. See
the figure. The max efficiency is 0.582 and the optimum 𝐽 is 0.559. The
Molland says that the max efficiency is 0.583 and the opt 𝐽 is 0.548 but does
not state if the 𝐽 − 𝜂 data was used. 𝑛 − 𝜂 data will yield a different
optimum 𝐽.
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
14
Jul-Dec
2024
Dr. D. D. Ebenezer 09/09/2024
Dr. DD Ebenezer 7
09-09-2024
Dr. D. D. Ebenezer
15
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
16
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. DD Ebenezer 8
09-09-2024
Dr. D. D. Ebenezer
17
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. D. D. Ebenezer
18
Jul-Dec
2024 Dr. D. D. Ebenezer
Dr. DD Ebenezer 9
10-09-2024
Dr. D. D. Ebenezer
1 10 Sep 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024
Dr. DD Ebenezer 1
10-09-2024
Dr. D. D. Ebenezer
3 Module 3
Earlier
• 3.1 Design Cycle for Propellers
• 3.2 Propeller families and series
• 3.3 Design using 𝐵 − δ charts
• 3.4 Cavitation Limit
• 3.5 Design using 𝐾 and 𝐾 charts. Part I
Today
• 3.6 Design using 𝐾 and 𝐾 charts. Part II
• 3.7 Types and advantages of propulsion plants
Jul-Dec
2024
Dr. D. D. Ebenezer
4
3.6 Design using 𝐾 and 𝐾 charts. Part II.
𝐾 = 𝒦𝐽 Method.
Jul-Dec
2024
Dr. DD Ebenezer 2
10-09-2024
Dr. D. D. Ebenezer
3.6 Propeller Design. 𝐾 = 𝒦𝐽 Method.
5 • The inputs to prop design are 𝑇 and 𝑉
• The outputs of prop design are
1. Series. B Series is the most widely used one.
2. Number of blades, Z.
3. EAR
4. Diameter, 𝐷
5. rps, 𝑛
6. 𝑃(𝑟)/𝐷
• In general, search in a 6 dimensional space for the best prop with max 𝜂 .
• After the Series, Z, EAR, and 𝐷 are chosen, search in 2D space.
• The Molland and the 𝐾 = 𝒦𝐽 (MIT) methods for searching in 2D space are
Jul-Dec compared in the following slides
2024
Dr. D. D. Ebenezer
6
https://ocw.mit.edu/courses/mechanical-engineering/2-611-marine-power-and-propulsion-fall-
2006/
Jul-Dec
2024
Dr. DD Ebenezer 3
10-09-2024
Dr. D. D. Ebenezer
𝐾 = 𝒦𝐽 Method using 1 interpolation
7
1. Given 𝑇 and 𝑉 , find the Series to be used, Z, EAR, and 𝐷, 𝑛, and 𝑃/𝐷 for optimum open water
efficiency. Note that the values of 6 parameters are to be chosen.
2. Eliminate 𝑛 and create a new parameter. As 𝐾 is inversely proportional to 𝑛 and 𝐽 is inversely
/ (𝜌 )
proportional to 𝑛, use =
/( )
= = 𝒦 which is independent of 𝑛. Find the value of
𝒦 by using the known values of 𝑇 and 𝑉 and assumed value of 𝐷.
3. In a 𝐾 − 𝐽 chart (𝐾 on the y axis and 𝐽 on the x axis), draw 𝒦𝐽 − 𝐽 also. See the next slide.
4. Choose a 𝑃/𝐷 which is on the chart. 𝑃/𝐷 = 0.5, 0.6, … or 1.4
5. For this 𝑃/𝐷, at the point of intersection of the 𝐾 − 𝐽 (red) and the 𝒦𝐽 − 𝐽 (purple) lines on the
next slide, the thrust provided by the propeller is equal to the thrust necessary to obtain 𝑉 .
