P3 PASTPAPERS (1)
P3 PASTPAPERS (1)
com
Please check the examination details below before entering your candidate information
Candidate surname Other names
Mathematics
International Advanced Level
Pure Mathematics P3
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 9 questions in this question paper. The total mark for this paper is 75.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Try
Read each question carefully before you start to answer it.
to answer every question.
•• If you change
Check your answers if you have time at the end.
your mind about an answer, cross it out and put your new answer
and any working underneath.
Turn over
*P65758RA0132*
P65758RA
©2020 Pearson Education Ltd.
1/1/1/1/1/1/
Mr. Seif Atef 69 www.dynamicpapers.com
Leave
blank
1. Solve, for 0 x < 360°, the equation
2 cos 2 x = 7 cos x
AceAlevel http://acealevel.com
2
*P65758RA0232*
Mr. Seif Atef 70 www.dynamicpapers.com
Leave
blank
2. A scientist monitored the growth of bacteria on a dish over a 30‑day period.
The area, N mm2, of the dish covered by bacteria, t days after monitoring began, is
modelled by the equation
where a and b are constants to be found. Give the value of a to the nearest integer
and give the value of b to 3 significant figures.
(4)
(b) Use the model to find the area of the dish covered by bacteria 30 days after monitoring
began. Give your answer, in mm2, to 2 significant figures.
(2)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
AceAlevel http://acealevel.com
4
*P65758RA0432*
Mr. Seif Atef 71 www.dynamicpapers.com
Leave
blank
3. y
O x
Figure 1
2x + 3 1
f (x) = x>
4x − 1 4
y = f (x)
O x
Figure 2
Figure 2 shows a sketch of part of the graph with equation y = f (x) where
f (x) = 21 − 2 | 2 − x | x0
Given that the equation f (x) = k , where k is a constant, has exactly two roots,
The graph with equation y = f (x) is transformed onto the graph with equation y = a f (x − b)
AceAlevel http://acealevel.com
11
*P65758RA01132* Turn over