CHAPTER – 39
ALTERNATING CURRENT
1. = 50 Hz
= 0 Sin Wt
0
Peak value =
2
0
= 0 Sin Wt
2
1
= Sin Wt = Sin
2 4
1 1
= Wt. or, t = =
= = = 0.0025 s = 2.5 ms
4 400 4 2 8 8 50
2. Erms = 220 V
Frequency = 50 Hz
E
(a) Erms = 0
2
E0 = Erms 2 = 2 × 220 = 1.414 × 220 = 311.08 V = 311 V
(b) Time taken for the current to reach the peak value = Time taken to reach the 0 value from r.m.s
0
= 0 = 0 Sin t
2 2
t =
4
1
t= = = = = 2.5 ms
4 4 2f 850 400
3. P = 60 W V = 220 V = E
= 220 220 = 806.67
v2
R=
P 60
0 = 2 E = 1.414 × 220 = 311.08
806.67
0 = 0
= = 0.385 ≈ 0.39 A
R 311.08
4. E = 12 volts
i2 Rt = i2 rmsRT
E2 E2rms E02
= E2
R2 R2 = 2
E02 = 2E2 E 20 = 2 × 122 = 2 × 144
E0 = 2 144 = 16.97 ≈ 17 V
5. P0 = 80 W (given)
P0
Prms = = 40 W
2
Energy consumed = P × t = 40 × 100 = 4000 J = 4.0 KJ
6. E = 3 × 106 V/m, A = 20 cm 2, d = 0.1 mm
Potential diff. across the capacitor = Ed = 3 × 10 6 × 0.1 × 10–3 = 300 V
V 300
Max. rms Voltage = = = 212 V
2 2
39.1
7. i = i0e–ur
2 1 2 2t /
i0
2 2t / i02
2t /
i 02
2
i e e 1
i = e dt = dt = 0 = 2
0
e
0 0 2
i0 2 1 i0 e2
1
i2 = 2 1 = e 2
2 e
8. C = 10 F = 10 × 10 F = 10 F
–6 –5
E = (10 V) Sin t
10
a) = E0 = E0
= = 1 × 10–3 A
Xc 1 1 5
10 10
C
b) = 100 s–1
E0 10
= = = 1 × 10–2 A = 0.01 A
1 1 5
100 10
C
c) = 500 s–1
E0 10
= = = 5 × 10–2 A = 0.05 A
1 1 5
500 10
C
d) = 1000 s–1
E0 10
= = 1 × 10–1 A = 0.1 A
1 1
1000 105
C
9. Inductance = 5.0 mH = 0.005 H
a) = 100 s–1
5
XL = L = 100 × = 0.5 Ω
1000
0 = 10 = 20 A
i=
XL 0.5
b) = 500 s–1
5
XL = L = 500 × = 2.5 Ω
1000
0 10
i= = =4A
XL 2.5
c) = 1000 s–1
5
XL = L = 1000 × =5Ω
1000
0 10
i= = =2A
XL 5
10. R = 10 Ω, L = 0.4 Henry
30
E = 6.5 V, = Hz
Z= R2 XL
2
= R2 (2L)2
Power = Vrms rms cos
= 6.5 × 6.5 R = 6.5 6.5 10 6.5 6.5 10 6.5 6.5 10 = 0.625 = 5
= =
Z Z R2 (2L) 2
2
30 2 100 576 8
102 2 0.4
39.2
V2
11. H = T, E0 = 12 V, = 250 , R = 100 Ω
R 2
H E0 Sin t 2
144 1 cos 2t
2
H=
0
dH =
R 100
dt = sin
2
dt
t dt = 1.44
3 Sin2t 103
1.44 10 3 103
=
dt Cos2t dt = 0.7210
2 0 0
2 0
1 1 ( 2)
= 0.72 = 0.72 = 0.0002614 = 2.61 × 10–4 J
1000 500
1000
12. R = 300Ω, C = 25 F = 25 × 10–6 F, 0 = 50 V, = 50 Hz
1 1 104
Xc = =
c 50 = 25
2 25 10 6
104 2
Z= R2 Xc (300)2
2
= = (300)2 (400)2 = 500
25
50
E = 0.1 A
(a) Peak current = 0 =
500
Z
(b) Average Power dissipitated, = E rms rms Cos
E0 R
E 2 50 50 300 3
= 0 2Z Z = 0 = 2 500 500 = 2 = 1.5 .