6. Find 𝐽 at the intersection point. A prop with this 𝑃/𝐷 and 𝐽 delivers 𝑇at 𝑉 .
7. Find 𝜂 at that 𝐽.
8. Repeat for other values of 𝑃/𝐷. For each 𝑃/𝐷 the corresponding 𝐽 will be different. However, each
delivers 𝑇at 𝑉 at a specific 𝑛.
9. Interpolate the values of 𝜂 vs 𝐽 to find the 𝑃/𝐷 , 𝐽 at which the 𝜂 is max. This yields the
optimum 𝑛. Only one interpolation is involved in this method because 𝑃/𝐷 is the independent
Jul-Dec variable. See the Study Material from MIT.
2024
Dr. D. D. Ebenezer
8 Prop Design using One Interpolation
• This chart is for Z = 5, EAR = 0.75, and 𝑃/𝐷 = 1. 𝒦𝐽 − 𝐽 has been added.
Jul-Dec
2024
Dr. DD Ebenezer 4
10-09-2024
Dr. D. D. Ebenezer
9 Prop Design with 𝑇 and 𝑉 as inputs
Jul-Dec
2024
Dr. D. D. Ebenezer
10
Jul-Dec
2024
Dr. DD Ebenezer 5
10-09-2024
Dr. D. D. Ebenezer
11 Molland and MIT methods
• Both methods will yield the same results
• 𝐾 charts are in 3D with 𝑃/𝐷 and 𝐽 as independent variables. Slices of the
surface at discrete values of 𝑃/𝐷 and continuous values of 𝐽 are shown on 2D
charts. Starting with one of the discrete values of 𝑃/𝐷 (MIT method) and
finding the value of 𝐽 that yields the required 𝐾 is better than starting with a
value of 𝐽 (Molland method) and finding the 𝑃/𝐷.
• The 𝐾 = 𝒦𝐽 (MIT) method is considerably better if graphical charts are
used as only one interpolation is needed
• If digital charts are used, the MIT method is a little more convenient
• Next, … global optimization.
• Learn to use the digital charts for practical prop design
Jul-Dec
2024
Dr. D. D. Ebenezer
12 Prop design. Global optimum.
1. Given 𝑇 and 𝑉_𝑎, find the optimum prop for the chosen Series, Z, EAR, and
𝐷 by using the Molland or MIT methods.
2. Use the same Series, Z, and EAR. Choose a different 𝐷. Find 𝑃/𝐷 and 𝐽.
Repeat for various values of 𝐷. Find the prop with highest value of
𝜂 (𝑃/𝐷, 𝐽, 𝐷).
3. Vary the value of EAR. See the next slide for discrete values of EAR. Find
the prop with the highest value of 𝜂 (𝑃/𝐷, 𝐽, 𝐷, EAR).
4. Vary 𝑍. 𝑍 = 3, 4, 5, … Find the highest value of 𝜂 (𝑃/𝐷, 𝐽, 𝐷, EAR, 𝑍).
5. Vary the Series. B Series, BB Series, Au Series, … Find the highest value of
𝜂 (𝑃/𝐷, 𝐽, 𝐷, EAR, 𝑍, Series).
6. This prop is the global optimum one.
Jul-Dec
2024
Dr. DD Ebenezer 6
10-09-2024
Dr. D. D. Ebenezer
13 B series propellers
• Carlton
• E.g. It is seen from the table that data is available for props with 5 blades and
BAR = 0.45, 0.6, 0.75, and 1.05
Jul-Dec
2024
Dr. D. D. Ebenezer
14 Some useful sites
• https://www.caeses.com/news/2018/wageningen-b-series-online-
propeller-tool-released/
• https://www.simscale.com/blog/2019/06/how-to-optimize-propeller-
design/
• https://www.caeses.com/industries/case-studies/propeller-design-with-
openfoam/
Jul-Dec
2024
Dr. DD Ebenezer 7
10-09-2024
Dr. D. D. Ebenezer
15
Jul-Dec
2024
Dr. D. D. Ebenezer
16 Selection of Marine Propulsion Machinery
• In recent times, the Energy Efficiency Design Index (EEDI) has become a
very important factor in the selection of the engine and propeller.
