0% found this document useful (0 votes)
34 views2 pages

Paraboladpp 1

Uploaded by

ritishu2007
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views2 pages

Paraboladpp 1

Uploaded by

ritishu2007
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

PARABOLA DPP-1

Parabola Definition and Standard Equations

1. Curve 16 x2  8xy  y 2  74 x  78 y  212  0 represents


(A) Parabola (B) Hyperbola (C) Ellipse (D) None of these
2. The equation px2  4 xy  y 2  px  3 y  2  0 represents a parabola if value of p is
(A) 0 (B) – 4 (C) 4 (D) 1
3. The equation of 2 x2  3 y 2  8x 18 y  35  k represents
(A) No locus if k  0 (B) An ellipse, if k  0 (C) A point if, k  0 (D) A hyperbola, if k  0
4. The equation of parabola whose focus is (5, 3) and directrix is 3x  4 y  1  0 , is
(A) (4 x  3 y)2  256 x  142 y  849  0 (B) (4 x  3 y)2  256 x  142 y  849  0
(C) (3x  4 y)2  142 x  256 y  849  0 (D) (3x  4 y)2  256 x  142 y  849  0
5. The equation of the locus of a point which moves so as to be at equal distances from the point (a, 0) and the y-axis is
(a) y 2  2ax  a 2  0 (b) y 2  2ax  a 2  0 (c) x2  2ay  a 2  0 (d) x2  2ay  a 2  0
6. The length of the latus rectum of the parabola 169{( x  1)2  ( y  3)2 }  (5x  12 y  17)2 is
(A) 7/13 (B) 14/13 (C) 28/13 (D) 32/13
7. Length of the latus rectum of the parabola (a  b )( x  y )  (bx  ay  ab) is
2 2 2 2 2

ab ab 3ab 2ab
(A) (B) (C) (D)
2 a b 2 2
a b
2 2
2 a b 2 2
a 2  b2
8. The correct order of eccentricities of parabola, ellipse, hyperbola and rectangular hyperbola respectively is
2   2   2   2 
(A)  ,1, 3, 2  (B) 1, , 2, 3  (C) 1, , 3, 2  (D) 1, 3, , 2 
 3   3   3   3 
9. If the parabola y 2  4ax passes through the point (- 3, 2), then the length of its latus rectum is
(A) 1/3 (B) 4/3 (C) 5/3 (D) 4
 u2 u 2
 u2
10. The length of the latus-rectum of the parabola whose focus is  sin 2 ,  cos 2  and directrix is y  , is
 2g 2g  2g
u2 u2 2u 2 2u 2
(A) cos 2  (B) cos 2 (C) cos 2 2 (D) cos 2 
g g g g
11. The equation of latus rectum of a parabola is x  y  8 and the equation of the tangent at the vertex is x  y  12 , then
length of the latus rectum is
(a) 4 2 (b) 2 2 (c) 8 (d) 8 2
12. The co-ordinates of the extremities of the latus rectum of the parabola 5 y 2  4 x are
(A) (1/ 5, 2 / 5), (1/ 5, 2 / 5) (B) (1/ 5, 2 / 5), (1/ 5,  2 / 5) (C) (1/ 5, 4 / 5), (1/ 5,  4 / 5) (D) None of these
13. The ends of latus rectum of parabola x2  8 y  0 are
(a) (–4, –2) and (4, 2) (b) (4, –2) and (–4, 2) (c) (–4, –2) and (4, –2) (d) (4, 2) and (–4, 2)
14. Directrix of a parabola is 5x  12 y  7 and focus is at (2, 3). It latus rectum is
(A) 4 (B) 5 (C) 6 (D) 7
15. The focus and vertex of parabola are  2,1 and 1,5 then Its latus rectum is
(A) 20 (B) 10 (C) 5 (D) 40
16. If the focus a parabola is (- 2, 1) and the directrix has the equation x  y  3 then the vertex is
(A) (- 1, 2) (B) (2, - 1) (C) (0, 3) (D) (- 1, 1/2)
17. If directrix and vertex of a parabola are 2 x  y  4  0 and (5, 1) respectively, then incorrect statement is
(A) Its focus is (7, 0) (B) Its axis is x  2 y  7  0
(C) Equation of tangent at vertex is 2 x  y  9  0 (D) length of latus rectum is 5
18. A point on a parabola y 2  8x whose focal distance is 8 is
(A)  6, 4 3  (B)  6, 4 3  (C)  6,  4 3  (D) None of these
19. The focal distance of a point on the parabola y  16 x whose ordinate is twice the abscissa, is
2

(a) 6 (b) 8 (c) 10 (d) 12

1
20. A point on a parabola y 2  6 x whose focal distance is 15 is
 27   27   27   27 
(A)  ,9  (B)  ,  9  (C)   ,  9  (D)   ,  9 
 2   2   2   2 
21. A point on a parabola x  2 x  8 y  1  0 whose focal distance is 10 is
2

(A) 9,8 (B)  7,8 (C)  7,  8 (D)  9,  8


22. The curve described parametrically by x  t  t  1, y  t  t  1 represents
2 2

(A) Pair of straight lines (B) Ellipse (C) Parabola (D) Hyperbola.
23. Which one of the following equations parametrically represents equation to a parabolic profile?
t
(A) x  3cos t ; y  4sin t (B) x 2  2  2 cos t ; y  4 cos 2
2
t t
(C) x  tan t ; y  sec t (D) x  1  sin t ; y  sin  cos
2 2
2
24. The points of intersection of the curves whose parametric equations are x  t 2  1, y  2t and x  2s, y  is given by
s
(A) (1,  3) (B) (2, 2) (C) (–2, 4) (D) (1, 2)
25. The angle subtended by the double ordinate of length 8a of the parabola y 2  4ax is
(a) /3 (b) /4 (c) /2 (d) 2/3
26. AB is a double ordinate of the parabola y  4 x. The locus of its point of trisection is
2

(A) 4 y 2  9 x (B) 9 y 2  4 x (C) 9 y 2  4 x  0 (D) 4 y 2  9 x  0


27. If on a given base, a triangle be described such that the sum of the tangents of the base angles is a constant, then the locus
of the vertex is:
(A) a circle (B) a parabola (C) an ellipse (D) a hyperbola
28. The length of latus rectum of parabola represents by the equation x2  2 xy  y 2  16 x  16 y  32  0 is
(A) 4 (B) 8 2 (C) 4 2 (D) 2 2
29. The vertex parabola represents by the equation  3 x  4 y  1  10  4 x  3 y  7   0 is
2

(A) (2, 5) (B) (3,  2) (C) (1, 1) (D) (1,  1)


30. The axis of parabola is along the line x  y. The distance of its vertex and focus from origin are 2 and 2 2
respectively and both lies in first quadrant, then the equation of parabola is
 x  y   x  y  2  x  y   x  y  2  x  y  4  x  y  2  (d)  x  y  8  x  y  2
2 2 2 2
(a) (b) (c)

ANSWERS
1 2 3 4 5 6 7 8 9 10
A C C D A C D C B A
11 12 13 14 15 16 17 18 19 20
D B C C A A D A B D
21 22 23 24 25 26 27 28 29 30
C C B B C B B B C D

You might also like