Lmap
Lmap
Contents
         clmdu . . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 2
         clpca . . . . . . . . .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 4
         dataExample_clmdu         .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 5
         dataExample_clpca .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 6
         dataExample_lmdu .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 6
         dataExample_lpca . .      .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 7
         dataExample_mru . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 8
         esm . . . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 8
         fastmbu . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 10
         fastmru . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 11
                                                                           1
2                                                                                                                                                                                     clmdu
            lmdu . . . . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   12
            lpca . . . . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
            mru . . . . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   16
            plot.clmdu . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   17
            plot.clpca . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   18
            plot.lmdu . . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   19
            plot.lpca . . . . .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   20
            plot.mru . . . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   21
            predict.clmdu . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   22
            predict.clpca . . .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   23
            predict.lmdu . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   24
            predict.lpca . . .    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
            predict.mru . . .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26
            summary.clmdu .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   27
            summary.clpca .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   28
            summary.esm . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   28
            summary.lmdu .        .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   29
            summary.lpca . .      .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   29
            summary.mru . .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   30
            twomodedistance       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   30
Index 31
Description
     Cumulative Logistic (Restricted) MDU
Usage
     clmdu(
       Y,
       X = NULL,
       S = 2,
       trace = FALSE,
       start = "svd",
       maxiter = 65536,
       dcrit = 1e-06
     )
Arguments
     Y                     An N times R ordinal matrix coded with integers 1,2,.. .
     X                     An N by P matrix with predictor variables
     S                     Positive number indicating the dimensionality of the solution
clmdu                                                                                              3
   trace               boolean to indicate whether the user wants to see the progress of the function
                       (default=TRUE)
   start               either starting values (list with (U,V) or (B,V)) or way to compute them (svd,
                       random, ca)
   maxiter             maximum number of iterations
   dcrit               convergence criterion
Value
   Y Matrix Y from input
   Xoriginal Matrix X from input
   X Scaled X matrix
   mx Mean values of X
   sdx Standard deviations of X
   ynames Variable names of responses
   xnames Variable names of predictors
   probabilities Estimated values of Y
   m main effects
   U matrix with coordinates for row-objects
   B matrix with regression weight (U = XB)
   V matrix with vectors for items/responses
   iter number of main iterations from the MM algorithm
   deviance value of the deviance at convergence
Examples
   ## Not run:
   data(dataExample_clmdu)
   Y<-dataExample_clmdu
   X<-dataExample_clmdu
   output1 = clmdu(Y)
   plot(output1)
   plot(output1, circles = NULL)
   summary(output1)
   output2 = clmdu(Y = Y, X = X)
   plot(output2, circles = c(1,2))
   summary(output2)
   ## End(Not run)
4                                                                                        clpca
Description
     Cumulative Logistic (Restrcited) PCA
Usage
     clpca(
       Y,
       X = NULL,
       S = 2,
       lambda = FALSE,
       trace = FALSE,
       maxiter = 65536,
       dcrit = 1e-06
     )
Arguments
     Y                   An N times R ordinal matrix .
     X                   An N by P matrix with predictor variables
     S                   Positive number indicating the dimensionality of the solution
     lambda              if TRUE does lambda scaling (see Understanding Biplots, p24)
     trace               tracing information during iterations
     maxiter             maximum number of iterations
     dcrit               convergence criterion
Value
     Y Matrix Y from input
     Xoriginal Matrix X from input
     X Scaled X matrix
     mx Mean values of X
     sdx Standard deviations of X
     ynames Variable names of responses
     xnames Variable names of predictors
     probabilities Estimated values of Y
     m main effects
     U matrix with coordinates for row-objects
     B matrix with regression weight (U = XB)
dataExample_clmdu                                                    5
Examples
    ## Not run:
    data(dataExample_clpca)
    Y<-as.matrix(dataExample_clpca[,5:8])
    X<-as.matrix(dataExample_clpca[,1:4])
    out = clpca(Y)
    out = clpca(Y, X)
## End(Not run)
Description
    Dummy data for clmdu example
Usage
    dataExample_clmdu
Format
    A data frame with 200 observations on the following variables:
    X1 Continuous variable 1.
