0% found this document useful (0 votes)
21 views2 pages

Differentiation CPP

Uploaded by

hattorininja1986
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
21 views2 pages

Differentiation CPP

Uploaded by

hattorininja1986
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

CPP

1. Find the derivative of


2
 1 
(i)  x   (ii) x2ex (iii) x (x + 1) (x + 2)
 x
 x2  3  1 x  x 1
(iv)  (v) ,x1 (vi) cos log
 x  4  1 x  x 
 
  x2 
(vi) sin1 (3x  4x3) (vii) log  sin   1  .
 
  3 

dy
(2) Find , when
dx
...
x...
xx
(i) y= x  x  x  ....... (ii) y  xx
dy
3. Find , when
dx
(i) x = a ( + sin ), y = a (1 + sin ) (ii) x = et(sin t + cot t), y = et log t.
 t
(iii)x = a cos t  log tan  , y = a sin t. (iv) x = log (1 + t2), y = tan1 t.
 2

4. Find the derivative of


2x  1
(i) 2 , with respect to sin x2, (ii) sin x2 with respect to x2.
x 1
1  x2  1  3x  x 
3
(iii) cos1   , with respect to tan  .
1  x 2   1  3x 2 
dy
5. Find , when
dx
(i)x cos y + x2  y3 = 0, (ii) x2  y2 = c (x2 + y2)2 (iii) xy = ex+y.
(iv) sin y = x sin (x + y) (v) (tan1 x)y + ycotx = 1.
d2y
(6) If y = A cos nx + B sin nx, prove that  n2 y  0 .
dx 2
d2 y dy
(7) If y = bex + ce2x, prove that 2
3  2y  0 .
dx dx
d2 y dy
(8) If y = a sin(logx) + b cos(logx), prove that x 2 x y 0.
dx 2 dx

Answer Keys
1 x 2  8x  3
1. (a) 1  (b) (x2 + 2x)ex. (c) 3x2 + 6x + 2. (d)
x2 (x  4)2
 x2 
x cot   1
1 1   x  1   3 
(e) (f) sin  log   (g)
(1  x) 1  x 2 x(1  x)   x    x2 
3 log  sin   1 
  3 
1 y2
2. (i) (ii)
2y  1 x(1  y log x)
CPP
cos  t log t  1 1
3. (a) (b) (c) tan t (d)
1  cos  
t  sin t  cos t  cot t  coesc t 2
 2t

1  x  x2 2
4 (a) 2 2 2
(b) cos x 2 (c)
x(x  1) cos x 3

2x  cos y x 3y 2  x 2  xy


5. (a) (b) (c)
2
3y  x sin y y 3x  y 
2 2 x(log x  1)

 cot x 2 (tan1 x)y y 


 y cos ec log y  
(d)
sin(x  y)  x cos(x  y) (e)  (1  x 2 ) tan1 x 
cos y  x cos(x  y)  y cot x 1 cot x  (tan1 x)y log tan1(x)
 

You might also like