Jul-Dec
2024
Dr. DD Ebenezer 8
10-09-2024
Dr. D. D. Ebenezer
17 Selection of Engine: main factors
• In passenger vehicles and ships, running cost plus maintenance cost is a
major factor to consider.
Jul-Dec
2024
Dr. D. D. Ebenezer
18 3.7 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. DD Ebenezer 9
10-09-2024
Dr. D. D. Ebenezer
19 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. D. D. Ebenezer
20 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. DD Ebenezer 10
10-09-2024
Dr. D. D. Ebenezer
21 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. D. D. Ebenezer
22 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. DD Ebenezer 11
10-09-2024
Dr. D. D. Ebenezer
23 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. D. D. Ebenezer
24 Types and Advantages of Propulsion Plants
Jul-Dec
2024
Dr. DD Ebenezer 12
10-09-2024
Dr. D. D. Ebenezer
25 Diesel Electric and Gas Turbo Electric Engines
• Electricity is generated by using Diesel Engines or Gas Turbine Engines
• An electric motor is used to drive the propeller
• This is a p
Jul-Dec
2024
Dr. D. D. Ebenezer
26
Jul-Dec
2024
Dr. DD Ebenezer 13
10-09-2024
Dr. D. D. Ebenezer
27 Steam Turbines
• How Does a Steam Turbine Work?
• In simple terms, a steam turbine works by using a heat source
(gas, coal, nuclear, solar) to heat water to extremely high
temperatures until it is converted into steam. As that steam
flows past a turbine’s spinning blades, the steam expands and
cools. The potential energy of the steam is thus turned into
kinetic energy in the rotating turbine’s blades. Because steam
turbines generate rotary motion, they’re particularly suited for
driving electrical generators for electrical power generation.
The turbines are connected to a generator with an axle, which in
turn produces energy via a magnetic field that produces an
electric current.
Jul-Dec
2024
Dr. D. D. Ebenezer
28
Jul-Dec
2024
Dr. DD Ebenezer 14
24-09-2024
Dr. D. D. Ebenezer
1 24 Sep 2024
Dr. D. D. Ebenezer
Adjunct Faculty
9446577239
ebenezer.cusat@gmail.com
Jul-Dec
2024 Only for personal use by CUSAT NA&SB students
Dr. D. D. Ebenezer
2 Course Content
Jul-Dec
2024
Dr. DD Ebenezer 1
24-09-2024
Dr. D. D. Ebenezer
3 Module 3
Earlier
• 3.1 Design Cycle for Propellers
• 3.2 Propeller families and series
• 3.3 Design using 𝐵 − δ charts
• 3.4 Cavitation Limit
• 3.5 Design using 𝐾 and 𝐾 charts. Part I
• 3.6 Design using 𝐾 and 𝐾 charts. Part II
• 3.7 Types and advantages of propulsion plants
Today
• 3.8 Design using 𝐾 and 𝐾 charts Part III
Jul-Dec
• 3.9 Design using Special Charts
2024
Dr. D. D. Ebenezer
4
• Birk. Chap 48.
Dr. DD Ebenezer 2
24-09-2024
Dr. D. D. Ebenezer
5
Jul-Dec
2024
Dr. D. D. Ebenezer
6
Jul-Dec
2024
Dr. DD Ebenezer 3
24-09-2024
Dr. D. D. Ebenezer
7 Service Margin
Jul-Dec
2024
Dr. D. D. Ebenezer
8
Jul-Dec
2024
Dr. DD Ebenezer 4
24-09-2024
Dr. D. D. Ebenezer
9 Engine Margin. Design Constants.
• First, design (or do the analysis) for calm water. Then, consider service
conditions and engine margin.
• See L11S16 regarding MCR = Maximum Continuous Rating and NCR =
Jul-Dec Nominal Continuous Rating
2024
Dr. D. D. Ebenezer
10 Optimum Diameter Selection
• Total cost or lifetime cost is the deciding factor. It includes capital cost,
operation cost, and maintenance cost.
