Ox Ms
Ox Ms
Molecular Sciences
Review
Oxidative Stress Markers in Multiple Sclerosis
Félix Javier Jiménez-Jiménez 1, * , Hortensia Alonso-Navarro 1 , Paula Salgado-Cámara 1 , Elena García-Martín 2 and
José A. G. Agúndez 2
                                         1   Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain;
                                             hortalon@yahoo.es (H.A.-N.); paula.salgado.camara@gmail.com (P.S.-C.)
                                         2   University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres,
                                             Spain; elenag@unex.es (E.G.-M.); jagundez@unex.es (J.A.G.A.)
                                         *   Correspondence: fjavier.jimenez@salud.madrid.org
                                         Abstract: The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic fac-
                                         tors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant
                                         role. Data from analyses of central nervous system autopsy material from patients diagnosed with
                                         multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, ex-
                                         perimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress
                                         as well. In this narrative review, we summarize the main data from studies reported on oxidative
                                         stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and
                                         case–control association studies on the possible association of candidate genes related to oxidative
                                         stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease
                                         in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde
                                         being the most reliable markers. This topic requires further prospective, multicenter studies with a
                                         long-term follow-up period involving a large number of patients with MS and controls.
                                         Keywords: multiple sclerosis; pathogenesis; risk factors; oxidative stress; biological markers; animal
                                         models
                                                Possibleinteractions
                                     Figure1.1.Possible
                                    Figure               interactionsbetween
                                                                      betweenthe
                                                                              thedifferent
                                                                                  differentpathogenetic
                                                                                            pathogeneticmechanisms
                                                                                                        mechanismsin
                                                                                                                   inmultiple
                                                                                                                     multiplesclerosis.
                                                                                                                              sclerosis.
                                            The term “oxidative stress” designates the imbalance between the production of reac-
                                           The term “oxidative stress” designates the imbalance between the production of re-
                                     tive oxygen species (ROS) and the ability of a biological system to neutralize intermediate
                                    active oxygen species (ROS) and the ability of a biological system to neutralize intermedi-
                                     reagents or to repair the resulting damage. Biomarkers of oxidative stress can be divided
                                    ate reagents or to repair the resulting damage. Biomarkers of oxidative stress can be di-
                                     into molecules modified by their interaction with ROS or free radicals derived from nitrogen
                                    vided into molecules modified by their interaction with ROS or free radicals derived from
                                     (RNS) and into molecules of the antioxidant system in response to an increase in redox stress.
                                    nitrogen (RNS) and into molecules of the antioxidant system in response to an increase in
                                     These include lipid peroxidation, protein oxidation, DNA oxidation markers, enzymes or
                                    redox stress. These include lipid peroxidation, protein oxidation, DNA oxidation markers,
                                     protein with antioxidant actions, other prooxidant and antioxidant substances, and global
                                    enzymes or protein with antioxidant actions, other prooxidant and antioxidant sub-
                                     markers of oxidative processes, such as the total oxidant status/capacity (TOS/TOC), total
                                    stances, and global markers of oxidative processes, such as the total oxidant status/capac-
                                     antioxidant status/capacity (TAS/TAC), and oxidative stress index (OSI).
                                    ity (TOS/TOC),
                                            This narrativetotalreview
                                                                  antioxidant
                                                                        aims tostatus/capacity   (TAS/TAC),
                                                                                 analyze the results            and oxidative
                                                                                                      of published     studies onstress    index
                                                                                                                                    the possible
                                    (OSI).
                                     role of oxidative stress in multiple sclerosis, mainly those related to oxidative stress markers
                                           This narrative
                                     in different    tissuesreview     aims to analyze
                                                                from patients           the with
                                                                                diagnosed    results of published
                                                                                                   MS,               studies on the
                                                                                                         but also case–control          possible
                                                                                                                                     association
                                    role  of oxidative
                                     studies               stress inassociation
                                                on the possible       multiple sclerosis, mainly
                                                                                 of candidate      those
                                                                                                genes     related
                                                                                                       related  to to oxidative
                                                                                                                   oxidative       stress
                                                                                                                                stress    mark-
                                                                                                                                        with  risk
                                    ers  in different    tissues    from  patients diagnosed   with  MS,  but  also  case–control
                                     for MS, and studies showing the presence of oxidative stress in experimental models of         association
                                    studies
                                     multiple  onsclerosis.
                                                  the possible      association
                                                              To this   end, we of candidateagenes
                                                                                 performed     PubMed related  to oxidative
                                                                                                          Database     search stress   with to
                                                                                                                               from 1966     risk
                                                                                                                                                28
                                    for  MS,   and  studies     showing    the presence   of oxidative  stress  in  experimental
                                     December 2023, crossing the terms “multiple sclerosis” and “oxidative stress”. The search       models    of
                                    multiple
                                     retrievedsclerosis.     To this that
                                                 1672 references       end,were
                                                                             we performed    a PubMed
                                                                                 manually selected       Database
                                                                                                      to include      search
                                                                                                                   only       from
                                                                                                                          those       1966related
                                                                                                                                 strictly   to 28
                                    December
                                     to the topic 2023,   crossing
                                                    (a total   of 201the  terms “multiple sclerosis” and “oxidative stress”. The search
                                                                       references).
                                    retrieved 1672 references that were manually selected to include only those strictly related
                                     2. the
                                    to   Oxidative
                                             topic (a Stress
                                                       total ofMarkers     in Patients with Multiple Sclerosis
                                                                  201 references).
                                     2.1. Oxidative Stress Markers in the Brain and Spinal Cord
                                    2. Oxidative     Stress
                                            The results     of Markers
                                                               studies on in oxidative
                                                                             Patients with   Multiple
                                                                                       markers    in theSclerosis
                                                                                                          brains or spinal cord of patients
                                    2.1.
                                    with Oxidative
                                            MS, with Stress
                                                        most Markers
                                                               of themin the Brain and
                                                                         compared     toSpinal    Cord[8–31], are summarized in Table S1.
                                                                                           controls
                                     Many    autopsy   studies  describe   an increase   in
                                          The results of studies on oxidative markers in the various    markers
                                                                                                           brainsoforlipid  peroxidation
                                                                                                                       spinal              [8–15],
                                                                                                                               cord of patients
                                     an  increase   in carbonylated     proteins   [16],  markers     of  DNA   damage
                                    with MS, with most of them compared to controls [8–31], are summarized in Table S1.     [9,11,12,17], and  ni-
                                     trotyrosine
                                    Many           (a marker
                                             autopsy   studies of  nitrosative
                                                                 describe       stress) [8,11]
                                                                            an increase           in themarkers
                                                                                           in various     brains ofofpatients   diagnosed with
                                                                                                                        lipid peroxidation    [8–
                                     MS,   especially   in  active  MS   plaques.    The    enzymatic     activity  of  superoxide-dismutase
                                    15], an increase in carbonylated proteins [16], markers of DNA damage [9,11,12,17], and
                                    1 and 2 is upregulated
                                    nitrotyrosine    (a marker inof active demyelinating
                                                                    nitrosative  stress) [8,11]lesions  [10]
                                                                                                   in the    and of
                                                                                                          brains  in patients
                                                                                                                      cerebellar  gray matter
                                                                                                                                diagnosed   withof
                                     patients   with  MS  [11], and  catalase  activity  is increased    in active demyelinating
                                    MS, especially in active MS plaques. The enzymatic activity of superoxide-dismutase 1            lesions [11].
                                     In contrast,
                                    and             glutathione
                                          2 is upregulated         peroxidase
                                                              in active          (GPx) [10]
                                                                         demyelinating           and [10]
                                                                                             lesions   catalase
                                                                                                            and [10]   activitiesgray
                                                                                                                 in cerebellar     are similar
                                                                                                                                       ma er of to
                                     those   of controls   in cerebellar   gray  matter.     Iron   content  has  been    found
                                    patients with MS [11], and catalase activity is increased in active demyelinating lesions     to decrease   in
Int. J. Mol. Sci. 2024, 25, 6289                                                                                            3 of 20
                                   poxanthine and xanthine in MS patients compared to controls [63,64], while another study
                                   described similar values of uric acid and its metabolite allantoine in MS and controls [62].
                                        CSF levels of the excitatory amino acid L-glutamate were decreased in MS patients
                                   compared to controls [60]. CSF levels of nitric oxide (NO) metabolites were reported to
                                   be increased in MS patients compared to controls in three studies [36,42,57], and similar
                                   to those of controls in another [61]. CSF levels of trace metals involved in oxidative stress
                                   processes were the subject of a single study, which described increased lead, decreased
                                   magnesium, and similar calcium, manganese, and zinc levels in patients with primary
                                   progressive MS (PPMS) compared to those with secondary progressive MS (SPMS) and
                                   controls [51]. The CSF human serum albumin (HAS), mercaptoalbumin (HMA), and non-
                                   mercaptoalbumins 1 and 2 (HNA1 and HNA2) [65] levels were reported to be similar
                                   in MS patients and controls. CSF neutrophil gelatinase-associated lipocalin (NGAL) was
                                   increased [39] or similar [38] compared to controls in two studies by the same group. Finally,
                                   DJ-1 [66], periredoxins 2 (PRX2) [38,39], and β-site amyloid precursor protein-cleaving
                                   enzyme 1 (BACE1) [67] were increased in the CSF of patients with MS compared to controls.
                                   h.    Thiol group concentrations were decreased [83], and NADPH oxidase (NOX-1),
                                         cytochrome c oxidase subunit 1 expression and glyceraldehyde 3-phosphate dehy-
                                         drogenase activity (GADPH) were increased in platelets [83].
                                        Finally, HO-1 [40], HsC70 [40], Hsp72 [40], and Trx concentrations [40], polyADP
                                   ribose (PAR) synthesis [81], and polyADP ribose polymerase-1 (PARP1) expression [81]
                                   were increased, HO-2 [40] and Hsp70-2 concentrations [80] were similar, and sirtuin 1 con-
                                   centrations were increased [40] or similar [77] in PBMC from patients with MS compared
                                   with controls.
                                   and were similar in patients with MS with low vs. those with high ferritin levels. Native
                                   thiol levels were found to be decreased in one study [143] and similar to those of controls
                                   in another [144]. In comparison to controls, serum plasma SOD activity from MS patients
                                   was reported to be similar [90,100,103,146], increased in MS patients [86,97,118,145], or
                                   decreased in MS patients [75,143]; total glutathione was similar [89] or increased in MS
                                   patients [118]; GSH was similar [69,89,100] or increased in MS patients [118]: GSSG was
                                   similar [68] or decreased in MS patients [118]; GSSG-reductase activity was decreased in
                                   MS patients [118,146]; GPx activity was similar [69,100,146], increased in MS patients [101],
                                   or decreased in MS patients [103,118,135]; catalase activity was increased [75,97,103] or
                                   similar [69,100]; and GST was similar [146] or decreased in MS patients [118].
                                         Serum/plasma paraoxonase (PON1) activity was decreased in most studies in pa-
                                   tients with MS [58,105,127,146], while others reported an increase [148] or similarity to
                                   controls [93]. Arylesterase activity in MS patients was similar to controls in three stud-
                                   ies [123,139,146] and decreased in another [58].
                                         Serum/plasma concentrations of coenzyme Q10 were reported as being decreased in
                                   MS patients compared to controls [64,69,89] or similar in MS patients and controls [151].
