0% found this document useful (0 votes)
106 views16 pages

Extrait 1BSMF-1

Uploaded by

ablahajar4
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
106 views16 pages

Extrait 1BSMF-1

Uploaded by

ablahajar4
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

meilleurs vœux pour

la période des fêtes


3
, , ...

( ), ( ; ), ( ; ; )...

+ = +
2
5

''  = , ''
'' ( + )  ''
( )  , 
( )  , 


( )  , + +
( ; ) ( ; ) , + =

− − 

− ;  − − 

− − 
− − 

− ;  − − 
− − =

4


!

: ( !  ) =
: (  )  
: (  ) + + =

+ + =

+ =
=

(  )(   ) ( ; )

(  )(   ) ( ; )



  [(( ; )   ): =  =

: ( !  ) = : (  )(   ) − =
: (  ) + +  : (  )(   ) − =
: (  ) − = : (  )(   ) − =
: (  ) = : (  )(   ) − =

5
  =     
       

( )
(  ) ( ) (  ) ( )
(  ) ( ) (  ) ( )

: + = ; :  , ; :  ;  ; : (  ) = ; : (  ) 

: (  ) = : (  )(   ) =
: (  ) 
: (  )(   ) =
: (  )(   ) = : (  )(   ) =

( ) 

( ) 

( )

   

6
 =
 =
  
=  =
 (  ) 
: − =  

: + =  = 

 

 

 
 

(  ) + = (  ) − =
(  ) + = − =
(  )  (  ) 
(  )  

 
 
(  ) (  )
(  ) (  )
( ) ( )

(   ) ( ) ( ) (   ) ( ) (  ) ( )


(   ) ( ) ( ) (   ) ( ) (  ) ( )
7
(   ) ( ) ( ) (   ) ( ) (  ) ( )
(   ) ( ) ( ) (   ) ( ) (  ) ( )

(  )

, ,.....
, ,.....

,
(  )
 ( )  ( ) ( )

( ) ( ) ( )

 ( )  ( ) ( )


 ( )  ( ) ( )

( )( ) ( ) ( )
( )( ) ( ) ( )

(  ) ( ) (  ) ( )

(  ) (  ) (  ) (  )
(  )(  ) (  ) (  )
(  ) [(  ) (  )] (  ) [(  ) (  )]
8
, , 
+
:    : = = :    :  
!
( )
: ( !  ) ( ) ( (   ) ( )) (( ;  )( ( ) ( ))  = )
 (
:  (  ) ( ) ) ((  ;  ) ( ) ( )  )

 ( ) (  )( )
(  )  [(  ) (  )] (  )(  )

( )( )
( ) ( )
(  )(  )

( )    ( )
( )    ( )

 ( )  ( ) ( )


 ( )  ( ) ( )

(  ) ( )  ( )

(  ) + − =

(( ; ) ): + =

(  )(   ): 
+

9

 .....  .....  .....  .... 

(  ) (  )   

(  ):   + 

(  ):   + 

  (  ) (  )

 ( )
 
 
 

 

− −  −
+
(  + − ) +  +


 .....  ..... 

(  ) (  )   
 

 .....  ..... 

10
(  ) −    
+
(   − ; ) −  +


 

(  )  (  ) (  )
( ;  ) + = ( = = )
+
(   ; +)(   ; +) = − + −  = =

(  ) ( ) ( )

(  ) (  )  ( ) 

(  ) − +  −
(  ) ( + )

.

 (  ) (  ) 

+
 = 
+
 = , = = .

 =   
 =

= = ( )

(  ) = ( ) =
 

11
( ) 

 ( )
  (  ) ( )
(  
 ) ( ) ( + )
(  ) ( )
• ( )
•  ( ) ( + )

 ( + )
(  ) + + ++ =

 +
(  ) ( + )  +
(  ) +

 

+ + ++ =    =
= =

+ + ++ =     = 
= =

+ ++ =   =
= =

+ + + ..... + + = ( + )   + .....  ( + ) = ( + )
= =

12
   

  =     
       

(  ) ( )
𝑄

(  ) ( )
( ) ( )
𝑃


𝑃

(  ) ( )
.

( ) ( )
( ) ( )
(∀𝑛 ∈ ℕ∗ ) 𝑃(𝑛)
(∀𝑛 ∈ ℕ) 𝑃(𝑛)

(  ) ( )
𝑃⇔𝑄

𝑃⇒𝑄

𝑃(𝑥)
𝑃

(  ) (  )
( )
(∀𝑥 ∈ 𝐸)

 [(  ) (  )]

, ,.....

, ,.....