Jul-Dec
2024
Dr. DD Ebenezer 5
24-09-2024
Dr. D. D. Ebenezer
11 Find the Diameter
• 𝑃 , 𝑛, 𝑉 are known. Determine a “design constant” that is independent of the
diameter. Use it to find the best 𝜂 and the associated P/D.
Jul-Dec
2024
Dr. D. D. Ebenezer
• Combine the known quantities in a way that eliminates the yet-to-be-found
12
diameter. 𝐾 /𝐽 depends only the known quantities and is indep of the diameter
Jul-Dec
2024
Dr. DD Ebenezer 6
24-09-2024
Dr. D. D. Ebenezer
13 Task 1
• Example 1. Input data is on the next slide.
Jul-Dec
2024
Dr. D. D. Ebenezer
14 Task 1.
• Do the analysis with 𝑍 = 4 and 𝐴 /𝐴 . Then, repeat for other values of 𝑍 and 𝐴 /𝐴 .
Service thrust is
used in Task 2.
Jul-Dec
2024
Dr. DD Ebenezer 7
24-09-2024
Dr. D. D. Ebenezer
15
Jul-Dec
2024
Dr. D. D. Ebenezer
16
Jul-Dec
2024
Dr. DD Ebenezer 8
24-09-2024
Dr. D. D. Ebenezer
17
• Use 𝐽 =
0.1, 0.15,
0.2, 0.25,
…
• Calculate
10𝐾 . Plot
Eq. (48.8)
on the 𝐾
vs 𝐽 chart.
Jul-Dec
2024
Dr. D. D. Ebenezer
18
The chart has
values of
10𝐾 . So, plot
the curve for
10𝐾 /𝐽 on it.
At the
intersection of
the 10𝐾 and
the 10𝐾 /𝐽
curves, the
prop with a
particular P/D
can provide
the necessary
torque. Find
the 𝜂 and 𝐽.
Jul-Dec
2024
Dr. DD Ebenezer 9
24-09-2024
Dr. D. D. Ebenezer
19
𝑛, 𝑉 are known. See L18S06.
Jul-Dec
2024
Dr. D. D. Ebenezer
20
Jul-Dec
2024
Dr. DD Ebenezer 10
24-09-2024
Dr. D. D. Ebenezer
21 Task 1. Optimum 𝜂 and P/D.
Jul-Dec
2024
Dr. D. D. Ebenezer
22 Optimum 𝑃/𝐷
P/D, there is a small reduction in the efficiency.
The reduction is much more if a lower P/D is
• If the P/Dis a little higher than the optimum
used.
Jul-Dec
2024
Dr. DD Ebenezer 11
24-09-2024
Dr. D. D. Ebenezer
23
Jul-Dec
2024
Dr. D. D. Ebenezer
24 Check for thrust and
cavitation
• This diameter is optimal for only
the open water condition. The
optimum propeller diameter is
2%–5% smaller for the behind
condition. We will come back to
this “mystery” in the following
chapter. Birk Page 576.
• These two checks are very
important
• Find the thrust generated by the
optimum propeller. From
regression eqs. 𝐾 ≅ 0.174.
Thrust (service) =
0.174*1026*(108/60)^2*7.43^4
= 1762 kN which is = 1762 kN in
Eq. 48.10
Jul-Dec
2024
Dr. DD Ebenezer 12
24-09-2024
Dr. D. D. Ebenezer
25 Use the chart only if you cant use the regression equations
• What is the 𝐾 at the optimum P/D of 0.9227 and J = 0.6202?