                                   Similarly, four studies showed lower serum/plasma alpha-tocopherol levels in MS pa-
                                   tients [59,69,72,75] and another showed non-significant differences when compared to
                                   controls [69]. In comparison with controls, serum/plasma gamma-tocopherol levels were
                                   decreased in MS patients in a single study [64], beta-carotene was decreased in two stud-
                                   ies [72,152] and similar in one [64], and ascorbic acid was decreased in two studies [75,86]
                                   and similar in another two [51,72].
                                         Many studies have addressed serum/plasma levels of NO metabolites (nitrates + ni-
                                   trites) in MS patients and controls; seven showed a significant decrease [36,87,107–111], one
                                   showed a non-significant trend towards a decrease [61], and five others reported a signifi-
                                   cant increase [86,99,101,103,112] of these parameters in MS patients. Serum nitrotyrosine
                                   levels were increased in MS patients compared to controls [36,92,117].
                                         Several studies have addressed serum/plasma trace metal concentrations in MS pa-
                                   tients and controls, described in detail in Table S1, with varying results. The most consistent
                                   findings were increased cadmium [129,132,154,155], aluminum [129,132,134], molybde-
                                   num [129,132,134], tin [129,132], zirconium [129,132], and arsenic levels in MS patients [88,
                                   93,134,155], and a lack in differences in serum/plasma levels of lead [129,132,154,155], mer-
                                   cury [129,132], strontium [129,130,132], vanadium [129,132,134], and wolframium [129,132].
                                         Serum/plasma levels of uric acid were decreased in patients with MS compared to con-
                                   trols in three studies [97,158,159], increased in another two [63,86], and similar to controls in
                                   two more [109,156], while the serum levels of the related substances hypoxanthine, xanthine,
                                   and uridine were found to be increased [158] and allantoine was similar in MS patients
                                   compared to controls. Serum/plasma uric acid levels from MS patients were decreased
                                   in current smokers compared with non-smokers and ex-smokers [160]. Serum/plasma
                                   bilirubin levels were decreased in MS patients [97,157]. Ischemia-modified albumin was
                                   increased [140] and irisin and nesfatin-1 were decreased in MS patients compared to con-
                                   trols [161]. Finally, serum/plasma levels of HAS [65], HMA [65], HNA1 [65], HNA2 [65],
                                   and DJ-1 [66] from MS patients did not differ significantly from those of controls.
                                   of a potent xanthine oxidase inhibitor, thereby, suggesting a role of xanthine oxidase in the
                                   pathogenesis of EAE.
                                        Metabolomic studies in plasma (using ultra-high-performance liquid chromatography-
                                   orbitrap-mass spectrometry—UHPLC-Orbitrap-MS) from C57BL/6J EAE mice showed a
                                   downregulation in glycerophospholipids and fatty acyls and upregulation in glycolipids,
                                   taurine-conjugated bile acids, and sphingolipids, and an increase in NOX activity and
                                   MMP9 during disease progression [203]. Increased superoxide anion concentrations and
                                   upregulation in NOS3 in the pituitary and adrenal glands were reported, as well as an
                                   increase in MDA and GSH levels and in catalase activity (assessed using electron paramag-
                                   netic resonance spectroscopy) in adrenal glands of 2-month-old female rats of Dark Agouti
                                   with EAE [204]. Plasma concentrations of IgG antibodies with peroxidase [205], oxidoreduc-
                                   tase [205], and catalase [206] activities (assessed using spectrophotometry) were increased
                                   at different stages of EAE in C57BL/6, Th, 2D2 mice [205], and C57BL/6 mice [206].
                                        To date, none of the studied variants in genes related to oxidative stress have shown
                                   an unequivocal association with MS. Potential reasons for the controversies seen between
                                   the results of various studies, both in those addressing biochemical parameters and studies
                                   on genes related to oxidative stress, include sample size, differences in sample collection
                                   and the methods used, and possibly factors associated with the participants (for example,
                                   some studies were not matched by age and/or sex or treatment with disease-modifying
                                   therapies). Moreover, in the case of genetic case–control association studies, there was a
                                   lack of replication studies.
                                   6. Future Directions
                                        We suggest that future studies aiming to establish the possible role of oxidative stress
                                   in the pathogenesis of MS should fulfill, at least, the following conditions:
                                   a.     Design prospective and multicenter studies with a long-term follow-up period (1 year).
                                   b.     The recruitment of a large number of patients diagnosed with MS according to
                                          standardized criteria [209], not exposed to any therapy for this disease, and a similar
                                          number of age- and sex-matched healthy controls who do not fulfill clinical criteria
                                          for the diagnosis of MS and without a family history of MS.
                                   c.     Both MS patients and controls involved in such studies should not have obesity or
                                          undernutrition, should not suffer from oncologic, acute infectious diseases, kidney,
                                          liver, thyroid, or parathyroid disease, have no recent history of traumatism or surgery,
                                          and no atypical dietary habits (i.e., diets consisting exclusively of one type of food-
                                          stuffs, such as vegetables, and others). They should not use therapy with steroids,
                                          diuretics, diphosphonates vitamins, calcium or mineral supplements, or drugs that
                                          could affect oxidative stress. In addition, pregnant women should be excluded.
                                   d.     It would be desirable to collect plasma/serum and blood cells for the analysis of
                                          multiple oxidative stress biomarkers and to obtain blood DNA for genetic studies of
                                          genes related to oxidative stress, both in MS patients and controls, at baseline.
                                   e.     Patients with MS should undergo periodic clinical evaluations every 3–4 months to
                                          evaluate the evolutive type and severity of the disease according to standardized
                                          scales such as the EDSS [210].
                                   f.     A new collection of plasma/serum and blood cells should be performed for the
                                          analysis of multiple oxidative stress biomarkers at the end of the follow-up to evaluate
                                          the changes induced by the different treatments used for MS.
                                   Supplementary Materials: The following supporting information can be downloaded at: https:
                                   //www.mdpi.com/article/10.3390/ijms25126289/s1.
                                   Author Contributions: F.J.J.-J.: Conceptualization, Methodology, Investigation, Validation, Formal
                                   Analysis, Investigation; Writing—Original Draft; Writing—Review and Editing; Project Admin-
                                   istration. H.A.-N.: Conceptualization, Methodology, Investigation, Validation, Formal Analysis,
                                   Investigation; Writing—Original Draft; Writing—Review and Editing; Project Administration. P.S.-C.:
                                   Conceptualization, Methodology, Investigation, Validation, Formal Analysis, Investigation; Writing—
                                   Original Draft; Writing—Review and Editing; Project Administration. E.G.-M.: Conceptualization,
                                   Methodology, Investigation, Validation, Formal Analysis, Investigation; Writing—Original Draft;
                                   Writing—Review and Editing, Project Administration, Obtaining Funding. J.A.G.A.: Conceptual-
                                   ization, Methodology, Investigation, Validation, Formal Analysis, Investigation; Writing—Original
                                   Draft; Writing—Review and Editing, Project Administration, Obtaining Funding. All authors have
                                   read and agreed to the published version of the manuscript.
                                   Funding: The work at the authors’ laboratory was supported in part by grants PI18/00540 and
                                   PI21/01683 from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain, and
                                   IB20134 and GR21073 from Junta de Extremadura, Mérida, Spain. Partially funded with FEDER funds.
                                   Acknowledgments: We recognize the effort of the personnel of the Library of Hospital Universitario
                                   del Sureste, Arganda del Rey, who retrieved an important number of papers for us. James McCue, a
                                   native English speaker with expertise in editing scientific articles, extensively revised the English text.
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                      11 of 20
                                   Conflicts of Interest: The authors declare that the research was conducted in the absence of any
                                   commercial or financial relationships that could be construed as potential conflicts of interest.
References
1.    Patsopoulos, N.A.; De Jager, P.-L. Genetic and gene expression signatures in multiple sclerosis. Mult. Scler. 2020, 26, 576–581.
      [CrossRef] [PubMed]
2.    Kim, W.; Patsopoulos, N.A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol. 2022, 44, 63–79.
      [CrossRef] [PubMed]
3.    Mechelli, R.; Umeton, R.; Manfrè, G.; Romano, S.; Buscarinu, M.C.; Rinaldi, V.; Bellucc, I.G.; Bigi, R.; Ferraldeschi, M.; Salvetti,
      M.; et al. Reworking GWAS Data to Understand the Role of Nongenetic Factors in MS Etiopathogenesis. Genes 2020, 11, 97.
      [CrossRef] [PubMed]
4.    Zarghami, A.; Li, Y.; Claflin, S.B.; van der Mei, I.; Taylor, B.V. Role of environmental factors in multiple sclerosis. Expert Rev.
      Neurother. 2021, 21, 1389–1408. [CrossRef] [PubMed]
5.    Waubant, E.; Lucas, R.; Mowry, E.; Graves, J.; Olsson, T.; Alfredsson, L.; Langer-Gould, A. Environmental and genetic risk factors
      for MS: An integrated review. Ann. Clin. Transl. Neurol. 2019, 6, 1905–1922. [CrossRef] [PubMed]
6.    McGarry, T.; Biniecka, M.; Veale, D.J.; Fearo, N.U. Hypoxia, oxidative stress and inflammation. Free Radic. Biol. Med. 2018, 125,
      15–24. [CrossRef] [PubMed]
7.    Gambini, J.; Stromsnes, K. Oxidative Stress and Inflammation, From Mechanisms to Therapeutic Approaches. Biomedicines 2022,
      10, 753. [CrossRef] [PubMed]
8.    Penkowa, M.; Espejo, C.; Ortega-Aznar, A.; Hidalgo, J.; Montalban, X.; Martínez Cáceres, E.M. Metallothionein expression in the
      central nervous system of multiple sclerosis patients. Cell. Mol. Life Sci. 2003, 60, 1258–1266. [CrossRef] [PubMed]
9.    Haider, L.; Fischer, M.T.; Frischer, J.M.; Bauer, J.; Höftberger, R.; Botond, G.; Esterbauer, H.; Binder, C.J.; Witztum, J.L.; Lassmann,
      H. Oxidative damage in multiple sclerosis lesions. Brain 2011, 134, 1914–1924. [CrossRef]
10.   Kemp, K.; Redondo, J.; Hares, K.; Rice, C.; Scolding, N.; Wilkins, A. Oxidative injury in multiple sclerosis cerebellar grey matter.
      Brain Res. 2016, 1642, 452–460. [CrossRef]
11.   van Horssen, J.; Schreibelt, G.; Drexhage, J.; Hazes, T.; Dijkstra, C.D.; van der Valk, P.; de Vries, H.E. Severe oxidative damage in
      multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 2008, 45, 1729–1737.
      [CrossRef] [PubMed]
12.   Haider, L.; Simeonidou, C.; Steinberger, G.; Hametner, S.; Grigoriadis, N.; Deretzi, G.; Kovacs, G.G.; Kutzelnigg, A.; Lassmann, H.;
      Frischer, J.-M. Multiple sclerosis deep grey matter, the relation between demyelination, neurodegeneration, inflammation and
      iron. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1386–1395. [CrossRef] [PubMed]
13.   Qin, J.; Goswami, R.; Balabanov, R.; Dawson, G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple
      sclerosis brain. J. Neurosci. Res. 2007, 85, 977–984. [CrossRef]
14.   Dong, Y.; D’Mello, C.; Pinsky, W.; Lozinski, B.M.; Kaushik, D.K.; Ghorbani, S.; Moezzi, D.; Brown, D.; Melo, F.C.; Zandee, S.; et al.
      Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia.