E
2 2Z2
2 110 110
13. Power = 55 W, Voltage = 110 V, Resistance = V = = 220 Ω
P 55
frequency () = 50 Hz, = 2 = 2 × 50 = 100
V R L
V
Current in the circuit = =
Z R2 (L)2
110 V
VR –
Voltage drop across the resistor = ir = 220 V
R2 (L)2
220 220
= = 110
(220) 2 (100L) 2
(220)2 (100L)2
220 × 2 = (220)2 + (100L) 2 = (440)2
48400 + 10 L = 193600 4 2 2
1042 L2 = 193600 – 48400
142500
L2 = 1.4726 L = 1.2135 ≈ 1.2 Hz
= 2 104
14. R = 300 Ω, C = 20 F = 20 × 10 –6 F
50
L = 1 Henry, E = 50 V V= Hz
E0
(a) 0 = ,
Z
2
1
Z= R2 (Xc XL )2 = (300)2 2L
2C
2
1 50 104
2
= (300) 2 2 1 = (300) 2 100 = 500
50 6 20
2 20 10
E0 50
= = = 0.1 A
0
Z 500
39.3
(b) Potential across the capacitor = i 0 × Xc = 0.1 × 500 = 50 V
Potential difference across the resistor = i 0 × R = 0.1 × 300 = 30 V
Potential difference across the inductor = i 0 × XL = 0.1 × 100 = 10 V
Rms. potential = 50 V
Net sum of all potential drops = 50 V + 30 V + 10 V = 90 V
Sum or potential drops > R.M.S potential applied.
15. R = 300 Ω
C = 20 F = 20 × 10 –6 F
L = 1H, Z = 500 (from 14)
E0 50
0 = 50 V, 0 = = = 0.1 A
Z 500
Electric Energy stored in Capacitor = (1/2) CV 2 = (1/2) × 20 × 10–6 × 50 × 50 = 25 × 10 –3 J = 25 mJ
Magnetic field energy stored in the coil = (1/2) L 02 = (1/2) × 1 × (0.1)2 = 5 × 10–3 J = 5 mJ
16. (a)For current to be maximum in a circuit
Xl = Xc (Resonant Condition)
1
WL =
WC
1 1
= = 106
W 2
LC 2 18 106 =
3 3 36
10 10
W= 2 =
6 6
1000
= 26.537 Hz ≈ 27 Hz
= 6 2
E
(in resonance and)
(b) Maximum Current = R
2
20 = A = 2 mA
=
10 103 103
17. Erms = 24 V
r = 4 Ω, rms = 6 A
E 24
R= = =4Ω
6
Internal Resistance = 4 Ω
Hence net resistance = 4 + 4 = 8 Ω
12
Current = = 1.5 A
8 10 Ω
18. V1 = 10 × 10–3 V
R = 1 × 103 Ω V1 10 nF V0
C = 10 × 10–9 F
1 1 1 1 104 5000
(a) Xc = = = = = =
WC 2C 2 10 103
10 109 2 104 2
1 10
2
5000 5000 2
Z= R Xc
2 2
= 3 2 = 10 6
E0 V1 10 103
0 = = =
Z Z 5000 2
10 6
39.4
1 1 1 1 103 500
(b) Xc = = = = = =
WC 2C 2 105 10 109 2 103 2
c 10 = 10
E0 V1 10 103
0 = = =
Z Z
500 2
10 6
10 103 500
V0 = 0 Xc = = 1.6124 V ≈ 1.6 mV
500 2
10 6
(c) = 1 MHz = 106 Hz
1 1 1 1 102 50
Xc = = = = = =
WC 2C 2 10 10
6
2 10 2 2
109
10
2 2
50 50
Z= R2 X c2 = 3 2 = 106
E0 V1 10 103
0 = = =
Z Z 2
50
106
10 10
3
50
V0 = 0 Xc = ≈ 0.16 mV
50 2
10 6
(d) = 10 MHz = 107 Hz
1 1 1 1 10 5
Xc = = = = = =
WC 2C 2 10 10 10
7 9
2 101 2
10
2 2
5 5
Z= R2 X c2 = 3 2 = 10 6
V1 10 103
0 = E0 = =
Z Z 5 2
10 6
10 103 5
V0 = 0 Xc = ≈ 16 V
5 2
10 6
19. Transformer works upon the principle of induction which is only possible in
case of AC.
Hence when DC is supplied to it, the primary coil blocks the Current supplied
to it and hence induced current supplied to it and hence induced Current in the P1 Sec
secondary coil is zero.
39.5