13
, , 
:   
: = =
+ = :  

 : ( ( ; )  ) −  +   + 
= : (   )(   )  
− =  
: (  )  
=
: ( ;  
) (  ) ( )= ( )=
+ +

: (  ) =
: (  ) − − 
(  ) + +
: (  )(   ) −
: (  )(   ) −
(( ; ) ) + =

: (  
)(  
) +  (( ; ) ) + = +

: (  )(   )  ( ) (( ; ) ) ( + )= ( )+ ( )

(( ; ) ) ( + )= ( )+ ( )

: (  )(   ) − + =
:
:
(  )   + 

(   )( =  ) (  )   + 

(  ) (   ) (  )   + − 
(   )(   )  −  ( + )  + (( ; ) ) + = + ( = = )
:    (   )( + )
(  *
) ( ;  )   (  ) + + =

( )( ) ( ;  )  ( + )( − )( − )( + )
( )( ) (  +
)   +  +

(  )( ) ( ;  ) (   ) 
+ + + +
(  ) (  ) (  ) + −   
(  ) (  ) (  ) 
  (  )  ( ;  ) (  +  ) −  −
  ( )   ( ) 
 ( ; ;  ) + 

  


 
14
(− )
+
 
(  
)  −  = −
(  + ) + = +  = =   

(    ; + )


(  
)
𝑛(𝑛 + 1)(𝑛 + 2)
1 × 2 + 2 × 3 + ⋯ ⋯ + 𝑛(𝑛 + 1) =
( ;  ) + = +   3
 
(  )    +
 
( ;  ) + = ( = = )
− 

− + − + =

(  ) + +  ( )= + + − −

(  ) ( + ) (  *
): +  +

− +  + , + + 


  
−( + ) + − =
)
:
 −   + 
= , = = .
 ( + )
; 
− = ( = = ) (  
) + 

;  +

= (   )   
+ +
(  
) +
 + = +  =

( ; ) : + +   +  + 

( + )( + )
(  
)  = = + = + 
=
+ −

(  )  =
=
(  ) + + 
 ( + )
(  
)  = 
=  
(∀𝑛𝜖ℕ) 26𝑛+3 + 34𝑛+2
(  ) ( + )=( + ) , , ,  
+ =   +
= +
(  )  ,  + =
(  *
)  + + 
,
(  
)  ( + )
=
+
= + +  + +
( + = + ) =
15
𝑛+1
(∀𝑛 ∈ ℕ); ∉ℕ
𝑛+2
  ( )   ( ) 

𝑎 𝑏 𝑎≠𝑏
𝑎+𝑏√2
∉ℚ
√2+1
(∀𝑛 ∈ ℕ); √𝑛2 + 5𝑛 + 8 ∉ ℕ
𝑎∈ℕ
(∀𝑛𝜖ℕ∗ ) 33𝑛+2 + 2𝑛+4
√𝑎2 + √4𝑎2 + √16𝑎2 + 8𝑎 + 3 ∉ ℕ
(∀𝑛𝜖ℕ∗ ) 52𝑛+1 + 2𝑛+4 + 2𝑛+1
(∀𝑛𝜖ℕ∗ ) 11 𝑑𝑖𝑣𝑖𝑠𝑒 32𝑛 + 26𝑛−5
1 1 1 1
(∀𝑛𝜖ℕ∗ ) (1 + 3 ) (1 + 3 ) … . (1 + 3 ) ≤ 3 − ,
1 2 𝑛 𝑛
3𝑛 1 1 1 1
(∀𝑛𝜖ℕ∗ ) ≤ 1 + 2 + 2 + ⋯ ⋯ + ≤2−
2𝑛+1 2 3 𝑛2 𝑛 𝑎+𝑏 𝑎−𝑏
𝑛 𝑘 2 𝑛(𝑛+1) | |+| | < 𝑐 ⇒ (|𝑏| < 𝑐 𝑒𝑡 |𝑎| < 𝑐)
(∀𝑛𝜖ℕ∗ ) ∑𝑘=1 = 2(2𝑛+1) 2 2
(2𝑘−1)(2𝑘+1)

(∀𝑛𝜖ℕ∗ )  ( =
+ )= ( + ) (|𝑏| < 𝑐 𝑒𝑡 |𝑎| < 𝑐) ⇒ |
𝑎+𝑏
2
|+|
𝑎−𝑏
2
|<𝑐

(− ) ( + )−
(∀𝑛𝜖ℕ∗ ) (− )
=
= , ,  (    − ; ) + + 

( + )( + )( + )  + +  − + 
(∀𝑛𝜖ℕ∗ ) ( =
+ ) =
+  
+ + 

(  
) ( ( ; ) ): ( + ) = + ,
 + 
+ + .   + 
 + 
( + )
, ,  
 + 
,  , (  
) − = ( − )  − −

= ,
,  
+ (  ) +
+ +
 + + + =  + + 


,  +

+  + 
(  )  
      ( ) / /( )
+ =
 
 (  ) +  − ( ) / /( ) =

  
(  )  +  + ( + ) , ,......,  +
  

(  
)   
  
 
( )
 = =
 
+ ( , ,  +
) ( + + ) 
,   
 + 
+

(  
) 

 
 =

16

You might also like