DEPARTMENT OF ELECTRONICS AND
COMMUNICATION ENGINEERING
LAB RECORD
CEC340 – MEMS DESIGN LABORATORY
REGULATION-2021
NAME :.....................................
REGISTER NO :.....................................
YEAR/SEM : III / V
ACADEMIC YEAR : 2024-2025
CERTIFICATE
Certified that this is a bonafide record of work done by
NAME :
REGISTER NUMBER :
SEMESTER :
BRANCH :
YEAR :
LAB-IN-CHARGE HEAD OF THE DEPARTMENT
Submitted for the Laboratory course titled “CEC340 – MEMS DESIGN LABORATORY”.
Practical Examination held on
INTERNAL EXAMINER EXTERNAL EXAMINER
TABLE OF CONTENTS
NAME OF THE PAGE MARKS
S.NO DATE SIGNATURE
EXPERIMENTS NO. AWARDED
DESIGN AND SIMULATION
1 OF PIEZOELECTRIC
CANTILEVER
DESIGN AND SIMULATION
2
OF THERMO COUPLES
DESIGN AND SIMULATION
3 OF COMB DRIVE
ACTUATORS
PROGRAM:
%Constants
L=0.1;
W=0.01;
t=0.001;
rho=7850;
E=70e9;
d31=-190e-12;
%geometry
A=W*t;
I=(1/12)*W*t^3;
%mass and stiffness matrices
M=rho*A*L;
K=E*I/L^3;
%piezoelectric voltage
V=10;
%modal analysis
[eigenmodes,frequencies]=eig(K/M);
%calculate piezoelectric voltage-induced displacement
modeShape=eigenmodes(:,1);
displacement=d31*V*modeShape;
%plot the deflection profile
x=linspace(0,L,100);
deflection=displacement*sin(pi*x/L);
figure;
plot(x,deflection);
xlabel('position along the cantilever beam(m)');
ylabel('deflection(m)');
title('piezoelectric cantilever beam deflection profile');grid on;
OUTPUT:
PROGRAM:
%constant
R0=100;
T0=0;
alpha=0.004;
beta=0.00004;
Rref=10;
%Time vector
t=linspace(0,60,1000);
%simulate temperature variation
temperature=sin(2*pi*0.1*t)*50+100;
%simulate thermocouples response
voltage=alpha*(temperature-T0)+beta;
%simulate refersence junction voltage
voltage_ref=Rref*(temperature-T0);
%Total voltage
total_voltage=voltage+voltage_ref;
%plot the results
figure;
subplot(3,1,1);
plot(t,temperature);
xlabel('Time(s)');
ylabel('Temperature(celsius)');
title('Temperature variation');
subplot(3,1,2);
plot(t,voltage);
xlabel('Time(s)');
ylabel('Thermoelectric voltage(v)');
title('Thermocouple voltage');
subplot(3,1,3);
plot(t,total_voltage);
xlabel('Time(s)');
ylabel('Total voltage(v)');
title('Total voltage(Thermoelectric+Reference junction)');
sgtitle('thermocouple simulate in MATLAB');
OUTPUT:
PROGRAM:
%displaement due to voltage
displacement=voltage^2/(2*spring_con%constants
width=2e-6;%width(m)
length=100e-6;
gap=1e-6;
voltage=5;
dielectric_constant=8.854e-12;
spring_constant=1e-3;
%no.of comb fingers on one side
num_fingers=10;
%area of one comb finger
area=width*length;
%capacitance per unit length;
c_per_unit_length=(2*dielectric_constant*area)/gap;
%total capacitance
c_total=num_fingers*c_per_unit_length;
stant*c_total);
%visualize the comb drive actuators
figure;
hold on;
for i=1:num_fingers;
%draw comb fingers
plot([i*width,i*width],[0,-length],'k','linewidth',2)
%draw movable comb fingers
plot([(i-0.5)*width,(i-0.5)*width],[0,displacement],'r','linewidth',2);
end
axis equal;
xlabel('width(m)');
ylabel('length(m)');
title('comb drive actuator displacement');
grid on;
OUTPUT: