0% found this document useful (0 votes)
248 views11 pages

Mems Record

Uploaded by

lohowov347
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
248 views11 pages

Mems Record

Uploaded by

lohowov347
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

LAB RECORD

CEC340 – MEMS DESIGN LABORATORY


REGULATION-2021

NAME :.....................................
REGISTER NO :.....................................
YEAR/SEM : III / V
ACADEMIC YEAR : 2024-2025
CERTIFICATE

Certified that this is a bonafide record of work done by

NAME :

REGISTER NUMBER :

SEMESTER :

BRANCH :

YEAR :

LAB-IN-CHARGE HEAD OF THE DEPARTMENT

Submitted for the Laboratory course titled “CEC340 – MEMS DESIGN LABORATORY”.

Practical Examination held on

INTERNAL EXAMINER EXTERNAL EXAMINER


TABLE OF CONTENTS

NAME OF THE PAGE MARKS


S.NO DATE SIGNATURE
EXPERIMENTS NO. AWARDED

DESIGN AND SIMULATION


1 OF PIEZOELECTRIC
CANTILEVER

DESIGN AND SIMULATION


2
OF THERMO COUPLES

DESIGN AND SIMULATION


3 OF COMB DRIVE
ACTUATORS
PROGRAM:
%Constants
L=0.1;

W=0.01;
t=0.001;
rho=7850;
E=70e9;
d31=-190e-12;

%geometry
A=W*t;
I=(1/12)*W*t^3;
%mass and stiffness matrices
M=rho*A*L;

K=E*I/L^3;
%piezoelectric voltage
V=10;
%modal analysis
[eigenmodes,frequencies]=eig(K/M);

%calculate piezoelectric voltage-induced displacement


modeShape=eigenmodes(:,1);
displacement=d31*V*modeShape;
%plot the deflection profile
x=linspace(0,L,100);

deflection=displacement*sin(pi*x/L);
figure;
plot(x,deflection);
xlabel('position along the cantilever beam(m)');
ylabel('deflection(m)');
title('piezoelectric cantilever beam deflection profile');grid on;
OUTPUT:
PROGRAM:
%constant
R0=100;

T0=0;
alpha=0.004;
beta=0.00004;
Rref=10;
%Time vector

t=linspace(0,60,1000);
%simulate temperature variation
temperature=sin(2*pi*0.1*t)*50+100;
%simulate thermocouples response
voltage=alpha*(temperature-T0)+beta;

%simulate refersence junction voltage


voltage_ref=Rref*(temperature-T0);
%Total voltage
total_voltage=voltage+voltage_ref;
%plot the results

figure;
subplot(3,1,1);
plot(t,temperature);
xlabel('Time(s)');
ylabel('Temperature(celsius)');

title('Temperature variation');
subplot(3,1,2);
plot(t,voltage);
xlabel('Time(s)');
ylabel('Thermoelectric voltage(v)');
title('Thermocouple voltage');
subplot(3,1,3);
plot(t,total_voltage);
xlabel('Time(s)');

ylabel('Total voltage(v)');
title('Total voltage(Thermoelectric+Reference junction)');
sgtitle('thermocouple simulate in MATLAB');
OUTPUT:
PROGRAM:
%displaement due to voltage
displacement=voltage^2/(2*spring_con%constants

width=2e-6;%width(m)
length=100e-6;
gap=1e-6;
voltage=5;
dielectric_constant=8.854e-12;

spring_constant=1e-3;
%no.of comb fingers on one side
num_fingers=10;
%area of one comb finger
area=width*length;

%capacitance per unit length;


c_per_unit_length=(2*dielectric_constant*area)/gap;
%total capacitance
c_total=num_fingers*c_per_unit_length;
stant*c_total);

%visualize the comb drive actuators


figure;
hold on;
for i=1:num_fingers;
%draw comb fingers

plot([i*width,i*width],[0,-length],'k','linewidth',2)
%draw movable comb fingers
plot([(i-0.5)*width,(i-0.5)*width],[0,displacement],'r','linewidth',2);
end
axis equal;
xlabel('width(m)');
ylabel('length(m)');
title('comb drive actuator displacement');
grid on;
OUTPUT:

You might also like