      Nat. Neurosci. 2021, 24, 489–503. [CrossRef]
15.   Spaas, J.; Franssen, W.M.A.; Keytsman, C.; Blancquaert, L.; Vanmierlo, T.; Bogie, J.; Broux, B.; Hellings, N.; van Horssen, J.;
      Posa, D.K.; et al. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune
      neuroinflammation. J. Neuroinflamm. 2021, 18, 255. [CrossRef]
16.   Bizzozero, O.A.; DeJesus, G.; Callahan, K.; Pastuszyn, A. Elevated protein carbonylation in the brain white matter and gray
      matter of patients with multiple sclerosis. J. Neurosci. Res. 2005, 81, 687–695. [CrossRef]
17.   Vladimirova, O.; O’Connor, J.; Cahill, A.; Alder, H.; Butunoi, C.; Kalman, B. Oxidative damage to DNA in plaques of MS brains.
      Mult. Scler. 1998, 4, 413–418. [CrossRef] [PubMed]
18.   Witte, M.E.; Bø, L.; Rodenburg, R.J.; Belien, J.A.; Musters, R.; Hazes, T.; Wintjes, L.T.; Smeitink, J.A.; Geurts, J.J.; De Vries, H.E.;
      et al. Enhanced number and activity of mitochondria in multiple sclerosis lesions. J. Pathol. 2009, 219, 193–204. [CrossRef]
      [PubMed]
19.   Choi, I.Y.; Lee, S.P.; Denney, D.R.; Lynch, S.G. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis
      patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult. Scler. 2011, 17, 289–296. [CrossRef]
20.   Choi, I.Y.; Lee, P.; Hughes, A.J.; Denney, D.R.; Lynch, S.G. Longitudinal changes of cerebral glutathione (GSH) levels associated
      with the clinical course of disease progression in patients with secondary progressive multiple sclerosis. Mult. Scler. 2017, 23,
      956–962. [CrossRef]
21.   Choi, I.Y.; Lee, P.; Adany, P.; Hughes, A.J.; Belliston, S.; Denney, D.R.; Lynch, S.G. In vivo evidence of oxidative stress in brains of
      patients with progressive multiple sclerosis. Mult. Scler. 2018, 24, 1029–1038. [CrossRef]
22.   van Horssen, J.; Schreibelt, G.; Bö, L.; Montagne, L.; Drukarch, B.; van Muiswinkel, F.L.; de Vries, H.E. NAD(P)H,quinone
      oxidoreductase 1 expression in multiple sclerosis lesions. Free Radic. Biol. Med. 2006, 41, 311–317. [CrossRef] [PubMed]
23.   Voigt, D.; Scheidt, U.; Derfuss, T.; Brück, W.; Junker, A. Expression of the Antioxidative Enzyme Peroxiredoxin 2 in Multiple
      Sclerosis Lesions in Relation to Inflammation. Int. J. Mol. Sci. 2017, 18, 760. [CrossRef] [PubMed]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                       12 of 20
24.   Fischer, M.T.; Sharma, R.; Lim, J.L.; Haider, L.; Frischer, J.M.; Drexhage, J.; Mahad, D.; Bradl, M.; van Horssen, J.; Lassmann, H.
      NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury.
      Brain 2012, 135, 886–899. [CrossRef] [PubMed]
25.   Stahnke, T.; Stadelmann, C.; Netzler, A.; Brück, W.; Richter-Landsberg, C. Differential upregulation of heme oxygenase-1 (HSP32)
      in glial cells after oxidative stress and in demyelinating disorders. J. Mol. Neurosci. 2007, 32, 25–37. [CrossRef] [PubMed]
26.   Gray, E.; Thomas, T.L.; Betmouni, S.; Scolding, N.; Love, S. Elevated activity and microglial expression of myeloperoxidase in
      demyelinated cerebral cortex in multiple sclerosis. Brain Pathol. 2008, 18, 86–95. [CrossRef]
27.   Holley, J.E.; Newcombe, J.; Winyard, P.G.; Gutowski, N.J. Peroxiredoxin V in multiple sclerosis lesions, predominant expression
      by astrocytes. Mult. Scler. 2007, 13, 955–961. [CrossRef] [PubMed]
28.   Mháille, A.N.; McQuaid, S.; Windebank, A.; Cunnea, P.; McMahon, J.; Samali, A.; FitzGerald, U. Increased expression of
      endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 2008,
      67, 200–211. [CrossRef]
29.   van Horssen, J.; Drexhage, J.A.; Flor, T.; Gerritsen, W.; van der Valk, P.; de Vries, H.E. Nrf2 and DJ1 are consistently upregulated in
      inflammatory multiple sclerosis lesions. Free Radic. Biol. Med. 2010, 49, 1283–1289. [CrossRef]
30.   Licht-Mayer, S.; Wimmer, I.; Traffehn, S.; Metz, I.; Brück, W.; Bauer, J.; Bradl, M.; Lassmann, H. Cell type-specific Nrf2 expression
      in multiple sclerosis lesions. Acta Neuropathol. 2015, 130, 263–277. [CrossRef]
31.   Zheng, J.; Bizzozero, O.A. Decreased activity of the 20S proteasome in the brain white Matter and gray matter of patients with
      multiple sclerosis. J. Neurochem. 2011, 117, 143–153. [CrossRef] [PubMed]
32.   Calabrese, V.; Raffaele, R.; Cosentino, E.; Rizza, V. Changes in cerebrospinal fluid levels of malondialdehyde and glutathione
      reductase activity in multiple sclerosis. Int. J. Clin. Pharmacol. Res. 1994, 14, 119–123. [PubMed]
33.   Calabrese, V.; Bella, R.; Testa, D.; Spadaro, F.; Scrofani, A.; Rizza, V.; Pennisi, G. Increased cerebrospinal fluid and plasma levels of
      ultraweak chemiluminescence are associated with changes in the thiol pool and lipid-soluble fluorescence in multiple sclerosis,
      the pathogenic role of oxidative stress. Drugs Exp. Clin. Res. 1998, 24, 125–131. [PubMed]
34.   Ghabaee, M.; Jabedari, B.; Al-E-Eshagh, N.; Ghaffarpour, M.; Asadi, F. Serum and cerebrospinal fluid antioxidant activity and
      lipid peroxidation in Guillain-Barre syndrome and multiple sclerosis patients. Int. J. Neurosci. 2010, 120, 301–304. [CrossRef]
      [PubMed]
35.   Gonzalo, H.; Brieva, L.; Tatzber, F.; Jové, M.; Cacabelos, D.; Cassanyé, A.; Lanau-Angulo, L.; Boada, J.; Serrano, J.C.; González,
      C.; et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J.
      Neurochem. 2012, 123, 622–634. [CrossRef] [PubMed]
36.   Seven, A.; Aslan, M.; Incir, S.; Altıntaş, A. Evaluation of oxidative and nitrosative stress in relapsing remitting multiple sclerosis,
      effect of corticosteroid therapy. Folia Neuropathol. 2013, 51, 58–64. [CrossRef]
37.   Bartova, R.; Petrlenicova, D.; Oresanska, K.; Prochazkova, L.; Liska, B.; Turecky, L.; Durfinova, M. Changes in levels of oxidative
      stress markers and some neuronal enzyme activities in cerebrospinal fluid of multiple sclerosis patients. Neuro. Endocrinol. Lett.
      2016, 37, 102–106. [PubMed]
38.   Burgetova, A.; Dusek, P.; Uher, T.; Vaneckova, M.; Vejrazka, M.; Burgetova, R.; Horakova, D.; Srpova, B.; Krasensky, J.; Lambert,
      L. Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron
      Deposition and Atrophy. Diagnostics 2022, 12, 1365. [CrossRef] [PubMed]
39.   Burgetova, A.; Dusek, P.; Uher, T.; Vaneckova, M.; Vejrazka, M.; Burgetova, R.; Horakova, D.; Srpova, B.; Kalousova, M.; Noskova,
      L.; et al. CSF Markers of Oxidative Stress Are Associated with Brain Atrophy and Iron Accumulation in a 2-Year Longitudinal
      Cohort of Early MS. Int. J. Mol. Sci. 2023, 24, 10048. [CrossRef]
40.   Pennisi, G.; Cornelius, C.; Cavallaro, M.M.; Salinaro, A.T.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Ventimiglia, B.;
      Migliore, M.R.; et al. Redox regulation of cellular stress response in multiple sclerosis. Biochem. Pharmacol. 2011, 82, 1490–1499.
      [CrossRef]
41.   Greco, A.; Minghetti, L.; Sette, G.; Fieschi, C.; Levi, G. Cerebrospinal fluid isoprostane shows oxidative stress in patients with
      multiple sclerosis. Neurology 1999, 53, 1876–1879. [CrossRef]
42.   Greco, A.; Minghetti, L.; Puopolo, M.; Cannoni, S.; Romano, S.; Pozzilli, C.; Levi, G. Cerebrospinal fluid isoprostanes are not
      related to inflammatory activity in relapsing-remitting multiple sclerosis. J. Neurol. Sci. 2004, 224, 23–27. [CrossRef] [PubMed]
43.   Mir, F.; Lee, D.; Ray, H.; Sadiq, S.A. CSF isoprostane levels are a biomarker of oxidative stress in multiple sclerosis. Neurol.
      Neuroimmunol. Neuroinflamm. 2014, 1, e21. [CrossRef] [PubMed]
44.   Lam, M.A.; Maghzal, G.J.; Khademi, M.; Piehl, F.; Ratzer, R.; Romme Christensen, J.; Sellebjerg, F.T.; Olsson, T.; Stocker, R. Absence
      of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 2016,
      3, e256. [CrossRef] [PubMed]
45.   Mattsson, N.; Haghighi, S.; Andersen, O.; Yao, Y.; Rosengren, L.; Blennow, K.; Praticò, D.; Zetterberg, H. Elevated cerebrospinal
      fluid F2-isoprostane levels indicating oxidative stress in healthy siblings of multiple sclerosis patients. Neurosci. Lett. 2007, 414,
      233–236. [CrossRef] [PubMed]
46.   Sbardella, E.; Greco, A.; Stromillo, M.L.; Prosperini, L.; Puopolo, M.; Cefaro, L.A.; Pantano, P.; De Stefano, N.; Minghetti, L.;
      Pozzilli, C. Isoprostanes in clinically isolated syndrome and early multiple sclerosis as biomarkers of tissue damage and predictors
      of clinical course. Mult. Scler. 2013, 19, 411–417. [CrossRef] [PubMed]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                           13 of 20
47.   Rommer, P.S.; Greilberger, J.; Salhofer-Polanyi, S.; Auff, E.; Leutmezer, F.; Herwig, R. Elevated levels of carbonyl proteins in
      cerebrospinal fluid of patients with neurodegenerative diseases. Tohoku J. Exp. Med. 2014, 234, 313–317. [CrossRef]
48.   Kalousová, M.; Havrdová, E.; Mrázová, K.; Spacek, P.; Braun, M.; Uhrová, J.; Germanová, A.; Zima, T. Advanced glycoxidation
      end products in patients with multiple sclerosis. Prague Med. Rep. 2005, 106, 167–174. [PubMed]
49.   Ljubisavljevic, S.; Stojanovic, I.; Vojinovic, S.; Stojanov, D.; Stojanovic, S.; Cvetkovic, T.; Savic, D.; Pavlovic, D. The patients
      with clinically isolated syndrome and relapsing remitting multiple sclerosis show different levels of advanced protein oxidation
      products and total thiol content in plasma and CSF. Neurochem. Int. 2013, 62, 988–997. [CrossRef]
50.   Pasquali, L.; Pecori, C.; Chico, L.; Iudice, A.; Siciliano, G.; Bonuccelli, U. Relation between plasmatic and cerebrospinal fluid
      oxidative stress biomarkers and intrathecal Ig synthesis in Multiple Sclerosis patients. J. Neuroimmunol. 2015, 283, 39–42.
