ACKNOWLEDGEMENT
Our first gratitude goes to the almighty God who gave us all the patience and
strength .Secondly we like to thank Civil Engineering department for giving us this project
specially our instructors Ato. Demelash ,Ato. Ephrem K.,Ato.Erkeno Y.,Ato. Sebsebe,
who helped us to enhance our knowledge of structural analysis and design and also for
providing us with all the necessary equipment’s that may be of use to us. We also like to
thank all the other instructors who stood beside us and helped us with moral support.
                                         OBJECTIVE
The project has a lot of aims (objectives) these are
    To help the students in order to revise what have learnt in time of studying.
    To work with the general concepts of designing methodology.
    It develops the habits of working together.
    To design a structure to fit to the environment it is constructed according to the given
       manual.
                                         INTRODUCTION
Civil Engineering is a professional engineering discipline that deals with design, construction
and maintenance of the physical and naturally built environment.
This project is a structural design of a G+4 reinforced concrete building for learning purpose
.It is to be constructed in JIMMA UNIVERSITY around the hospital. The plan area covered
by the building is around 1030 m2 with total height of 26.72m above the reference level l (0
Level)
The serviceability limit state design method is used for the analysis of the entire building.
The design is made based on the ETHIOPIAN BUILDING CODE OF STANDARDS
(EBCS-1995) with additional reference books and lecture notes. ETABS 2009 computer
software is used for the frame analysis and SAP for truss analysis.
                         STRUCTURAL PLANING PREVIEW
Structural planning is the first step of structural design which includes positioning and orientation of
columns, positioning of beams, layout of staircases and selecting proper type of foundation.
POSITION OF BEAMS
As beam transfers load to columns, the position of beams should be aligned with the columns. So
beams are provided directly from column to column.
POSITIONING AND ORIENTATION OF COLUMN As much as possible the orientation of
columns should be provided in such a way that to avoid the projection of columns outside the wall
and orienting the columns depth on the major plane of bending
At ground floor, slabs are not provided and the floor will directly rest on ground. Therefore, only
ground beams passing through columns are provided as tie beams. The floor beams are thus absent in
the ground floor
SLAB
Selection of slab is on the basis of the load it carry, the intended use of the building and also the
intended sound insulation this project two types of slab, solid and ribbed slabs are used.
LAYOUT OF STAIRS
All of of the staircases in this project are designed as half turn stair.
TYPES OF FOUNDATION
The type of foundation depends up on the load carried by the columns and bearing capacity of the
supporting soil.
Material used
Concrete C-25
Steel S-300
Class I work
        Cover 15mm and reinforcement of ϕ12
        ϓ of concrete=24KN/m3
        ϓ of walling material=14KN/m3
        Thickness of plaster=2.5cm
CHARACTERSTIC STRENGTH
        fcd =0.68fck/ϓc =0.68 * 25/1.5 =11.33Mpa
        fyd =fyk/ϓs =300/1.15 =260.87Mpa
        fctd=(0.21(fcy/1.25)2/3)ϓc =1.031Mpa
                                 CHAPTER 1
                                 Design of truss
While designing a truss we should take in to consideration the effect of lateral
load such as wind load and earthquake. In the preceding section the design and
analysis of a single truss is dealt with only considering the effect of wind load.
The design process includes the design of EGA sheet, Purlin and Rafter.
According to the plan the dimension of the truss in centimeter is shown below.
step I : Design of EGA sheet
Height of truss = 1.57m.
Spacing of truss = 2.2 m.
Spacing of purlin = 1.25m.
Inclination of truss = 9.684o.
Type of EGA sheet selected = EGA 500, t=0.4.
Loading
    Dead load
   Weight of EGA =3.14 kg/m.
   Coating = 0.7 kg/m.
   Total load = 3.84 kg/m.
   Effective width of EGA = 0.712m.
   Load of EGA/m2 =              =0.053KN/m2.
 Live load
  As per EBCS – I, 1995, section 2.6.3.4.2
  Distributed load (qk) = 0.25 KN/m2.
  Concentrated load (Qk) = 1 KN.
   Self weight of EGA = 0.053 KN/m2 *0.782m.
                          = 0.04 KN/m.
   Live load 0.25 KN/m2 * 0.782m =0.2 KN/m.
               1 KN at mid span =0.8 KN/m.
   Wind load
    Wind load is divided in to these are external load and internal loads. The
   net effect of wind load can be computed by subtracting the internal wind
   pressure from the external. This pressure depends on height of the
   building, orientation of the building, height of other buildings around it,
   etc…
             EXTERNAL WIND PRESSURE
   We=qref*ce(ze)*cpe-----------------------------From EBCS-1, 1995;page 53
   Qref=1/2*ρ*vref2
      Where qref – reference wind velocity
   Ce (ze) - exposure coefficient
    Cpe _external pressure coefficient
   ρ_ air density
   Vref=CDIR*CTEM*CACT*Vref-----------------------From EBCS-1, 1995; page
   55
                                  Where; CDIR- direction factor taken as 1
                                                  CTEM- temporary (seasonal)
   factor=1
                                         CALT- altitude factor=1
      Therefore; Vref=1*1*1*22m/sec=22m/sec which is mostly taken.
