0% found this document useful (0 votes)
72 views5 pages

39 Alternating+current

Uploaded by

rashminisargandh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
72 views5 pages

39 Alternating+current

Uploaded by

rashminisargandh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

CHAPTER – 39

ALTERNATING CURRENT

1.  = 50 Hz
 = 0 Sin Wt
0
Peak value  =
2
0
= 0 Sin Wt
2
1 
 = Sin Wt = Sin 
2 4
   1 1
 = Wt. or, t = =

= = = 0.0025 s = 2.5 ms
4 400 4  2 8 8  50
2. Erms = 220 V
Frequency = 50 Hz
E
(a) Erms = 0
2
 E0 = Erms 2 = 2 × 220 = 1.414 × 220 = 311.08 V = 311 V
(b) Time taken for the current to reach the peak value = Time taken to reach the 0 value from r.m.s
 0
 = 0  = 0 Sin t
2 2

 t = 
4
   1
t= = = = = 2.5 ms
4 4  2f 850 400
3. P = 60 W V = 220 V = E

= 220  220 = 806.67


v2
R=
P 60
0 = 2 E = 1.414 × 220 = 311.08
 806.67
0 = 0
= = 0.385 ≈ 0.39 A
R 311.08
4. E = 12 volts
i2 Rt = i2 rmsRT
E2 E2rms E02
 =  E2
R2 R2 = 2
 E02 = 2E2  E 20 = 2 × 122 = 2 × 144
 E0 = 2  144 = 16.97 ≈ 17 V
5. P0 = 80 W (given)
P0
Prms = = 40 W
2
Energy consumed = P × t = 40 × 100 = 4000 J = 4.0 KJ
6. E = 3 × 106 V/m, A = 20 cm 2, d = 0.1 mm
Potential diff. across the capacitor = Ed = 3 × 10 6 × 0.1 × 10–3 = 300 V
V 300
Max. rms Voltage = = = 212 V
2 2

39.1

7. i = i0e–ur
2 1  2  2t / 
i0
2   2t /  i02
   2t /   
i 02

 2

i e   e 1

i = e dt = dt =  0 =   2


0
  e
0 0  2
i0 2  1  i0  e2 
 1
i2 =  2 1 = e  2 
2 e   
8. C = 10 F = 10 × 10 F = 10 F
–6 –5

E = (10 V) Sin t
10
a)  = E0 = E0
= = 1 × 10–3 A
Xc  1   1 5 
  10  10 
 C   
b)  = 100 s–1
E0 10
= = = 1 × 10–2 A = 0.01 A
 1   1 5 
  100  10 
 C   
c)  = 500 s–1
E0 10
= = = 5 × 10–2 A = 0.05 A
 1   1 5 
  500  10 
 C   
d)  = 1000 s–1
E0 10
 = = 1 × 10–1 A = 0.1 A
 1   1 

  1000  105 
 C   
9. Inductance = 5.0 mH = 0.005 H
a)  = 100 s–1
5
XL = L = 100 × = 0.5 Ω
1000
 0 = 10 = 20 A
i=
XL 0.5
b)  = 500 s–1
5
XL = L = 500 × = 2.5 Ω
1000
0 10
i= = =4A
XL 2.5
c)  = 1000 s–1
5
XL = L = 1000 × =5Ω
1000
0 10
i= = =2A
XL 5
10. R = 10 Ω, L = 0.4 Henry
30
E = 6.5 V, = Hz

Z= R2  XL
2
= R2  (2L)2
Power = Vrms  rms cos 
= 6.5 × 6.5  R = 6.5  6.5  10 6.5  6.5  10 6.5  6.5  10 = 0.625 = 5 
= = 

Z Z  R2  (2L) 2 
2
 30 2 100  576 8
102  2   0.4
    

39.2
V2
11. H = T, E0 = 12 V,  = 250 , R = 100 Ω
R 2
H E0 Sin t 2
144  1 cos 2t 
2

  

H=
0
dH =
R 100
dt = sin
 2
 dt
t dt = 1.44
 
 3  Sin2t  103 
1.44  10 3 103 
 
 
=  
dt  Cos2t dt  = 0.7210    
2  0 0
   2 0 
 1 1  (  2)
= 0.72  =  0.72 = 0.0002614 = 2.61 × 10–4 J
 1000 500 
 1000
12. R = 300Ω, C = 25 F = 25 × 10–6 F, 0 = 50 V,  = 50 Hz
1 1 104
Xc = =
c 50  = 25
 2  25  10 6