      [CrossRef]
51.   Pomary, P.K.; Eichau, S.; Amigó, N.; Barrios, L.; Matesanz, F.; García-Valdecasas, M.; Hrom, I.; García Sánchez, M.I.; Garcia-Martin,
      M.L. Multifaceted Analysis of Cerebrospinal Fluid and Serum from Progressive Multiple Sclerosis Patients, Potential Role of
      Vitamin C and Metal Ion Imbalance in the Divergence of Primary Progressive Multiple Sclerosis and Secondary Progressive
      Multiple Sclerosis. J. Proteome Res. 2023, 22, 743–757. [PubMed]
52.   Zeman, D.; Adam, P.; Kalistová, H.; Sobek, O.; Kelbich, P.; Andel, J.; Andel, M. Transferrin in patients with multiple sclerosis, a
      comparison among various subgroups of multiple sclerosis patients. Acta Neurol. Scand. 2000, 101, 89–94. [CrossRef] [PubMed]
53.   De Riccardis, L.; Buccolieri, A.; Muci, M.; Pitotti, E.; De Robertis, F.; Trianni, G.; Manno, D.; Maffia, M. Copper and ceruloplasmin
      dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864,
      1828–1838. [CrossRef] [PubMed]
54.   Trentini, A.; Castellazzi, M.; Romani, A.; Squerzanti, M.; Baldi, E.; Caniatti, M.L.; Pugliatti, M.; Granieri, E.; Fainardi, E.; Bellini, T.;
      et al. Evaluation of total, ceruloplasmin-associated and type II ferroxidase activities in serum and cerebrospinal fluid of multiple
      sclerosis patients. J. Neurol. Sci. 2017, 377, 133–136. [CrossRef] [PubMed]
55.   Emami Aleagha, M.S.; Siroos, B.; Ahmadi, M.; Balood, M.; Palangi, A.; Haghighi, A.N.; Harirchian, M.H. Decreased concentration
      of Klotho in the cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. J. Neuroimmunol. 2015, 281, 5–8.
      [CrossRef] [PubMed]
56.   Voortman, M.M.; Damulina, A.; Pirpamer, L.; Pinter, D.; Pichler, A.; Enzinger, C.; Ropele, S.; Bachmaier, G.; Archelos, J.J.; Marsche,
      G.; et al. Decreased Cerebrospinal Fluid Antioxidative Capacity Is Related to Disease Severity and Progression in Early Multiple
      Sclerosis. Biomolecules 2021, 11, 1264. [CrossRef]
57.   Romme Christensen, J.; Börnsen, L.; Khademi, M.; Olsson, T.; Jensen, P.E.; Sørensen, P.S.; Sellebjerg, F. CSF inflammation and
      axonal damage are increased and correlate in progressive multiple sclerosis. Mult. Scler. 2013, 19, 877–884. [CrossRef]
58.   Castellazzi, M.; Trentini, A.; Romani, A.; Valacchi, G.; Bellini, T.; Bonaccorsi, G.; Fainardi, E.; Cavicchio, C.; Passaro, A.; Zuliani,
      G.; et al. Decreased arylesterase activity of paraoxonase-1 (PON-1) might be a common denominator of neuroinflammatory and
      neurodegenerative diseases. Int. J. Biochem. Cell Biol. 2016, 81, 356–363. [CrossRef]
59.   Jiménez-Jiménez, F.J.; de Bustos, F.; Molina, J.A.; de Andrés, C.; Gasalla, T.; Ortí-Pareja, M.; Zurdo, M.; Porta, J.; Castellano-Millán,
      F.; Arenas, J.; et al. Cerebrospinal fluid levels of alpha-tocopherol in patients with multiple sclerosis. Neurosci. Lett. 1998, 249,
      65–67. [CrossRef]
60.   Stampanoni Bassi, M.; Nuzzo, T.; Gilio, L.; Miroballo, M.; Casamassa, A.; Buttari, F.; Bellantonio, P.; Fantozzi, R.; Galifi, G.;
      Furlan, R.; et al. Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis. J.
      Neurochem. 2021, 159, 857–866. [CrossRef]
61.   de Bustos, F.; Navarro, J.A.; de Andrés, C.; Molina, J.A.; Jiménez-Jiménez, F.J.; Ortí-Pareja, M.; Gasalla, T.; Tallón-Barranco, A.;
      Martínez-Salio, A.; Arenas, J. Cerebrospinal fluid nitrate levels in patients with multiple sclerosis. Eur. Neurol. 1999, 41, 44–47.
      [CrossRef] [PubMed]
62.   Kastenbauer, S.; Kieseier, B.C.; Becker, B.F. No evidence of increased oxidative degradation of urate to allantoin in the CSF and
      serum of patients with multiple sclerosis. J. Neurol. 2005, 252, 611–612. [CrossRef] [PubMed]
63.   Amorini, A.M.; Petzold, A.; Tavazzi, B.; Eikelenboom, J.; Keir, G.; Belli, A.; Giovannoni, G.; Di Pietro, V.; Polman, C.; D’Urso,
      S.; et al. Increase of uric acid and purine comounds in biological fluids of multiple sclerosis patients. Clin. Biochem. 2009, 42,
      1001–1006. [CrossRef] [PubMed]
64.   Kuračka, L.; Kalnovičová, T.; Kucharská, J.; Turčáni, P. Multiple sclerosis: Evaluation of purine nucleotide metabolism in central
      nervous system in association with serum levels of selected fat-soluble antioxidants. Mult. Scler. Int. 2014, 2014, 759808. [CrossRef]
65.   Paar, M.; Seifried, K.; Cvirn, G.; Buchmann, A.; Khalil, M.; Oettl, K. Redox State of Human Serum Albumin in Multiple Sclerosis,
      A Pilot Study. Int. J. Mol. Sci. 2022, 23, 15806. [CrossRef] [PubMed]
66.   Hirotani, M.; Maita, C.; Niino, M.; Iguchi-Ariga, S.; Hamada, S.; Ariga, H.; Sasaki, H. Correlation between DJ-1 levels in the
      cerebrospinal fluid and the progression of disabilities in multiple sclerosis patients. Mult. Scler. 2008, 14, 1056–1060. [CrossRef]
      [PubMed]
67.   Bruno, A.; Dolcetti, E.; Azzolini, F.; Buttari, F.; Gilio, L.; Iezzi, E.; Galifi, G.; Borrelli, A.; Furlan, R.; Finardi, A.; et al. BACE1
      influences clinical manifestations and central inflammation in relapsing remitting multiple sclerosis. Mult. Scler. Relat. Disord.
      2023, 71, 104528. [CrossRef] [PubMed]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                        14 of 20
68.   Ljubisavljevicm, S.; Stojanovicm, I.; Cvetkovicm, T.; Vojinovicm, S.; Stojanovm, D.; Stojanovicm, D.; Stefanovicm, N.; Pavlovicm,
      D. Erythrocytes’ antioxidative capacity as a potential marker of oxidative stress intensity in neuroinflammation. J. Neurol. Sci.
      2014, 337, 8–13. [CrossRef]
69.   Syburra, C.; Passi, S. Oxidative stress in patients with multiple sclerosis. Ukr. Biokhim. Zh. 1999, 71, 112–115.
70.   Zagórski, T.; Dudek, I.; Berkan, L.; Mazurek, M.; Kedziora, J.; Chmielewski, H. Aktywność dysmutazy ponadtlenkowej (SOD-1) w
      erytrocytach chorych na stwardnienie rozsiane [Superoxide dismutase (SOD-1) activity in erythrocytes of patients with multiple
      sclerosis]. Neurol. Neurochir. Pol. 1991, 25, 725–730.
71.   PĂdureanu, R.; Albu, C.V.; PĂdureanu, V.; BugĂ, A.M. Oxidative Stress and Vitamin D as Predictors in Multiple Sclerosis. Curr.
      Health Sci. J. 2020, 46, 371–378. [PubMed]
72.   Naziroglu, M.; Kutluhan, S.; Ovey, I.S.; Aykur, M.; Yurekli, V.A. Modulation of oxidative stress, apoptosis, and calcium entry in
      leukocytes of patients with multiple sclerosis by Hypericum perforatum. Nutr. Neurosci. 2014, 17, 214–221. [CrossRef] [PubMed]
73.   Koch, M.; Ramsaransing, G.S.; Arutjunyan, A.V.; Stepanov, M.; Teelken, A.; Heersema, D.J.; De Keyser, J. Oxidative stress in serum
      and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J. Neurol. 2006, 253, 483–487.
      [CrossRef] [PubMed]
74.   Koch, M.; Mostert, J.; Arutjunyan, A.; Stepanov, M.; Teelken, A.; Heersema, D.; De Keyser, J. Peripheral blood leukocyte NO
      production and oxidative stress in multiple sclerosis. Mult. Scler. 2008, 14, 159–265. [CrossRef] [PubMed]
75.   Polachini, C.R.; Spanevello, R.M.; Zanini, D.; Baldissarelli, J.; Pereira, L.B.; Schetinger, M.R.; da Cruz, I.B.; Assmann, C.E.; Bagatini,
      M.D.; Morsch, V.M. Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers. and Vitamin D
      Levels in Patients with Multiple Sclerosis. Neurotox. Res. 2016, 29, 230–242. [CrossRef] [PubMed]
76.   Mossberg, N.; Movitz, C.; Hellstrand, K.; Bergström, T.; Nilsson, S.; Andersen, O. Oxygen radical production in leukocytes and
      disease severity in multiple sclerosis. J. Neuroimmunol. 2009, 213, 131–134. [CrossRef] [PubMed]
77.   Emamgholipour, S.; Hossein-Nezhad, A.; Sahraian, M.A.; Askarisadr, F.; Ansari, M. Evidence for possible role of melatonin in
      reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci. 2016, 145, 34–41.
      [CrossRef] [PubMed]
78.   Gonzalo, H.; Nogueras, L.; Gil-Sánchez, A.; Hervás, J.V.; Valcheva, P.; González-Mingot, C.; Martin-Gari, M.; Canudes, M.; Peralta,
      S.; Solana, M.J.; et al. Impairment of Mitochondrial Redox Status in Peripheral Lymphocytes of Multiple Sclerosis Patients. Front.
      Neurosci. 2019, 13, 938. [CrossRef] [PubMed]
79.   Borisovs, V.; L, eonova, E.; Baumane, L.; Kalnin, a, J.; Mjagkova, N.; Sjakste, N. Blood levels of nitric oxide and DNA breaks assayed
      in whole blood and isolated peripheral blood mononucleated cells in patients with multiple sclerosis. Mutat. Res. Genet. Toxicol.
      Environ. Mutagen. 2019, 843, 90–94. [CrossRef]
80.   Pistono, C.; Monti, M.C.; Boiocchi, C.; Berzolari, F.G.; Osera, C.; Mallucci, G.; Cuccia, M.; Pascale, A.; Montomoli, C.; Bergamaschi,
      R. Response to oxidative stress of peripheral blood mononuclear cells from multiple sclerosis patients and healthy controls. Cell
      Stress Chaperones 2020, 25, 81–91. [CrossRef]
81.   Grecchi, S.; Mazzini, G.; Lisa, A.; Armentero, M.T.; Bergamaschi, R.; Romani, A.; Blandini, F.; Di Perri, C.; Scovassi, A.I. Search
      for cellular stress biomarkers in lymphocytes from patients with multiple sclerosis: A pilot study. PLoS ONE 2012, 7, e44935.