      Altitude of Jimma (our site) =1950m above sea level.
      From EBCS-1,1995;page 55-table 3.1----------ρ=0.95Kg/m3
         i.e.    qref=1/2ρVref2=1/2*0.95*22=231.35N/m2
            i.   EXPOSURE COEFFICIENT ,Ce (Ze)
         Ze=h=20.29m
         Ce(Ze)=Cr2(Z)*Ct2(Z) [1+            ]
         EBCS-1, 1995/PAGE 60
         KT- terrain factor
         Cr(z)= roughness coefficient
         Ct(Z) = topographic coefficient
         Cr(z) = KTln ( Z/ZO) , for Z min   Z       200m.
         Cr(z) =Cr(Zmin) }.       For Z     Zmin.
    From EBCS I 1995/table 3.2. urban area in which at least 15% of the
     surface is covered in buildings and their average height exceeds 15m are
     categorized as category IV. Therefore,
     KT = 0.24 , Zo =1m, Zmin = 16m.
      Since Zmin      Z       200m.
      Cr (z) = KT ln (Z/Zo)
             = 0.24 ln (20.29/11) =0.722.
      Ct (Z) = 1, site is not affected by topography (no escarpment and cliff)
Ce(20.29) = 0.7222 * 12 *
Ce (20.29) = 1.73
II External pressure coefficient (Cpe)
(a) General
              Where; b-cross wind dimension
                            h=Ze and
                            e=b or 2h
            (b) Wind                                      reaction
Fig   key for Doupich Roofs
  For 00
  e                               Therefore; e=13.2m for 00
  e=13.2
  For 900
  e                    e=18.4m
        i.e.
        Internal wind pressure, Wi
        Wint=qref*Ce (Ze)*Cpi         ------------------ ----from EBCS1-1995/page 53
                            Where; Cpi-internal pressure coefficient
                For a building with internal partition the extreme values are
                 Cpi=0.8 and Cpi=-0.5.
                Cpe depends on size of loaded area (A), on the individual parts of
                 the building.
Cpe= Cpe,1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for A    m2
Cpe= Cpe,1 ( Cpe,10 Cpe,1)                 - - - - - - - - - - - -for 1m2     A    10 m2
Cpe= Cpe,10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for A   10 m2
For 00
Zone                  Area (m2)             For 00                 Cpe
                                            Cpe 10    Cpe 1
F                     4.356                 -         - 2.26       -1.67
                                            1.33
G                     8.712                 -1.01     - 1.76       -1.05
H                     208.03                -0.46     - 0.78       -0.46
J                      17.42              -0.63    - 0.86     -0.63
I                      208.03             -        - 0.35     -0.35
                                          0.35
    For 90
            o
Zone                      Area                    For 900                   Cpe
                                                  Cpe 10      Cpe 1
F                         7.54                    - 1.46      - 2.1         - 1.45
G                         9.38                    - 1.3       -2            - 1.32
H                         84.64                   - 0.65      -1.2          - 0.65
I                         36.8                    - 0.5       - 0.5         - 0.5
        Take Cpi = 0.8
        For zero degree
Pitch           F                 G               H                J                 I
angle
                Cpe       Cpi     Cpe      Cpi    Cpe       Cpi    Cpe      Cpi      Cpe      Cpi
9.684           - 1.67 0.8        - 1.05 0.8      - 0.46 0.8 - 0.63 0.8              - 0.35   0.8
Cpe - Cpi             - 2.47      -1.85           - 1.26           - 1.43            - 1.15
        Wnet = qref * Ce (Ze) (Cpe- Cpi)
        q ref= 231.35 , Ce(Ze) = 1.73
        Zone               W net
        F                  -988.581
        G                  -740.43
        H                  -504.29
        J                  -572.34
        I                  -460.27
        FOR 900
Pitch angle       F                 Ci            H             I
9.684             -1.45   0.8       -1.32   0.8   -0.65   0.8   -0.5   0.8
Cpe-Cpi           -2.25             -2.12         -2.45         -2.3
        ZONE                       W net
        F                  -900
        G                  -848.5
        H                  -580.34
        I                  -520.3
        Take W net ,max =-988.58 N/m2
        Wind load =
LOAD COMBINATION FOR ULTIMATE LIMIT STATE
 Combination from ESCP -1/1983
Cases: LL, DL & WL
Pd= 0.8(1.3DL+1.6LL+1.6WL)
Live load = 0.254KN/m+
          = 1.24KN/m
Dead load=0.054KN/m
Therefore Pd =0.8{ 1.3(0.054)+1.6(1.24)+1.6(1.003)}
           Pd=0.36 KN/M
Md= pdl2/8=0.07 KN.m
Md=
Load combination for ultimate limit state from ESCP.