  104 2
Z= R2  Xc (300)2   
2
= = (300)2  (400)2 = 500
 25 
50
E = 0.1 A
(a) Peak current = 0 =
500
Z
(b) Average Power dissipitated, = E rms rms Cos 
E0 R
E 2 50  50  300 3
= 0  2Z  Z = 0 = 2  500  500 = 2 = 1.5 .
E
2 2Z2
2 110  110
13. Power = 55 W, Voltage = 110 V, Resistance = V = = 220 Ω
P 55
frequency () = 50 Hz, = 2 = 2 × 50 = 100 
V R L
V
Current in the circuit = =
Z R2  (L)2
110 V
VR –
Voltage drop across the resistor = ir = 220 V
R2  (L)2
220  220
= = 110
(220) 2  (100L) 2
(220)2  (100L)2
 220 × 2 =  (220)2 + (100L) 2 = (440)2
 48400 + 10  L = 193600 4 2 2
 1042 L2 = 193600 – 48400
142500
 L2 = 1.4726  L = 1.2135 ≈ 1.2 Hz
= 2  104
14. R = 300 Ω, C = 20 F = 20 × 10 –6 F
50
L = 1 Henry, E = 50 V V= Hz

E0
(a) 0 = ,
Z
2
 1 
Z= R2  (Xc  XL )2 = (300)2    2L
 2C 
2
 
 1 50   104
2

= (300) 2     2   1 = (300) 2      100  = 500
 50 6    20 
 2   20  10   
  
E0 50
= = = 0.1 A
0
Z 500

39.3
(b) Potential across the capacitor = i 0 × Xc = 0.1 × 500 = 50 V
Potential difference across the resistor = i 0 × R = 0.1 × 300 = 30 V
Potential difference across the inductor = i 0 × XL = 0.1 × 100 = 10 V
Rms. potential = 50 V
Net sum of all potential drops = 50 V + 30 V + 10 V = 90 V
Sum or potential drops > R.M.S potential applied.
15. R = 300 Ω
C = 20 F = 20 × 10 –6 F
L = 1H, Z = 500 (from 14)
E0 50
0 = 50 V, 0 = = = 0.1 A
Z 500
Electric Energy stored in Capacitor = (1/2) CV 2 = (1/2) × 20 × 10–6 × 50 × 50 = 25 × 10 –3 J = 25 mJ
Magnetic field energy stored in the coil = (1/2) L 02 = (1/2) × 1 × (0.1)2 = 5 × 10–3 J = 5 mJ
16. (a)For current to be maximum in a circuit
Xl = Xc (Resonant Condition)
1
 WL =
WC
1 1
= = 106
W 2
LC 2  18  106 =
3 3 36
10 10

W=  2 =
6 6
1000
= 26.537 Hz ≈ 27 Hz
  = 6  2
 E
(in resonance and)
(b) Maximum Current = R
2
20 = A = 2 mA
=
10  103 103
17. Erms = 24 V
r = 4 Ω,  rms = 6 A
E 24
R= = =4Ω
 6
Internal Resistance = 4 Ω
Hence net resistance = 4 + 4 = 8 Ω
12
 Current = = 1.5 A
8 10 Ω
18. V1 = 10 × 10–3 V
R = 1 × 103 Ω V1 10 nF V0
C = 10 × 10–9 F
1 1 1 1 104 5000
(a) Xc = = = = = =
WC 2C 2  10  103
 10  109 2  104 2 

1 10 
2
 5000   5000 2
Z= R  Xc
2 2
= 3 2   = 10 6   
      
E0 V1 10  103
0 = = =
Z Z  5000 2
10 6   
  

39.4
1 1 1 1 103 500
(b) Xc = = = = = =
WC 2C 2  105  10  109 2  103 2 

c 10    = 10   
      
E0 V1 10  103
0 = = =
Z Z
 500 2
10 6  
 
10  103 500

V0 = 0 Xc =  = 1.6124 V ≈ 1.6 mV

 500 2
10 6  
 
(c)  = 1 MHz = 106 Hz
1 1 1 1 102 50
Xc = = = = = =
WC 2C 2  10  10 
6
2  10 2 2 
109

10 
2 2
  50   50 
Z= R2  X c2 = 3 2    = 106   
      
 E0 V1 10  103
 0 = = =
Z Z 2
  50 
106   
   
 10  10
3
50
 V0 = 0 Xc =  ≈ 0.16 mV

  50 2
10 6  
  
(d)  = 10 MHz = 107 Hz
1 1 1 1 10 5
Xc = = = = = =
WC 2C 2  10  10  10
7 9
2  101 2 

10 
2 2
 5   5 
Z= R2  X c2 = 3 2    = 10 6  

   
V1 10  103
0 = E0 = =
Z Z  5 2
10 6  

10  103 5
V0 = 0 Xc =  ≈ 16 V

 5 2
10 6  


19. Transformer works upon the principle of induction which is only possible in 
case of AC. 

Hence when DC is supplied to it, the primary coil blocks the Current supplied

to it and hence induced current supplied to it and hence induced Current in the P1 Sec
secondary coil is zero.

    
39.5

You might also like