      [CrossRef]
82.   Hargreaves, I.; Mody, N.; Land, J.; Heales, S. Blood Mononuclear Cell Mitochondrial Respiratory Chain Complex IV Activity Is
      Decreased in Multiple Sclerosis Patients, Effects of β-Interferon Treatment. J. Clin. Med. 2018, 7, 36. [CrossRef] [PubMed]
83.   Dziedzic, A.; Morel, A.; Miller, E.; Bijak, M.; Sliwinski, T.; Synowiec, E.; Ceremuga, M.; Saluk-Bijak, J. Oxidative Damage of Blood
      Platelets Correlates with the Degree of Psychophysical Disability in Secondary Progressive Multiple Sclerosis. Oxid. Med. Cell.
      Longev. 2020, 2020, 2868014. [CrossRef] [PubMed]
84.   Morel, A.; Bijak, M.; Miller, E.; Rywaniak, J.; Miller, S.; Saluk, J. Relationship between the Increased Haemostatic Properties of
      Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage. Oxid. Med. Cell.
      Longev. 2015, 2015, 240918. [CrossRef] [PubMed]
85.   Miller, E.; Mrowicka, M.; Saluk-Juszczak, J.; Ireneusz, M. The level of isoprostanes as a non-invasive marker for in vivo lipid
      peroxidation in secondary progressive multiple sclerosis. Neurochem. Res. 2011, 36, 1012–1016. [CrossRef]
86.   Tavazzi, B.; Batocchi, A.P.; Amorini, A.M.; Nociti, V.; D’Urso, S.; Longo, S.; Gullotta, S.; Picardi, M.; Lazzarino, G. Serum metabolic
      profile in multiple sclerosis patients. Mult. Scler. Int. 2011, 2011, 167156. [CrossRef] [PubMed]
87.   Acar, A.; Ugur Cevik, M.; Evliyaoglu, O.; Uzar, E.; Tamam, Y.; Arıkanoglu, A.; Yucel, Y.; Varol, S.; Onder, H.; Taşdemir, N.
      Evaluation of serum oxidant/antioxidant balance in multiple sclerosis. Acta Neurol. Belg. 2012, 112, 275–280. [CrossRef] [PubMed]
88.   Yousefi, B.; Ahmadi, Y.; Ghorbanihaghjo, A.; Faghfoori, Z.; Irannejad, V.S. Serum arsenic and lipid peroxidation levels in patients
      with multiple sclerosis. Biol. Trace Elem. Res. 2014, 158, 276–279. [CrossRef] [PubMed]
89.   Gironi, M.; Borgiani, B.; Mariani, E.; Cursano, C.; Mendozzi, L.; Cavarretta, R.; Saresella, M.; Clerici, M.; Comi, G.; Rovaris, M.;
      et al. Oxidative stress is differentially present in multiple sclerosis courses, early evident. and unrelated to treatment. J. Immunol.
      Res. 2014, 2014, 961863. [CrossRef]
90.   Adamczyk-Sowa, M.; Pierzchala, K.; Sowa, P.; Polaniak, R.; Kukla, M.; Hartel, M. Influence of melatonin supplementation on
      serum antioxidative properties and impact of the quality of life in multiple sclerosis patients. J. Physiol. Pharmacol. 2014, 65,
      543–550.
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                         15 of 20
91.    Karlík, M.; Valkovič, P.; Hančinová, V.; Krížová, L.; Tóthová, L’.; Celec, P. Markers of oxidative stress in plasma and saliva in
       patients with multiple sclerosis. Clin. Biochem. 2015, 48, 24–28. [CrossRef] [PubMed]
92.    Morel, A.; Bijak, M.; Niwald, M.; Miller, E.; Saluk, J. Markers of oxidative/nitrative damage of plasma proteins correlated with
       EDSS and BDI scores in patients with secondary progressive multiple sclerosis. Redox Rep. 2017, 22, 547–555. [CrossRef] [PubMed]
93.    Juybari, K.B.; Ebrahimi, G.; Momeni Moghaddam, M.A.; Asadikaram, G.; Torkzadeh-Mahani, M.; Akbari, M.; Mirzamohammadi,
       S.; Karimi, A.; Nematollahi, M.H. Evaluation of serum arsenic and its effects on antioxidant alterations in relapsing-remitting
       multiple sclerosis patients. Mult. Scler. Relat. Disord. 2018, 19, 79–84. [CrossRef] [PubMed]
94.    Padureanu, R.; Albu, C.V.; Mititelu, R.R.; Bacanoiu, M.V.; Docea, A.O.; Calina, D.; Padureanu, V.; Olaru, G.; Sandu, R.E.; Malin,
       R.D.; et al. Oxidative Stress and Inflammation Interdependence in Multiple Sclerosis. J. Clin. Med. 2019, 8, 1815. [CrossRef]
       [PubMed]
95.    Joodi Khanghah, O.; Nourazarian, A.; Khaki-Khatibi, F.; Nikanfar, M.; Laghousi, D.; Vatankhah, A.M.; Moharami, S. Evaluation
       of the Diagnostic and Predictive Value of Serum Levels of ANT1, ATG5, and Parkin in Multiple Sclerosis. Clin. Neurol. Neurosurg.
       2020, 197, 106197. [CrossRef] [PubMed]
96.    Talebi, M.; Majdi, A.; Nasiri, E.; Naseri, A.; Sadigh-Eteghad, S. The correlation between circulating inflammatory, oxidative
       stress, and neurotrophic factors level with the cognitive outcomes in multiple sclerosis patients. Neurol. Sci. 2021, 42, 2291–2300.
       [CrossRef] [PubMed]
97.    Obradovic, D.; Andjelic, T.; Ninkovic, M.; Dejanovic, B.; Kotur-Stevuljevic, J. Superoxide dismutase (SOD), advanced oxidation
       protein products (AOPP), and disease-modifying treatment are related to better relapse recovery after corticosteroid treatment in
       multiple sclerosis. Neurol. Sci. 2021, 42, 3241–3247. [CrossRef]
98.    Ghonimi, N.A.M.; Elsharkawi, K.A.; Khyal, D.S.M.; Abdelghani, A.A. Serum malondialdehyde as a lipid peroxidation marker
       in multiple sclerosis patients and its relation to disease characteristics. Mult. Scler. Relat. Disord. 2021, 51, 102941. [CrossRef]
       [PubMed]
99.    Borisovs, V.; Bodrenko, J.; Kalnina, J.; Sjakste, N. Nitrosative stress parameters and the level of oxidized DNA bases in patients
       with multiple sclerosis. Metab. Brain Dis. 2021, 36, 1935–1941. [CrossRef]
100.   Naseri, A.; Forghani, N.; Sadigh-Eteghad, S.; Shanehbandi, D.; Asadi, M.; Nasiri, E.; Talebi, M. Circulatory antioxidant and
       oxidative stress markers are in correlation with demographics but not cognitive functions in multiple sclerosis patients. Mult.
       Scler. Relat. Disord. 2022, 57, 103432. [CrossRef]
101.   Ortiz, G.G.; Macías-Islas, M.A.; Pacheco-Moisés, F.P.; Cruz-Ramos, J.A.; Sustersik, S.; Barba, E.A.; Aguayo, A. Oxidative stress is
       increased in serum from Mexican patients with relapsing-remitting multiple sclerosis. Dis. Markers 2009, 26, 35–39. [CrossRef]
       [PubMed]
102.   Besler, H.T.; Comoğlu, S. Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with
       multiple sclerosis. Nutr. Neurosci. 2003, 6, 189–196. [CrossRef]
103.   Bizoń, A.; Chojdak-Łukasiewicz, J.; Kołtuniuk, A.; Budrewicz, S.; Pokryszko-Dragan, A.; Piwowar, A. Evaluation of Selected
       Oxidant/Antioxidant Parameters in Patients with Relapsing-Remitting Multiple Sclerosis Undergoing Disease-Modifying
       Therapies. Antioxidants 2022, 11, 2416. [CrossRef] [PubMed]
104.   Koch, M.; Mostert, J.; Arutjunyan, A.V.; Stepanov, M.; Teelken, A.; Heersema, D.; De Keyser, J. Plasma lipid peroxidation and
       progression of disability in multiple sclerosis. Eur. J. Neurol. 2007, 14, 529–533. [CrossRef] [PubMed]
105.   Ferretti, G.; Bacchetti, T.; Principi, F.; Di Ludovico, F.; Viti, B.; Angeleri, V.A.; Danni, M.; Provinciali, L. Increased levels of lipid
       hydroperoxides in plasma of patients with multiple sclerosis, a relationship with paraoxonase activity. Mult. Scler. 2005, 11,
       677–682. [CrossRef]
106.   Oliveira, S.R.; Simão, A.N.; Kallaur, A.P.; de Almeida, E.R.; Morimoto, H.K.; Lopes, J.; Dichi, I.; Kaimen-Maciel, D.R.; Reiche, E.M.
       Disability in patients with multiple sclerosis: Influence of insulin resistance, adiposity, and oxidative stress. Nutrition 2014, 30,
       268–273. [CrossRef] [PubMed]
107.   Kallaur, A.P.; Lopes, J.; Oliveira, S.R.; Simão, A.N.; Reiche, E.M.; de Almeida, E.R.; Morimoto, H.K.; de Pereira, W.L.; Alfieri,
       D.F.; Borelli, S.D.; et al. Immune-Inflammatory and Oxidative and Nitrosative Stress Biomarkers of Depression Symptoms in
       Subjects with Multiple Sclerosis; Increased Peripheral Inflammation but Less Acute Neuroinflammation. Mol. Neurobiol. 2016, 53,
       5191–5202. [CrossRef] [PubMed]
108.   Kallaur, A.P.; Reiche, E.M.V.; Oliveira, S.R.; Simão, A.N.C.; Pereira, W.L.C.J.; Alfieri, D.F.; Flauzino, T.; Proença, C.M.; Lozovoy,
       M.A.B.; Kaimen-Maciel, D.R.; et al. Genetic, Immune-Inflammatory, and Oxidative Stress Biomarkers as Predictors for Disability
       and Disease Progression in Multiple Sclerosis. Mol. Neurobiol. 2017, 54, 31–44. [CrossRef]
109.   Oliveira, S.R.; Kallaur, A.P.; Simão, A.N.; Morimoto, H.K.; Lopes, J.; Panis, C.; Petenucci, D.L.; da Silva, E.; Cecchini, R.; Kaimen-
       Maciel, D.R.; et al. Oxidative stress in multiple sclerosis patients in clinical remission, association with the expanded disability
       status scale. J. Neurol. Sci. 2012, 321, 49–53. [CrossRef]
110.   Ferreira, K.P.Z.; Oliveira, S.R.; Kallaur, A.P.; Kaimen-Maciel, D.R.; Lozovoy, M.A.B.; de Almeida, E.R.D.; Morimoto, H.K.;
       Mezzaroba, L.; Dichi, I.; Reiche, E.M.V.; et al. Disease progression and oxidative stress are associated with higher serum ferritin
       levels in patients with multiple sclerosis. J. Neurol. Sci. 2017, 373, 236–241. [CrossRef]
111.   Oliveira, S.R.; Simão, A.N.C.; Alfieri, D.F.; Flauzino, T.; Kallaur, A.P.; Mezzaroba, L.; Lozovoy, M.A.B.; Sabino, B.S.; Ferreira,
       K.P.Z.; Pereira, W.L.C.J.; et al. Vitamin D deficiency is associated with disability and disease progression in multiple sclerosis
       patients independently of oxidative and nitrosative stress. J. Neurol. Sci. 2017, 381, 213–219. [CrossRef]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                            16 of 20
112. Mezzaroba, L.; Simão, A.N.C.; Oliveira, S.R.; Flauzino, T.; Alfieri, D.F.; de Carvalho Jennings Pereira, W.L.; Kallaur, A.P.; Lozovoy,
     M.A.B.; Kaimen-Maciel, D.R.; Maes, M.; et al. Antioxidant and Anti-inflammatory Diagnostic Biomarkers in Multiple Sclerosis, A
     Machine Learning Study. Mol. Neurobiol. 2020, 57, 2167–2178. [CrossRef] [PubMed]
113. Karahalil, B.; Orhan, G.; Ak, F. The impact of detoxifying and repair gene polymorphisms and the levels of serum ROS in the
     susceptibility to multiple sclerosis. Clin. Neurol. Neurosurg. 2015, 139, 288–294. [CrossRef] [PubMed]
114. Siotto, M.; Filippi, M.M.; Simonelli, I.; Landi, D.; Ghazaryan, A.; Vollaro, S.; Ventriglia, M.; Pasqualetti, P.; Rongioletti, M.C.A.;
     Squitti, R.; et al. Oxidative Stress Related to Iron Metabolism in Relapsing Remitting Multiple Sclerosis Patients With Low
     Disability. Front. Neurosci. 2019, 13, 86. [CrossRef] [PubMed]
115. Flauzino, T.; Simão, A.N.C.; de Carvalho Jennings Pereira, W.L.; Alfieri, D.F.; Oliveira, S.R.; Kallaur, A.P.; Lozovoy, M.A.B.;
     Kaimen-Maciel, D.R.; Maes, M.; Reiche, E.M.V. Disability in multiple sclerosis is associated with age and inflammatory, metabolic
     and oxidative/nitrosative stress biomarkers: Results of multivariate and machine learning procedures. Metab. Brain Dis. 2019, 34,
     1401–1413. [CrossRef]
116. Teunissen, C.E.; Sombekke, M.; van Winsen, L.; Killestein, J.; Barkhof, F.; Polman, C.H.; Dijkstra, C.D.; Blankenstein, M.A.; Pratico,
     D. Increased plasma 8,12-iso-iPF2alpha- VI levels in relapsing multiple sclerosis patients are not predictive of disease progression.