    X2 Continuous variable 2.
    X3 Continuous variable 3.
    X4 Continuous variable 4.
    Y1 Discrete variable 1.
    Y2 Discrete variable 2.
    Y3 Discrete variable 3.
    Y4 Discrete variable 4.
    Y5 Discrete variable 5.
6                                                                     dataExample_lmdu
Description
     Dummy data for clpca example
Usage
     dataExample_clpca
Format
     A data frame with 200 observations on the following variables:
     X1 Continuous variable 1.
     X2 Continuous variable 2.
     X3 Continuous variable 3.
     X4 Continuous variable 4.
     Y1 Discrete variable 1.
     Y2 Discrete variable 2.
     Y3 Discrete variable 3.
     Y4 Discrete variable 4.
Description
     Dummy data for lmdu example
Usage
     dataExample_lmdu
Format
     A data frame with 234 observations on the following variables:
     Y1 Dichotomous variable 1.
     Y2 Dichotomous variable 2.
     Y3 Dichotomous variable 3.
     Y4 Dichotomous variable 4.
dataExample_lpca                                                     7
    Y5 Dichotomous variable 5.
    Y6 Dichotomous variable 6.
    Y7 Dichotomous variable 7.
    Y8 Dichotomous variable 8.
    X1 Continuous variable 1.
    X2 Continuous variable 2.
    X3 Continuous variable 3.
    X4 Continuous variable 4.
    X5 Continuous variable 5.
Description
    Dummy data for lpca example
Usage
    dataExample_lpca
Format
    A data frame with 234 observations on the following variables:
    Y1 Dichotomous variable 1.
    Y2 Dichotomous variable 2.
    Y3 Dichotomous variable 3.
    Y4 Dichotomous variable 4.
    Y5 Dichotomous variable 5.
    Y6 Dichotomous variable 6.
    Y7 Dichotomous variable 7.
    Y8 Dichotomous variable 8.
    X1 Continuous variable 1.
    X2 Continuous variable 2.
    X3 Continuous variable 3.
    X4 Continuous variable 4.
    X5 Continuous variable 5.
8                                                                                                   esm
Description
     Dummy data for mru example
Usage
     dataExample_mru
Format
     A data frame with 234 observations on the following variables:
     y Categorical variable.
     X1 Continuous variable 1.
     X2 Continuous variable 2.
     X3 Continuous variable 3.
     X4 Continuous variable 4.
     X5 Continuous variable 5.
Description
     The function esm performs extended stereotype model analysis for multivariate logistic analysis i.e.
     a double constrained reduced rank multinomial logistic model
Usage
     esm(
       X,
       Y,
       S = 2,
       Z = NULL,
       W = NULL,
       ord.z = 1,
       ord.m = R,
       scale.x = FALSE,
       trace = FALSE,
       maxiter = 65536,
       dcrit = 1e-06
     )
esm                                                                                           9
Arguments
      X                  An N by P matrix with predictor variables
      Y                  An N times R binary matrix .