• At P/D = 0.8 and J = 0.6202, 𝐾 = 0.2-1.75*0.2/4.1 = 0.115
• At P/D = 1.0 and J = 0.6202, 𝐾 = 0.2+0.65*0.2/4.1 = 0.232
• At P/D = 0.9227 and J = 0.6202, 𝐾 = 0.115 + (0.9227-0.8) *(0.232-0.115)/
(1.0-0.8) = 0.187. But, using regression equations, 𝐾 = 0.174. See L18S24
Jul-Dec
2024
Dr. D. D. Ebenezer
26 Design Task 2
• 𝑇, 𝑛, 𝑉 are known. Determine a “design constant” that is independent of the
diameter. Find 𝑃/𝐷, 𝜂 , and 𝐷.
Jul-Dec
2024
Dr. DD Ebenezer 13
24-09-2024
Dr. D. D. Ebenezer
27 Design Task 2. Design Constant.
Service power is
used in Task 1.
Jul-Dec
2024
Dr. D. D. Ebenezer
28
Jul-Dec
2024
Dr. DD Ebenezer 14
24-09-2024
Dr. D. D. Ebenezer
29 Design Task 2. Self Propulsion Points.
• Self propulsion points for task 2
Jul-Dec
2024
Dr. D. D. Ebenezer
30 Design Task 2. Optimum 𝑃/𝐷.
• Compare the optimum propellers in Tables 48.3 and 48.4. They are for the
same ship but designed using different input data sets. Ideally, they should be
exactly the same but are not – read the last para of the previous slide.
• For the final answers, 2 significant digits should be enough for P/D, D, and 𝜂 .
Jul-Dec
2024
Dr. DD Ebenezer 15
24-09-2024
Dr. D. D. Ebenezer
31 48.3 Optimum Rate of Revolution Selection. Design Tasks 3 and 4.
Jul-Dec
2024
Dr. D. D. Ebenezer
32 Design Task 3
• 𝑃 , 𝑣 , and 𝐷 are known. Find 𝑛, 𝑃/𝐷, 𝜂 .
Jul-Dec
2024
Dr. DD Ebenezer 16
24-09-2024
Dr. D. D. Ebenezer
33
• Self
propulsion
points for
task 3
Jul-Dec
2024
Dr. D. D. Ebenezer
34 Task 3 output of 𝜂 = 0.611 is a little higher
than the Task 1 output of 𝜂 = 0.605
Jul-Dec
2024
Dr. DD Ebenezer 17
24-09-2024
Dr. D. D. Ebenezer
35 Design Task 4
• See Section 3.6. L16S18
• 𝑇, 𝑣 , and 𝐷 are known
Jul-Dec
2024
Dr. D. D. Ebenezer
36
Jul-Dec
2024
Dr. DD Ebenezer 18
24-09-2024
Dr. D. D. Ebenezer
37
Jul-Dec
2024
Dr. D. D. Ebenezer
Design using modified 𝐵 − 𝛿 charts.
38
Non-dimensional − charts.
Zero-interpolation method.
Jul-Dec
2024
Dr. DD Ebenezer 19
24-09-2024
Dr. D. D. Ebenezer
39
Jul-Dec
2024
Dr. D. D. Ebenezer
40
Use this chart
to do Design
Task 1
without doing
any Maximum efficiency
interpolation curve
B4.85
Jul-Dec
2024
Dr. DD Ebenezer 20
24-09-2024
Dr. D. D. Ebenezer
41
Jul-Dec
2024
Dr. D. D. Ebenezer
42 Optimum Propeller
• Check the above two paras by find the optimum propeller for = 1.4. The
max efficiency is 0.45.
Jul-Dec
2024
Dr. DD Ebenezer 21
24-09-2024
Dr. D. D. Ebenezer
43 Optimum propeller for various 𝐴 /𝐴
• See Fig. 48.10 on the next slide
Jul-Dec
2024
Dr. D. D. Ebenezer
44
• For a particular value of
Dr. DD Ebenezer 22
24-09-2024
Dr. D. D. Ebenezer
45 Optimum Propeller for Behind Ship Condition
Jul-Dec
2024
Dr. D. D. Ebenezer
46
Jul-Dec
2024
Dr. DD Ebenezer 23