     Mult. Scler. 2012, 18, 1092–1098. [CrossRef]
117. Miller, E.; Walczak, A.; Saluk, J.; Ponczek, M.B.; Majsterek, I. Oxidative modification of patient’s plasma proteins and its role in
     pathogenesis of multiple sclerosis. Clin. Biochem. 2012, 45, 26–30. [CrossRef]
118. Tasset, I.; Agüera, E.; Sánchez-López, F.; Feijóo, M.; Giraldo, A.I.; Cruz, A.H.; Gascón, F.; Túnez, I. Peripheral oxidative stress in
     relapsing-remitting multiple sclerosis. Clin. Biochem. 2012, 45, 440–444. [CrossRef]
119. Fiorini, A.; Koudriavtseva, T.; Bucaj, E.; Coccia, R.; Foppoli, C.; Giorgi A Schininà, M.E.; Di Domenico, F.; De Marco, F.; Perluigi,
     M. Involvement of oxidative stress in occurrence of relapses in multiple sclerosis, the spectrum of oxidatively modified serum
     proteins detected by proteomics and redox proteomics analysis. PLoS ONE 2013, 8, e65184. [CrossRef]
120. Sadowska-Bartosz, I.; Adamczyk-Sowa, M.; Galiniak, S.; Mucha, S.; Pierzchala, K.; Bartosz, G. Oxidative modification of serum
     proteins in multiple sclerosis. Neurochem. Int. 2013, 63, 507–516. [CrossRef]
121. Sadowska-Bartosz, I.; Adamczyk-Sowa, M.; Gajewska, A.; Bartosz, G. Oxidative modification of blood serum proteins in multiple
     sclerosis after interferon or mitoxantrone treatment. J. Neuroimmunol. 2014, 266, 67–74. [CrossRef] [PubMed]
122. Pasquali, L.; Pecori, C.; Lucchesi, C.; LoGerfo, A.; Iudice, A.; Siciliano, G.; Bonuccelli, U. Plasmatic oxidative stress biomarkers in
     multiple sclerosis, relation with clinical and demographic characteristics. Clin. Biochem. 2015, 48, 19–23. [CrossRef] [PubMed]
123. de Carvalho Jennings Pereira, W.L.; Flauzino, T.; Alfieri, D.F.; Oliveira, S.R.; Kallaur, A.P.; Simão, A.N.C.; Lozovoy, M.A.B.;
     Kaimen-Maciel, D.R.; Maes, M.; Reiche, E.M.V. Immune-Inflammatory, metabolic and hormonal biomarkers are associated with
     the clinical forms and disability progression in patients with multiple sclerosis: A follow-up study. J. Neurol. Sci. 2020, 410, 116630.
     [CrossRef] [PubMed]
124. Bizoń, A.; Chojdak-Łukasiewicz, J.; Budrewicz, S.; Pokryszko-Dragan, A.; Piwowar, A. Exploring the Relationship between
     Antioxidant Enzymes, Oxidative Stress Markers, and Clinical Profile in Relapsing-Remitting Multiple Sclerosis. Antioxidants 2023,
     12, 1638. [CrossRef] [PubMed]
125. Ljubisavljevic, S.; Stojanovic, I.; Basic, J.; Pavlovic, D.A. The Validation Study of Neurofilament Heavy Chain and 8-hydroxy-2′ -
     deoxyguanosine as Plasma Biomarkers of Clinical/Paraclinical Activity in First and Relapsing-Remitting Demyelination Acute
     Attacks. Neurotox. Res. 2016, 30, 530–538. [CrossRef]
126. Vasić, M.; Topić, A.; Marković, B.; Milinković, N.; Dinčić, E. Oxidative stress-related risk of the multiple sclerosis development. J.
     Med. Biochem. 2023, 42, 1–8. [CrossRef]
127. Jamroz-Wiśniewska, A.; Bełtowski, J.; Wójcicka, G.; Bartosik-Psujek, H.; Rejdak, K. Cladribine Treatment Improved Homocysteine
     Metabolism and Increased Total Serum Antioxidant Activity in Secondary Progressive Multiple Sclerosis Patients. Oxid. Med.
     Cell. Longev. 2020, 2020, 1654754. [CrossRef] [PubMed]
128. Sfagos, C.; Makis, A.C.; Chaidos, A.; Hatzimichael, E.C.; Dalamaga, A.; Kosma, K.; Bourantas, K.L. Serum ferritin, transferrin and
     soluble transferrin receptor levels in multiple sclerosis patients. Mult. Scler. 2005, 11, 272–275. [CrossRef] [PubMed]
129. Visconti, A.; Cotichini, R.; Cannoni, S.; Bocca, B.; Forte, G.; Ghazaryan, A.; Santucci, S.; D’Ippolito, C.; Stazi, M.A.; Salvetti, M.;
     et al. Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: A six-month
     longitudinal follow-up study. Ann. Ist. Super. Sanita. 2005, 41, 217–222.
130. Alimonti, A.; Ristori, G.; Giubilei, F.; Stazi, M.A.; Pino, A.; Visconti, A.; Brescianini, S.; Sepe Monti, M.; Forte, G.; Stanzione, P.; et al.
     Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology
     2007, 28, 450–456. [CrossRef]
131. Abo-Krysha, N.; Rashed, L. The role of iron dysregulation in the pathogenesis of multiple sclerosis, an Egyptian study. Mult.
     Scler. 2008, 14, 602–608. [CrossRef] [PubMed]
132. Ristori, G.; Brescianini, S.; Pino, A.; Visconti, A.; Vittori, D.; Coarelli, G.; Cotichini, R.; Bocca, B.; Forte, G.; Pozzilli, C.; et al. Serum
     elements and oxidative status in clinically isolated syndromes, imbalance and predictivity. Neurology 2011, 76, 549–555. [CrossRef]
     [PubMed]
133. Doğan, H.O.; Yildiz, Ö.K. Serum NADPH oxidase concentrations and the associations with iron metabolism in relapsing remitting
     multiple sclerosis. J. Trace Elem. Med. Biol. 2019, 55, 39–43. [CrossRef] [PubMed]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                          17 of 20
134. Toczylowska, B.; Zieminska, E.; Podlecka-Pietowska, A.; Ruszczynska, A.; Chalimoniuk, M. Serum metabolic profiles and metal
     levels of patients with multiple sclerosis and patients with neuromyelitis optica spectrum disorders—NMR spectroscopy and
     ICP-MS studies. Mult. Scler. Relat. Disord. 2022, 60, 103672. [CrossRef] [PubMed]
135. Sakai, T.; Inoue, A.; Koh, C.S.; Ikeda, S. [A study of free radical defense and oxidative stress in the sera of patients with
     neuroimmunological disorders]. Arerugi 2000, 49, 12–18.
136. Cervellati, C.; Romani, A.; Fainardi, E.; Trentini, A.; Squerzanti, M.; Baldi, E.; Caniatti, M.L.; Granieri, E.; Bellini, T.; Castellazzi, M.
     Serum ferroxidase activity in patients with multiple sclerosis: A pilot study. In Vivo 2014, 28, 1197–1200. [PubMed]
137. Adamczyk-Sowa, M.; Sowa, P.; Mucha, S.; Zostawa, J.; Mazur, B.; Owczarek, M.; Pierzchała, K. Changes in Serum Ceruloplasmin
     Levels Based on Immunomodulatory Treatments and Melatonin Supplementation in Multiple Sclerosis Patients. Med. Sci. Monit.
     2016, 22, 2484–24891. [CrossRef] [PubMed]
138. Hadžović-Džuvo, A.; Lepara, O.; Valjevac, A.; Avdagić, N.; Hasić, S.; Kiseljaković, E.; Ibragić, S.; Alajbegović, A. Serum total
     antioxidant capacity in patients with multiple sclerosis. Bosn. J. Basic. Med. Sci. 2011, 11, 33–36. [CrossRef] [PubMed]
139. Kirbas, A.; Kirbas, S.; Anlar, O.; Efe, H.; Yilmaz, A. Serum paraoxonase and arylesterase activity and oxidative status in patients
     with multiple sclerosis. J. Clin. Neurosci. 2013, 20, 1106–1109. [CrossRef]
140. Aydin, O.; Ellidag, H.Y.; Eren, E.; Kurtulus, F.; Yaman, A.; Yılmaz, N. Ischemia modified albumin is an indicator of oxidative
     stress in multiple sclerosis. Biochem. Med. 2014, 24, 383–389. [CrossRef]
141. Siváková, M.; Siarnik, P.; Filippi, P.; Vlcek, M.; Imrich, R.; Turcani, P.; Zitnanova, I.; Penesova, A.; Radikova, Z.; Kollar, B. Oxidative
     stress in patients with newly diagnosed multiple sclerosis, any association with subclinical atherosclerosis? Neuro Endocrinol. Lett.
     2019, 40, 135–140. [PubMed]
142. Yevgi, R.; Demir, R. Oxidative stress activity of fingolimod in multiple sclerosis. Clin. Neurol. Neurosurg. 2021, 202, 106500.