      S                  Positive number indicating the dimensionality of teh solution
      Z                  design matrix for response
      W                  design matrix for intercepts
      ord.z              if Z = NULL, the function creates Z having order ord.z
      ord.m              if W = NULL, the function creates W having order ord.m
      scale.x            whether X should be scaled to zero mean and standard deviation one
      trace              whether progress information should be printed on the screen
      maxiter            maximum number of iterations
      dcrit              convergence criterion
Value
      This function returns an object of the class esm with components:
      call               function call
      Xoriginal          Matrix X from input
      X                  Scaled X matrix
      mx                 Mean values of X
      sdx                Standard deviations of X
      Y                  Matrix Y from input
      pnames             Variable names of profiles
      xnames             Variable names of predictors
      znames             Variable names of responses
      Z                  Design matrix Z
      W                  Design matrix W
      G                  Profile indicator matrix G
      m                  main effects
      bm                 regression weights for main effects
      Bx                 regression weights for X
      Bz                 regression weights for Z
      A                  regression weights (Bx Bz’)
      U                  matrix with coordinates for row-objects
      V                  matrix with coordinates for column-objects
      Ghat               Estimated values of G
      deviance           value of the deviance at convergence
      df                 number of paramters
      AIC                Akaike’s informatoin criterion
      iter               number of main iterations from the MM algorithm
      svd                Singular value decomposition in last iteration
10                                                                                               fastmbu
Examples
      ## Not run:
      data(dataExample_lpca)
      Y = as.matrix(dataExample_lpca[ , 1:5])
      X = as.matrix(dataExample_lpca[ , 9:13])
      #unsupervised
      output = esm(X, Y, S = 2, ord.z = 2)
## End(Not run)
Description
      Fast version of mbu. It runs mbu without input checks.
Usage
      fastmbu(
        Y = NULL,
        W = NULL,
        XU = NULL,
        BU = NULL,
        XV = NULL,
        BV = NULL,
        mains = TRUE,
        MAXINNER = 32,
        FCRIT = 0.001,
        MAXITER = 65536,
        DCRIT = 1e-06
      )
Arguments
      Y                  matrix with dichotomous responses
      W                  matrix with weights for each entrance of Y or vector with weights for each row
                         of Y
      XU                 in unsupervised analysis starting values for row coordinates; in supervised anal-
                         ysis matrix with predictor variables for rows
      BU                 for supervised analysis matrix with regression weights for the row coordinates
      XV                 in unsupervised analysis starting values for column coordinates; in supervised
                         analysis matrix with predictor variables for columns
      BV                 for supervised analysis matrix with regression weights for the column coordi-
                         nates
fastmru                                                                                       11
Value
Description
Usage
    fastmru(
      G = NULL,
      X = NULL,
      B = NULL,
      Z = NULL,
      MAXINNER = 32,
      FCRIT = 0.001,
      MAXITER = 65536,
      DCRIT = 1e-06,
      error.check = FALSE
    )
12                                                                                                lmdu
Arguments
      G                   indicator matrix of the response variable
      X                   matrix with predictor variables
      B                   starting values of the regression weights
      Z                   starting values for class locations
      MAXINNER            maximum number of iterations in the inner loop
      FCRIT               convergence criterion for STRESS in the inner loop
      MAXITER             maximum number of iterations in the outer loop
      DCRIT               convergence criterion for the deviance
      error.check         extensive check validity input parameters (default = FALSE).
Value
      B estimated regression weights
      V estimated class locations
      Lastinner number of iterations in the last call to STRESS
      Lastfdif last difference in STRESS values in the inner loop
      lastouter number of iterations in the outer loop
      lastddif last difference in deviances in outer loop
      deviance obtained deviance
Description
      This function runs: logistic multidimensional unfolding (if X = NULL) logistic restricted multidi-
      mensional unfolding (if X != NULL)
Usage
      lmdu(
        Y,
        f = NULL,
        X = NULL,
        S = 2,
        start = "svd",
        maxiter = 65536,
        dcrit = 1e-06
      )
lmdu                                                                                            13
Arguments
Value
deviance
Examples
      ## Not run:
      data(dataExample_lmdu)
      Y = as.matrix(dataExample_lmdu[ , 1:8])
      X = as.matrix(dataExample_lmdu[ , 9:13])
      # unsupervised
      output = lmdu(Y = Y, S = 2)
      # supervised
      output2 = lmdu(Y = Y, X = X, S = 2)
## End(Not run)
Description
      This function runs: logistic principal component analysis (if X = NULL) logistic reduced rank
      regression (if X != NULL)
Usage
      lpca(
        Y,
        X = NULL,
        S = 2,
        dim.indic = NULL,
        eq = FALSE,
        lambda = FALSE,
        maxiter = 65536,
        dcrit = 1e-06
      )
Arguments
      Y                 An N times R binary matrix .