Cases: LL, DL and WL.
Where LL= live load.
       DL= dead load.
       WL = wind load.
Pd = 0.8 {1.3DL + 1.6 LL + 1.6 WL}
    = 0.8 {1.3(0.04)+1.6(0.2+0.8)+1.6(0.773)}
    = 2.3 KN/m
                         2.3 KN/m
                                  1.25m
A                                                                B
2.30(1.25) = RA + RB.
RA = RB = 1.44KN.
Md =     =
Check for flexure
Section property of EGA 500
Section modulus = 3756 mm2.
Moment of inertia =79972mm4.
Flexure (md) = 0.45KN.m.
Fbx =
fbx should be less than flexure allowable stress = 0.6 fyk.
Deflection
Allowable deflection    all   =     =     = 6.25 m, from EBCS – 1995/p105.
      ∆actual =
      ∆actual ˂ ∆allowable
      Design of purlin.
      Trial section 60*60*3 (a
      1.44KN/2.2 m =0.65 KN/m.
      DL = (0.65KN/m +0.04 KN/m) = 0.69KN/m
      LL = 0.25 KN/m * 0.06 +1 KN/2.2 = 0.47 KN/m.
      WL = 0.775 KN/m2 * 0.06 = 0.05KN/m.
      Pd = 0.8 {1.3(0.69) + 1.6(0.47) – 1.6(0.05)} = 1.26 KN/m.
      Θ1 = 42.482            Θ2 = 47.518
      Θ3 = 47.14             Θ4 = 42.86
      Θ5 = 52.62             Θ6 = 37.38
      Θ7 =59.03              Θ8 = 30.06
      Θ9 = 66.44             Θ10 =23.56
      Θ11 =74.78              Θ12 = 15.22
      Θ13 = 83.83             Θ14 =6.164
Load = 1.5cm *50cm*60cm
Load = 0.015*0.6*0.6*8 =0.0432KN
UDL=0.00235KN/m.
                                   CHAPTER TWO
                2. 1 ANALYSIS AND DESIGN OF SOLID SLAB
         Slabs are structural flat plates used to provide useful horizontal surface mainly for
roofs and floors of buildings and other structures. Based on load transferring mechanisms
there are two types of slabs. These are one way and two way slabs.
     Slabs are composed of rectangular panels supported at all four edges by walls or beams
that are stiff enough to be treated as unyielding. In our case most of the slabs are two way
and need to be analysed based on the principle of two way actions. General procedure to
design two way slab system are described below.
          DEPTH FOR DEFLECTION
The minimum depth of a slab for deflection requirement is computed by:
          d ≥ (0.4+0.6fyk/400)le/βa
Where: le: effective length of the slab
        fyk: characteristic tensile strength of reinforcement
         LOAD DETERMINATITION
    Dead and live loads are calculated depending on the service of the slabs and self weight.
Partition loads are distributed over the slab if they are not large enough to cause localized
effects. The design loads are factored according to the following formula that is given in
EBCS code.
Pd =1.3DL+1.6LL                where:        Pd=design load
                                             DL=total dead load on slab
                                             LL=Live load
                                        ANALYSIS
   The analysis of slab moments of two way slabs is accomplished by analysing individual
panel’s bending moments and shear forces. It accomplished by the formula:-
                Mi =αipdLx2
     Where: Mi=the design moment per unit width at the point of reference
                αi= the coefficient given in table A-1 in EBCS-2,1995.
Pd = the design load
Lx= the shorter span of the panel
Ly= the longer span of the panel
          The following symbols stand for:
S=support
f =span
x =direction of shorter span
y =direction of longer span
MOMENT ADJUSTMENTS
    ♦ Support adjustment
     For continuous support there will be two moments which are different in magnitude.
These moments are usually different in magnitudes and must be adjusted to make only one
moment.
  If ∆M<20% of the larger moment, the design moment is the average of two.
  If ∆M>20% then the unbalanced moment is distributed based on the stiffness.
      Let MS - moment in the smaller
         ML - moment in the larger
         K - Stiffness of the slabs
Therefore the design moment Md can be calculated in the either of the following formula
       Md =             x ∆M, taking the larger; OR               Where K=I/LX
       Md=MS+KS/ (KL+KS) x ∆M, taking the smaller
    ♦ Span adjustment
        If the moment in the adjusted support decreases, the span moment are increased to
compensate for the changes in the support moments. The design moments for the spans are
calculated as shown below.