     [CrossRef] [PubMed]
143. Ozben, S.; Kucuksayan, E.; Koseoglu, M.; Erel, O.; Neselioglu, S.; Ozben, T. Plasma thiol/disulphide homeostasis changes in
     patients with relapsing-remitting multiple sclerosis. Int. J. Clin. Pract. 2021, 75, e14241. [CrossRef] [PubMed]
144. Arslan, B.; Arslan, G.A.; Tuncer, A.; Karabudak, R.; Dinçel, A.S. Evaluation of Thiol Homeostasis in Multiple Sclerosis and
     Neuromyelitis Optica Spectrum Disorders. Front. Neurol. 2021, 12, 716195. [CrossRef] [PubMed]
145. Smirnova, L.P.; Mednova, I.A.; Krotenko, N.M.; Alifirova, V.M.; Ivanova, S.A. IgG-Dependent Dismutation of Superoxide in
     Patients with Different Types of Multiple Sclerosis and Healthy Subjects. Oxid. Med. Cell. Longev. 2020, 2020, 8171020. [CrossRef]
146. Essenburg, C.; Browne, R.W.; Ghazal, D.; Tamaño-Blanco, M.; Jakimovski, D.; Weinstock-Guttman, B.; Zivadinov, R.; Ramanathan,
     M. Antioxidant defense enzymes in multiple sclerosis, A 5-year follow-up study. Eur. J. Neurol. 2023, 30, 2338–2347. [CrossRef]
147. Chitsaz, N.; Dehghani, L.; Safi, A.; Esmalian-Afyouni, N.; Shaygannejad, V.; Rezvani, M.; Sohrabi, K.; Moridi, K.; Moayednia, M.
     Evaluation of glucose-6-phosphate dehydrogenase serum level in patients with multiple sclerosis and neuromyelitis optica. Iran J.
     Neurol. 2019, 18, 150–153. [CrossRef] [PubMed]
148. Jamroz-Wiśniewska, A.; Bełtowski, J.; Bartosik-Psujek, H.; Wójcicka, G.; Rejdak, K. Processes of plasma protein N-
     homocysteinylation in multiple sclerosis. Int. J. Neurosci. 2017, 127, 709–715. [CrossRef]
149. Kanesaka, T.; Mori, M.; Hattori, T.; Oki, T.; Kuwabara, S. Serum matrix metalloproteinase-3 levels correlate with disease activity
     in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2006, 77, 185–188. [CrossRef]
150. Mahmoudian, E.; Khalilnezhad, A.; Gharagozli, K.; Amani, D. Thioredoxin-1,redox factor-1 and thioredoxin-interacting protein,
     mRNAs are differentially expressed in Multiple Sclerosis patients exposed and non-exposed to interferon and immunosuppressive
     treatments. Gene 2017, 634, 29–36. [CrossRef]
151. De Bustos, F.; Jiménez-Jiménez, F.J.; Molina, J.A.; Gómez-Escalonilla, C.; de Andrés, C.; del Hoyo, P.; Zurdo, M.; Tallón-Barranco,
     A.; Berbel, A.; Porta-Etessam, J.; et al. Serum levels of coenzyme Q10 in patients with multiple sclerosis. Acta Neurol. Scand. 2000,
     101, 209–211. [CrossRef] [PubMed]
152. de Bustos, F.; Jiménez-Jiménez, F.J.; Molina, J.A.; de Andrés, C.; Gasalla, T.; Ortí-Pareja, M.; Ayuso-Peralta, L.; Berbel, A.;
     Castellano-Millán, F.; Arenas, J.; et al. Serum levels of alpha-carotene.; beta-carotene.; and retinol in patients with multiple
     sclerosis. Acta Neurol. Belg. 2000, 100, 41–43. [PubMed]
153. Ramsaransing, G.S.; Fokkema, M.R.; Teelken, A.; Arutjunyan, A.V.; Koch, M.; De Keyser, J. Plasma homocysteine levels in
     multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2006, 77, 189–192. [CrossRef] [PubMed]
154. Aliomrani, M.; Sahraian, M.A.; Shirkhanloo, H.; Sharifzadeh, M.; Khoshayand, M.R.; Ghahremani, M.H. Blood Concentrations of
     Cadmium and Lead in Multiple Sclerosis Patients from Iran. Iran J. Pharm. Res. 2016, 15, 825–833. [PubMed]
155. Aliomrani, M.; Sahraian, M.A.; Shirkhanloo, H.; Sharifzadeh, M.; Khoshayand, M.R.; Ghahremani, M.H. Correlation between
     heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurol. Sci. 2017, 38, 1271–1278.
     [CrossRef] [PubMed]
156. Massa, J.; O’Reilly, E.; Munger, K.L.; Delorenze, G.N.; Ascherio, A. Serum uric acid and risk of multiple sclerosis. J. Neurol. 2009,
     256, 1643–1648. [CrossRef] [PubMed]
157. Fuhua, P.; Xuhui, D.; Zhiyang, Z.; Ying, J.; Yu, Y.; Feng, T.; Jia, L.; Lijia, G.; Xueqiang, H. Antioxidant status of bilirubin and uric
     acid in patients with myasthenia gravis. Neuroimmunomodulation 2012, 9, 43–49. [CrossRef] [PubMed]
158. Yang, D.; Weng, Y.; Lin, H.; Xie, F.; Yin, F.; Lou, K.; Zhou, X.; Han, Y.; Li, X.; Zhang, X. Serum uric acid levels in patients with
     myasthenia gravis are inversely correlated with disability. Neuroreport 2016, 27, 301–305. [CrossRef]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                     18 of 20
159. Katarina, V.; Gordana, T.; Svetlana, M.D.; Milica, B. Oxidative stress and neuroinflammation should be both considered in the
     occurrence of fatigue and depression in multiple sclerosis. Acta Neurol. Belg. 2020, 120, 853–861. [CrossRef]
160. Alrouji, M.; Manouchehrinia, A.; Aram, J.; Alotaibi, A.; Alhajlah, S.; Almuhanna, Y.; Alomeir, O.; Shamsi, A.; Gran, B.;
     Constantinescu, C.S. Investigating the Effect of Cigarette Smoking on Serum Uric Acid Levels in Multiple Sclerosis Patients: A
     Cross Sectional Study. Brain Sci. 2023, 13, 800. [CrossRef]
161. Altas, M.; Uca, A.U.; Akdag, T.; Odabas, F.O.; Tokgoz, O.S. Serum levels of irisin and nesfatin-1 in multiple sclerosis. Arq.
     Neuropsiquiatr. 2022, 80, 161–167. [CrossRef] [PubMed]
162. Exley, C.; Mamutse, G.; Korchazhkina, O.; Pye, E.; Strekopytov, S.; Polwart, A.; Hawkins, C. Elevated urinary excretion of
     aluminium and iron in multiple sclerosis. Mult. Scler. 2006, 12, 533–540. [CrossRef] [PubMed]
163. Guan, J.Z.; Guan, W.P.; Maeda, T.; Guoqing, X.; Wan, G.Z.; Makino, N. Patients with multiple sclerosis show increased oxidative
     stress markers and somatic telomere length shortening. Mol. Cell. Biochem. 2015, 400, 183–187. [CrossRef]
164. Khorami, H.; Neyestani, T.; Kadkhodaee, M.; Lotfi, J. Increased urinary neopterin, creatinine ratio as a marker of activation of
     cell-mediated immunity and oxidative stress in the Iranian patients with multiple sclerosis. Iran J. Allergy Asthma Immunol. 2003,
     2, 155–158.
165. Tenorio-Laranga, J.; Peltonen, I.; Keskitalo, S.; Duran-Torres, G.; Natarajan, R.; Männistö, P.T.; Nurmi, A.; Vartiainen, N.; Airas, L.;
     Elovaara, I.; et al. Alteration of prolyl oligopeptidase and activated α-2-macroglobulin in multiple sclerosis subtypes and in the
     clinically isolated syndrome. Biochem. Pharmacol. 2013, 85, 1783–1794. [CrossRef] [PubMed]
166. Agúndez, J.A.; Arroyo, R.; Ledesma, M.C.; Martínez, C.; Ladero, J.M.; de Andrés, C.; Jiménez-Jiménez, F.J.; Molina, J.A.; Alvarez-
     Cermeño, J.C.; Varela de Seijas, E.; et al. Frequency of CYP2D6 allelic variants in multiple sclerosis. Acta Neurol. Scand. 1995, 92,
     464–467. [CrossRef]
167. Mann, C.L.; Davies, M.B.; Boggild, M.D.; Alldersea, J.; Fryer, A.A.; Jones, P.W.; Ko Ko, C.; Young, C.; Strange, R.C.; Hawkins, C.P.
     Glutathione S-transferase polymorphisms in MS, their relationship to disability. Neurology 2000, 54, 552–557. [CrossRef] [PubMed]
168. Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Pisa, D.; Turpín-
     Fenoll, L.; Alonso-Navarro, H.; et al. The GSTP1 gene variant rs1695 is not associated with an increased risk of multiple sclerosis.
     Cell. Mol. Immunol. 2015, 12, 777–779. [CrossRef]
169. Alexoudi, A.; Zachaki, S.; Stavropoulou, C.; Chatzi, I.; Koumbi, D.; Stavropoulou, K.; Kollia, P.; Karageorgiou, C.E.; Sambani, C.
     Combined GSTP1 and NQO1 germline polymorphisms in the susceptibility to Multiple Sclerosis. Int. J. Neurosci. 2015, 125, 32–37.
     [CrossRef]
170. Stavropoulou, C.; Korakaki, D.; Rigana, H.; Voutsinas, G.; Polyzoi, M.; Georgakakos, V.N.; Manola, K.N.; Karageorgiou, C.E.;
     Sambani, C. Glutathione-S-transferase T1 and M1 gene polymorphisms in Greek patients with multiple sclerosis: A pilot study.
     Eur. J. Neurol. 2007, 14, 572–574. [CrossRef]
171. Parchami Barju, I.S.; Reiisi, S.; Bayati, A. Human glutathione s-transferase enzyme gene variations and risk of multiple sclerosis
     in Iranian population cohort. Mult. Scler. Relat. Disord. 2017, 17, 41–46. [CrossRef] [PubMed]
172. Zakrzewska-Pniewska, B.; Styczynska, M.; Podlecka, A.; Samocka, R.; Peplonska, B.; Barcikowska, M.; Kwiecinski, H. Association
     of apolipoprotein E and myeloperoxidase genotypes to clinical course of familial and sporadic multiple sclerosis. Mult. Scler.
     2004, 10, 266–271. [CrossRef] [PubMed]
173. Sidoti, A.; Antognelli, C.; Rinaldi, C.; D’Angelo, R.; Dattola, V.; Girlanda, P.; Talesa, V.; Amato, A. Glyoxalase I A111E, paraoxonase
     1 Q192R and L55M polymorphisms, susceptibility factors of multiple sclerosis? Mult. Scler. 2007, 13, 446–453. [CrossRef] [PubMed]
174. Martínez, C.; García-Martín, E.; Benito-León, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Alonso-Navarro, H.; Ayuso-Peralta,
     L.; Torrecilla, D.; Agúndez, J.A.; et al. Paraoxonase 1 polymorphisms are not related with the risk for multiple sclerosis.