      X                 An N by P matrix with predictor variables
      S                 Positive number indicating the dimensionality of the solution
      dim.indic         An R by S matrix indicating which response variable pertains to which dimen-
                        sion
      eq                Only applicable when dim.indic not NULL; equality restriction on regression
                        weighhts per dimension
      lambda            if TRUE does lambda scaling (see Understanding Biplots, p24)
      maxiter           maximum number of iterations
      dcrit             convergence criterion
lpca                                                                        15
Value
Examples
       ## Not run:
       data(dataExample_lpca)
       Y = as.matrix(dataExample_lpca[, 1:8])
       X = as.matrix(dataExample_lpca[, 9:13])
       # unsupervised
       output = lpca(Y = Y, S = 2)
       ## End(Not run)
16                                                                                                    mru
Description
      The function mru performs multinomial restricted unfolding for a nominal response variable and a
      set of predictor variables.
Usage
Arguments
Value
Examples
    ## Not run:
    data(dataExample_mru)
    y = as.matrix(dataExample_mru[1:20 , 1])
    X = as.matrix(dataExample_mru[1:20 , 2:6])
    output = mru(y = y, X = X, S = 2)
## End(Not run)
Description
    Plots a Cumulative Logistic MDU model
Usage
    ## S3 method for class 'clmdu'
    plot(
      x,
      dims = c(1, 2),
      circles = seq(1, R),
      ycol = "darkgreen",
      xcol = "lightskyblue",
      ocol = "grey",
      ...
    )
Arguments
    x                  an object of type clmdu
    dims               which dimensions to visualize
    circles            which circles to visualize
    ycol               colour for representation of response variables
    xcol               colour for representation of predictor variables
    ocol               colour for representation of row objects
    ...                additional arguments to be passed.
Value
    Plot of the results obtained from clmdu
18                                                                          plot.clpca
Examples
      ## Not run:
      data(dataExample_clmdu)
      Y = as.matrix(dataExample_clmdu[ , 1:8])
      X = as.matrix(dataExample_clmdu[ , 9:13])
      # unsupervised
      output = clmdu(Y = Y, S = 2)
      plot(output)
## End(Not run)
Description
      Plots a Cumulative Logistic PCA model
Usage
      ## S3 method for class 'clpca'
      plot(
        x,
        dims = c(1, 2),
        ycol = "darkgreen",
        xcol = "lightskyblue",
        ocol = "grey",
        ...
      )
Arguments
      x                  an object of type clpca
      dims               which dimensions to visualize
      ycol               colour for representation of response variables
      xcol               colour for representation of predictor variables
      ocol               colour for representation of row objects
      ...                additional arguments to be passed.
Value
      Plot of the results obtained from clpca
plot.lmdu                                                                 19
Examples
    ## Not run:
    data(dataExample_clpca)
    Y<-as.matrix(dataExample_clpca[,5:8])
    X<-as.matrix(dataExample_clpca[,1:4])
    out = clpca(Y, X)
    plot(out)
## End(Not run)
Description
Usage
Arguments
Value
Examples
      ## Not run:
      data(dataExample_lmdu)
      Y = as.matrix(dataExample_lmdu[ , 1:8])
      X = as.matrix(dataExample_lmdu[ , 9:13])
      # unsupervised
      output = lmdu(Y = Y, S = 2)
      plot(output)
## End(Not run)
Description
      Plots a Logistic PCA Model
Usage
      ## S3 method for class 'lpca'
      plot(
        x,
        dims = c(1, 2),
        type = "H",
        ycol = "darkgreen",
        xcol = "lightskyblue",
        ocol = "grey",
        ...
      )
Arguments
      x                  an object of type lpca
      dims               which dimensions to visualize
      type               either H (hybrid), I (inner product/pca), or D (distance/melodic)
      ycol               colour for representation of response variables
      xcol               colour for representation of predictor variables
      ocol               colour for representation of row objects
      ...                additional arguments to be passed.
