Zhang Presentation
Zhang Presentation
Capacitance (F)
2.5
2.0
1.5
Flat
1.0
-600 -400 -200 0 200 400 600 800
Overpotential (mV)
20
Capacitance (F)
16
12
Nano
8
-600 -400 -200 0 200 400 600 800
The Electrochemical Society Interface, Fall 2008 Overpotential (mV)
Electrochemical Based Capacitor
This topic has been a major interest
in electrochemistry for about a D. C. Grahame, 1947.
century
C 0 A / d
Electrical Double Layer (EDL)
The EDL structure Helmholtz Model Gouy-Chapman Model
x - x
- +
-
- + -
+ -
- -
-
- +
+ - +
-
- -
- -
A -
- C 0 -
- d Diffuse zone
Ψ0 -
OHP
Gouy-Chapman-Stern Model
Diffuse layer
x
-
-
- + +
+ +
- - -
- -
Problems with the classic theories on electrical double layer (EDL): +
+ +
- +
1. No electron transfer across the electrode/solution interface -
- -
2. Boltzmann distributions for ions in the solution - +
3. Electro-neutrality - Stern Plane
Bulk solution
- OHP, PET
- Compact layer Gouy plane
Modeling the EDL
Using COMSOL
A
electromigration r0 v
– Nernst-Planck equation
r u 2 v2
Reversible/irreversible systems
– Butler-Volmer kinetics
kf
O e
z
R z 1
kb
k f k 0 exp[F ( Et V E 0 ' ) / RT ]
kb k 0 exp[(1 ) F ( Et V E 0 ' ) / RT ]
Modeling Using COMSOL
Dielectric constant inside the compact layer
1cosh 2 [S1 (r r0 )], r0 r r0 l1
2 cos 2 [S2 (l1 l2 r0 r )], r0 l1 r r0 l1 l2
2, r0 l1 l2 r
B
a b c
IHP OHP
2
Dielectric constant (x)
Electrode PET
surface
Electrolyte
1
r0 r0 +Distance
l1 (x)
r0 + l1 + l2
Radial Distance (r)
The Size Factor of the EDL
-0.25 -0.030 6
A Diffuse Layer
B
-0.025 Diffuse Layer 5
-0.20 1 nm
Concentration (mM)
100 nm Potential
-0.020 4
Potential (V)
Potential (V)
Concentration
-0.15 1 nm
-0.015 100 nm 3
-0.10 -0.010 2
-0.005 1
-0.05
0.000 0
0.00
0.0 0.2 0.4 0.6 0.00 0.05 0.10 0.15 8.00 12.00
1diffuse
nm 1.8 (nm), 100 nm 4.5 (nm)
diffuse
1diffusion
nm 14 (nm), 100 nm 820 (nm)
diffusion
~13% ~0.5%
EDL Effect on Electron Transfer
0.75
0.0 1.10
Insert-1 Insert-2 0.0
0.2 1.05 Diffusion
0.80 0.4 0.2nm
i/idL
i/idL
-0.12 6
i/idL
1nm 0.6
Concentration (mM)
-0.10 5
10nm
Potential (V)
-0.08 4
0.95 50nm 0.8 -0.06 3
100nm Potential
-0.04 2
200nm Concentration
1.0 -0.02 1
1.00 z = -1 0.00 0
z = +1 0.02
1.05 Diffusion 1.2 0.0 0.5 1.0 100.0
(r-r0-)/
Note: “Diffusion” represents the case in which the EDL effect is not considered.
Effects of EDL
-0.030 5 -0.05 5
-0.025
4 -0.04 4
Concentration (mM)
Concentration (mM)
-0.020
Potential (V)
Potential (V)
3 -0.03 3
-0.015
Potential Potential
Concentration 2 -0.02 Concentration 2
-0.010 0.33nm ES=6
0.44nm ES=12
0.55nm ES=18
-0.005 0.66nm 1 -0.01 ES=24 1
0.000 0 0.00 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Distance into Solution from PET (nm) Distance into Solution from PET (nm)
5 -0.04 5
-0.05
4 4
-0.03
-0.04
Concentration (mM)
Concentration (mM)
3
Potential (V)
Potential (V)
3
-0.03
-0.02
Potential 2
Potential
Concentration 2
-0.02 Concentration
0.00 M 0.5 nm
0.05 M 1.0 nm
-0.01 5.0 nm 1
0.50 M
-0.01 5.00 M 1 10.0 nm
Flat
0
0.00 0 0.00
0 2 4 6 8 10 12 0 2 4 6 8 10
Distance into Solution from PET (nm) Distance into Solution from PET (nm)
EDL Capacitance
Size effect
26
24
2
Capacitance (F/cm )
2
22 C 0
rE
20
18
16
14
12 y=-4.21+28.66x/(0.42+x)
10
1 10 100 1000
Radius of Electrode (nm)
EDL Capacitance
Dielectric effect
40
35
Capacitance (F/cm )
2
30
B
25 a b c
IHP OHP
2
Electrolyte
15 1
r0 r0 +Distance
l1 (x)
r0 + l1 + l2
Radial Distance (r)
10
0 6 12 18 24
Dielectric Constant at Electric Satuaration
EDL Capacitance
Thickness effect
24
22
Capacitance (F/cm )
2
20
18
16
14
12
10
8
0.33 0.44 0.55 0.66
Thickness of Compact Layer (nm)
EDL Capacitance
Electrolyte effect
17.0
16.5
Capacitance (F/cm )
2
16.0
15.5
15.0
14.5
14.0
13.5
13.0
0 1 2 3 4 5 6
Concentration of Supporting Electrolyte (M)
EDL Capacitance: A Surprise
C 0 A / d
11.385
FEM
Capacitance (F/cm2)
11.380
With ET
without ET
D. C. Grahame, 1947.
11.375
11.370
11.365
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Overpotential (V)
1.6
MD
Capacitance (C/CPZC)
1.5
1.4
1.3
1.2
1.1
1.0
0.9
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Overpotential (V)
Conclusions
EDL capacitance varies as a function of
– Dielectric constant
– Compact layer thickness
– Electrode size
– Electrolyte concentration
When redox is allowed, the capacitance-potential
curve exhibits a dip feature near the potential of zero
charge
This study shed some new light into enhancing the
supercharge capacitors
Acknowledgement
Thank You!