     Neuromolecular Med. 2010, 12, 217–223. [CrossRef] [PubMed]
175. Stavropoulou, C.; Zachaki, S.; Alexoudi, A.; Chatzi, I.; Georgakakos, V.N.; Terzoudi, G.I.; Pantelias, G.E.; Karageorgiou, C.E.;
     Sambani, C. The C609T inborn polymorphism in NAD(P)H,quinone oxidoreductase 1 is associated with susceptibility to multiple
     sclerosis and affects the risk of development of the primary progressive form of the disease. Free Radic. Biol. Med. 2011, 51,
     713–718. [CrossRef]
176. Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Turpín-
     Fenoll, L.; Alonso-Navarro, H.; et al. NQO1 gene rs1800566 variant is not associated with risk for multiple sclerosis. BMC Neurol.
     2014, 14, 87. [CrossRef]
177. Agúndez, J.A.; García-Martín, E.; Martínez, C.; Benito-León, J.; Millán-Pascual, J.; Calleja, P.; Díaz-Sánchez, M.; Pisa, D.; Turpín-
     Fenoll, L.; Alonso-Navarro, H.; et al. Heme Oxygenase-1 and 2 Common Genetic Variants and Risk for Multiple Sclerosis. Sci.
     Rep. 2016, 6, 20830. [CrossRef] [PubMed]
178. Cardamone, G.; Paraboschi, E.M.; Soldà, G.; Duga, S.; Saarela, J.; Asselta, R. Genetic Association and Altered Gene Expression of
     CYBB in Multiple Sclerosis Patients. Biomedicines 2018, 6, 117. [CrossRef] [PubMed]
179. Wigner, P.; Dziedzic, A.; Synowiec, E.; Miller, E.; Bijak, M.; Saluk-Bijak, J. Variation of genes encoding nitric oxide synthases
     and antioxidant enzymes as potential risks of multiple sclerosis development, a preliminary study. Sci. Rep. 2022, 12, 10603.
     [CrossRef]
180. Agúndez, J.A.G.; García-Martín, E.; Rodríguez, C.; Benito-León, J.; Millán-Pascual, J.; Díaz-Sánchez, M.; Calleja, P.; Turpín-Fenoll,
     L.; Alonso-Navarro, H.; García-Albea, E.; et al. Endothelial nitric oxide synthase (NOS3) rs2070744 polymorphism and risk for
     multiple sclerosis. J. Neural Transm. 2020, 127, 1167–1175. [CrossRef]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                             19 of 20
181. Bahrami, T.; Taheri, M.; Omrani, M.D.; Karimipoor, M. Associations Between Genomic Variants in lncRNA-TRPM2-AS and
     lncRNA-HNF1A-AS1 Genes and Risk of Multiple Sclerosis. J. Mol. Neurosci. 2020, 70, 1050–1055. [CrossRef]
182. Perianes-Cachero, A.; Lobo, M.V.T.; Hernández-Pinto, A.M.; Busto, R.; Lasunción-Ripa, M.A.; Arilla-Ferreiro, E.; Puebla-Jiménez,
     L. Oxidative Stress and Lymphocyte Alterations in Chronic Relapsing Experimental Allergic Encephalomyelitis in the Rat
     Hippocampus and Protective Effects of an Ethanolamine Phosphate Salt. Mol. Neurobiol. 2020, 57, 860–878. [CrossRef]
183. Dimitrijević, M.; Kotur-Stevuljević, J.; Stojić-Vukanić, Z.; Vujnović, I.; Pilipović, I.; Nacka-Aleksić, M.; Leposavić, G. Sex Difference
     in Oxidative Stress Parameters in Spinal Cord of Rats with Experimental Autoimmune Encephalomyelitis, Relation to Neurological
     Deficit. Neurochem. Res. 2017, 42, 481–492. [CrossRef] [PubMed]
184. Jhelum, P.; Zandee, S.; Ryan, F.; Zarruk, J.G.; Michalke, B.; Venkataramani, V.; Curran, L.; Klement, W.; Prat, A.; David, S.
     Ferroptosis induces detrimental effects in chronic EAE and its implications for progressive MS. Acta Neuropathol. Commun. 2023,
     11, 121. [CrossRef] [PubMed]
185. Tully, M.; Tang, J.; Zheng, L.; Acosta, G.; Tian, R.; Hayward, L.; Race, N.; Mattson, D.; Shi, R. Systemic Acrolein Elevations in Mice
     With Experimental Autoimmune Encephalomyelitis and Patients With Multiple Sclerosis. Front. Neurol. 2018, 9, 420. [CrossRef]
186. Hu, C.L.; Nydes, M.; Shanley, K.L.; Morales Pantoja, I.E.; Howard, T.A.; Bizzozero, O.A. Reduced expression of the ferroptosis
     inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurochem. 2019, 148,
     426–439. [CrossRef] [PubMed]
187. Smerjac, S.M.; Bizzozero, O.A. Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyeli-
     tis. J. Neurochem. 2008, 105, 763–772. [CrossRef]
188. Zheng, J.; Bizzozero, O.A. Accumulation of protein carbonyls within cerebellar astrocytes in murine experimental autoimmune
     encephalomyelitis. J. Neurosci. Res. 2010, 88, 3376–3385. [CrossRef]
189. Dasgupta, A.; Zheng, J.; Perrone-Bizzozero, N.I.; Bizzozero, O.A. Increased carbonylation.; protein aggregation and apoptosis in
     the spinal cord of mice with experimental autoimmune encephalomyelitis. ASN Neuro 2013, 5, e00111. [CrossRef] [PubMed]
190. Castegna, A.; Palmieri, L.; Spera, I.; Porcelli, V.; Palmieri, F.; Fabis-Pedrini, M.J.; Kean, R.B.; Barkhouse, D.A.; Curtis, M.T.;
     Hooper, D.C. Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice
     with experimental allergic encephalomyelitis. Neuroscience 2011, 185, 97–105. [CrossRef]
191. Emerson, M.R.; LeVine, S.M. Heme oxygenase-1 and NADPH cytochrome P450 reductase expression in experimental allergic
     encephalomyelitis, an expanded view of the stress response. J. Neurochem. 2000, 75, 2555–2562. [CrossRef] [PubMed]
192. Mehindate, K.; Sahlas, D.J.; Frankel, D.; Mawal, Y.; Liberman, A.; Corcos, J.; Dion, S.; Schipper, H.M. Proinflammatory cytokines
     promote glial heme oxygenase-1 expression and mitochondrial iron deposition, implications for multiple sclerosis. J. Neurochem.
     2001, 77, 1386–1395. [CrossRef] [PubMed]
193. Liu, Y.; Zhu, B.; Luo, L.; Li, P.; Paty, D.W.; Cynader, M.S. Heme oxygenase-1 plays an important protective role in experimental
     autoimmune encephalomyelitis. Neuroreport 2001, 12, 1841–1845. [CrossRef] [PubMed]
194. Izawa, T.; Yamate, J.; Franklin, R.J.; Kuwamura, M. Abnormal iron accumulation is involved in the pathogenesis of the demyeli-
     nating dmy rat but not in the hypomyelinating mv rat. Brain Res. 2010, 1349, 105–114. [CrossRef] [PubMed]
195. Mossakowski, A.A.; Pohlan, J.; Bremer, D.; Lindquist, R.; Millward, J.M.; Bock, M.; Pollok, K.; Mothes, R.; Viohl, L.; Radbruch, M.;
     et al. Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathol.
     2015, 130, 799–814. [CrossRef] [PubMed]
196. Ravelli, K.L.G.; Santosk, G.D.; Dos Santos, N.B.; Munhoz, C.D.; Azzi-Nogueira, D.; Campos, A.C.; Pagano, R.L.; Britto, L.R.;
     Hernandes, M.S. Nox2-dependent Neuroinflammation in An EAE Model of Multiple Sclerosis. Transl. Neurosci. 2019, 10, 1–9.
     [CrossRef]
197. Hu, C.F.; Wu, S.P.; Lin, G.J.; Shieh, C.C.; Hsu, C.S.; Chen, J.W.; Chen, S.H.; Hong, J.S.; Chen, S.J. Microglial Nox2 Plays a Key Role
     in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front. Immunol. 2021, 12, 638381. [CrossRef] [PubMed]
198. Hasseldam, H.; Rasmussen, R.S.; Johansen, F.F. Oxidative damage and chemokine production dominate days before immune cell
     infiltration and EAE disease debut. J. Neuroinflamm. 2016, 13, 246. [CrossRef] [PubMed]
199. Steudler, J.; Ecott, T.; Ivan, D.C.; Bouillet, E.; Walthert, S.; Berve, K.; Dick, T.P.; Engelhardt, B.; Locatelli, G. Autoimmune
     neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia 2022, 70, 2045–2061. [CrossRef]
200. Aheng, C.; Ly, N.; Kelly, M.; Ibrahim, S.; Ricquier, D.; Alves-Guerra, M.C.; Miroux, B. Deletion of UCP2 in iNOS deficient mice
     reduces the severity of the disease during experimental autoimmune encephalomyelitis. PLoS ONE 2011, 6, e22841. [CrossRef]
201. Johnson, D.A.; Amirahmadi, S.; Ward, C.; Fabry, Z.; Johnson, J.A. The absence of the pro-antioxidant transcription factor Nrf2
     exacerbates experimental autoimmune encephalomyelitis. Toxicol. Sci. 2010, 114, 237–246. [CrossRef] [PubMed]
202. Honorat, J.A.; Kinoshita, M.; Okuno, T.; Takata, K.; Koda, T.; Tada, S.; Shirakura, T.; Fujimura, H.; Mochizuki, H.; Sakoda, S.; et al.
     Xanthine oxidase mediates axonal and myelin loss in a murine model of multiple sclerosis. PLoS ONE 2013, 8, e71329. [CrossRef]
     [PubMed]
203. Lee, G.; Hasan, M.; Kwon, O.S.; Jung, B.H. Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice
     via Metabolomics and Lipidomics. Neuroscience 2019, 416, 74–87. [CrossRef] [PubMed]
204. Trifunovic, S.; Stevanovic, I.; Milosevic, A.; Ristic, N.; Janjic, M.; Bjelobaba, I.; Savic, D.; Bozic, I.; Jakovljevic, M.; Tesovic, K.; et al.
     The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis, Involvement
     of Oxidative Stress Mediators. Front. Neurosci. 2021, 15, 649485. [CrossRef] [PubMed]
Int. J. Mol. Sci. 2024, 25, 6289                                                                                                20 of 20
205. Tolmacheva, A.S.; Aulova, K.S.; Urusov, A.E.; Doronin, V.B.; Nevinsky, G.A. Antibodies-Abzymes with Antioxidant Activities in
     Two Th and 2D2 Experimental Autoimmune Encephalomyelitis Mice during the Development of EAE Pathology. Molecules 2022,
     27, 7527. [CrossRef] [PubMed]
206. Urusov, A.E.; Tolmacheva, A.S.; Aulova, K.S.; Nevinsky, G.A. Autoantibody-Abzymes with Catalase Activity in Experimental
     Autoimmune Encephalomyelitis Mice. Molecules 2023, 28, 1330. [CrossRef] [PubMed]
207. Vidaurre, O.G.; Haines, J.D.; Katz Sand, I.; Adula, K.P.; Huynh, J.L.; McGraw, C.A.; Zhang, F.; Varghese, M.; Sotirchos, E.;
     Bhargava, P.; et al. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 2014,
     137, 2271–2286. [CrossRef] [PubMed]
208. Zhang, S.Y.; Gui, L.N.; Liu, Y.Y.; Shi, S.; Cheng, Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis, A Meta-Analysis
     Study. Front. Neurosci. 2020, 14, 823. [CrossRef]
209. Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman,
     M.S.; et al. Diagnosis of multiple sclerosis, 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [CrossRef]
210. Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis, an expanded disability status scale (EDSS). Neurology 1983, 33,
     1444–1452. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.