Value
      Plot of the results obtained from lpca
plot.mru                                                                                          21
Examples
    ## Not run:
    data(dataExample_lpca)
    Y = as.matrix(dataExample_lpca[, 1:8])
    X = as.matrix(dataExample_lpca[, 9:13])
    # unsupervised
    output = lpca(Y = Y, S = 2)
    plot(output)
## End(Not run)
Description
    Plots a Multinomial Restricted MDU model
Usage
    ## S3 method for class 'mru'
    plot(
      x,
      dims = c(1, 2),
      class.regions = FALSE,
      ycol = "darkgreen",
      xcol = "lightskyblue",
      ocol = "grey",
      ...
    )
Arguments
    x                  an object of type mru
    dims               which dimensions to visualize
    class.regions      whether a voronoi diagram with classification regions should be included
    ycol               colour for representation of response variables
    xcol               colour for representation of predictor variables
    ocol               colour for representation of row objects
    ...                additional arguments to be passed.
Value
    Plot of the results obtained from mru
22                                                                                             predict.clmdu
Examples
      ## Not run:
      data(dataExample_mru)
      y = as.matrix(dataExample_mru[ , 1])
      X = as.matrix(dataExample_mru[ , 2:6])
      output = mru(y = y, X = X, S = 2)
      plot(output)
## End(Not run)
Description
      The function predict.clmdu makes predictions for a test/validation set based on a fitted cl restricted
      multidimensional unfolding model (clmdu with X)
Usage
Arguments
Value
Examples
    ## Not run:
    data(dataExample_clpca)
    Y = as.matrix(dataExample_clmdu[ , 1:8])
    X = as.matrix(dataExample_clmdu[ , 9:13])
    newY = as.matrix(dataExample_clmdu[1:20 , 1:8])
    newX = as.matrix(dataExample_clmdu[1:20 , 9:13])
    # supervised
    output = clmdu(Y = Y, X = X, S = 2)
    preds = predict(output, newX = newX, newY = newY)
## End(Not run)
Description
    The function predict.clpca makes predictions for a test/validation set based on a fitted clrrr model
    (clpca with X)
Usage
Arguments
Value
Examples
      ## Not run:
      data(dataExample_clpca)
      Y = as.matrix(dataExample_clpca[ , 1:8])
      X = as.matrix(dataExample_clpca[ , 9:13])
      newY = as.matrix(dataExample_clpca[1:20 , 1:8])
      newX = as.matrix(dataExample_clpca[1:20 , 9:13])
      # supervised
      output = clpca(Y = Y, X = X, S = 2)
      preds = predict(output, newX = newX, newY = newY)
## End(Not run)
Description
      The function predict.lmdu makes predictions for a test/validation set based on a fitted lrmdu model
      (lmdu with X)
Usage
      ## S3 method for class 'lmdu'
      predict(object, newX, newY = NULL, ...)
Arguments
      object             An lmdu object
      newX               An N by P matrix with predictor variables for a test/validation set
      newY               An N by R matrix with response variables for a test/validation set
      ...                additional arguments to be passed.
Value
      This function returns an object of the class lpca with components:
Examples
    ## Not run:
    data(dataExample_lpca)
    Y = as.matrix(dataExample_lmdu[-c(1:20) , 1:8])
    X = as.matrix(dataExample_lmdu[-c(1:20) , 9:13])
    newY = as.matrix(dataExample_lmdu[1:20 , 1:8])
    newX = as.matrix(dataExample_lmdu[1:20 , 9:13])
    # supervised
    output = lmdu(Y = Y, X = X, S = 2)
    preds = predict(output, newX = newX, newY = newY)
## End(Not run)
Description
    The function predict.lpca makes predictions for a test/validation set based on a fitted lrrr model
    (lpca with X)
Usage
    ## S3 method for class 'lpca'
    predict(object, newX, newY = NULL, ...)
Arguments
    object             An lpca object
    newX               An N by P matrix with predictor variables for a test/validation set
    newY               An N by R matrix with response variables for a test/validation set
    ...                additional arguments to be passed.
Value
    This function returns an object of the class lpca with components:
Examples
      ## Not run:
      data(dataExample_lpca)
      Y = as.matrix(dataExample_lpca[-c(1:20) , 1:8])
      X = as.matrix(dataExample_lpca[-c(1:20) , 9:13])
      newY = as.matrix(dataExample_lpca[1:20 , 1:8])
      newX = as.matrix(dataExample_lpca[1:20 , 9:13])
      # supervised
      output = lpca(Y = Y, X = X, S = 2)
      preds = predict(output, newX = newX, newY = newY)
## End(Not run)
Description
The function predict.mru makes predictions for a test/validation set based on a fitted mru model
Usage
Arguments
Value
Examples
    ## Not run:
    data(dataExample_lpca)
    Y = as.matrix(dataExample_mru[-c(1:20) , 1:8])
    X = as.matrix(dataExample_mru[-c(1:20) , 9:13])
    newY = as.matrix(dataExample_mru[1:20 , 1:8])
    newX = as.matrix(dataExample_mru[1:20 , 9:13])
    # supervised
    output = mru(Y = Y, X = X, S = 2)
    preds = predict(output, newX = newX, newY = newY)
## End(Not run)
Description
Usage
Arguments
Value
Description
      The function summary.clpca gives a summary from an object from clpca()
Usage
      ## S3 method for class 'clpca'
      summary(object, ...)
Arguments
      object            An object resulting from clpca
      ...               additional arguments to be passed.
Value
      Summary of the results obtained from clpca
Description
      The function summary.esm gives a summary from an object from esm()
Usage
      ## S3 method for class 'esm'
      summary(object, ...)
Arguments
      object            An object resulting from esm
      ...               additional arguments to be passed.
Value
      Summary of the results obtained from esm
summary.lmdu                                                               29
Description
    The function summary.lmdu gives a summary from an object from lmdu()
Usage
    ## S3 method for class 'lmdu'
    summary(object, ...)
Arguments
    object            An object resulting from lmdu
    ...               additional arguments to be passed.
Value
    Summary of the results obtained from lmdu
Description
    The function summary.lpca gives a summary from an object from lpca()
Usage
    ## S3 method for class 'lpca'
    summary(object, ...)
Arguments
    object            An object resulting from lpca
    ...               additional arguments to be passed.
Value
    Summary of the results obtained from lpca
30                                                                                 twomodedistance
Description
      Summarizing Multinomial Logistic Unfolding model
      The function summary.mru gives a summary from an object from mru()
Usage
      ## S3 method for class 'mru'
      summary(object, ...)
Arguments
      object            An object resulting from mru
      ...               additional arguments to be passed.
Value
      Summary of the results obtained from mru
     twomodedistance           The function twomodedistance computes the two mode (unfolding) dis-
                               tance
Description
      The function twomodedistance computes the two mode (unfolding) distance
Usage
      twomodedistance(U, V)
Arguments
      U                 An N times S matrix with coordinates in S dimensional Euclidean space.
      V                 An R times S matrix with coordinates in S dimensional Euclidean space.
Value
      D a N by R matrix with Euclidean distances
Index
∗ datasets                       summary.lpca, 29
     dataExample_clmdu, 5        summary.mru, 30
     dataExample_clpca, 6
     dataExample_lmdu, 6         twomodedistance, 30
     dataExample_lpca, 7
     dataExample_mru, 8
clmdu, 2
clpca, 4
dataExample_clmdu, 5
dataExample_clpca, 6
dataExample_lmdu, 6
dataExample_lpca, 7
dataExample_mru, 8
esm, 8
fastmbu, 10
fastmru, 11
lmdu, 12
lpca, 14
mru, 16
plot.clmdu, 17
plot.clpca, 18
plot.lmdu, 19
plot.lpca, 20
plot.mru, 21
predict.clmdu, 22
predict.clpca, 23
predict.lmdu, 24
predict.lpca, 25
predict.mru, 26
summary.clmdu, 27
summary.clpca, 28
summary.esm, 28
summary.lmdu, 29
31