MXd=Mxf +Cx ∆M       Where ∆M=the change in moment in all supports.
Myd=Myf +CY ∆M
   Cx and CY are coefficients for adjusting span moments in EBCS-2,table A
LOAD TRANSFER TO BEAM
         Finally the design uniform loads are transferred to beam as shear. The shear is
calculated using the formulas from EBCS-2, 1995 as given below.
    Vx=βVX*Pd*Lx
   Vy=βVy*Pd*Ly
 Where; βVX & βVy are load transfer coefficients given in EBCS-2, 1995 of table-3
                   Basic design constants
      ♦ Concrete
Unit weight = 24KN/m3
Strength C -25, class-1 work
Partial safety factor, δc = 1.5
    ♦ Concrete strength
fck = 0.8fcu = 0.8 25 = 20MPa
fctk = 0.21×fck 2/3
    ♦ Design strength
fcd = 0.85×(fck/ δc) = 0.85 x (20/1.5)= 11.33MPa
    ♦ Steel
Steel grade S-300
Partial safety factor, fc = 1.25, class 1-work
Characteristic strength
Yield strength, fyk =300MPa
Es= 200MPa
Design strength = fyk/δc = 300/1.15 = 260.87 MPa
The analysis and design of a 4 storey building located in side the campus of jimma university is
conducted in two separate parts. The building is composed of two separate buildings interconnected
by a stair. The analysis and design of these buildings is as shown below.
ANALYSIS AND DESIGN
PART -I
Design of 1st floor
Depth determination for deflection requirement
dmin= (0.4 +         )( )   , where le ( shorter length)
d>= 0.85*le/Ba where le=Lx
Here the depth of panel 5 and pane 15 seem to be governing but designing with this depth will make
our design somewhat uneconomical, so we have to provide the maximum depth for these panels and
make the depth of other panels similar and the one which is maximum except the depth of the above
mentioned panels.
Table 1 depth determination
panel          Ly(cm)       Lx(cm)      Ly/Lx         Ba        d min(m)       d(mm)
S1             690          535         1.29          33.55     13.55          135.54
S2             690          420         1.64          31.8      11.23          112.26
S3             690          480         1.44          32.8      12.44          124.39
S4             690          420         1.64          31.8      11.23          112.26
S5             690          650         1.06          34.7      15.92          159.22
S6             460          535         0.86          35.7      10.95          109.52
S7             460          420         1.1           44        8.11           81.14
S8             460          480         0.96          45.4      8.61           86.12
S9             460          420         1.1           44        8.11           81.14
S10            460          650         0.71          36.45     10.73          107.27
S11            690          535         1.29          33.55     13.55          135.54
S12            690          420         1.64          38.6      9.25           92.49
S13            690          480         1.44          40.6      10.05          100.49
S14            690          420         1.64          38.6      9.25           92.49
S15            690          650         1.06          34.7      15.92          159.22
S16            630          115         5.48          18.96     5.16           51.56
S17         455             160          2.84          13.68          9.94             99.42
S18         1970            130          15.15         38.3           2.89             28.85
S19         1970            130          15.15         38.3           2.89             28.85
For panels 5 and 15
D=159.22 + 15 + 12/2 =181mm
Use D=200mm, d=200 – 15 – 12/2 =179mm
For other panels
D=135.54 + 15 + 12/2 =156.54mm
Use D=170mm, d=170 – 15 – 12/2 =149mm
      2. LOADING
        A. DEAD LOAD
                   1. Marble = 0.03 * 27 = 0.81KN/m
                   2. PVC tile =0.02 * 16 = 0.032KN/m
                   3. Cement screed = (0.03 * 20)*2 = 1.2KN/m
                   4. Partition wall = ((0.15*14) + (0.05*20))*3.6 /area =11.16/area
                   5. External wall = ((0.25*14) + (0.05*20))*3.6 /area =13.68/area
B. IMPOSED LOAD
                   From EBCS-2, 1995 page 46 the category for class room is C2 and for this category
                   the imposed load for class room and veranda is respectively 3& 4KN/m 2
                   Design load, p = 1.3 GK + 1.6qk
                                 d
                             Table 2-Summarized loadings on each panel is presented as follows
panel selfwt             Cement partition  PVC                  marble    sum(DL) LL             PD
                         screed load(KN/m) tile
      (KN/m2)                                                                         (KN/m2)
S1    5                  1.2                                    0.81      7.01        4       15.513
S2    5                  1.2                         0.064                6.264       3          12.943
S3    5                  1.2          2.19           0.064                8.454       3          15.79
S4    5                  1.2                         0.064                6.264       3          12.943
S5    5                  1.2                         0.064                6.264       3          12.943
S6    5                  1.2                                    0.81      7.01        4          15.513
S7    5                  1.2          0.578                     0.81      7.588       4          16.264
S8    5                  1.2          2.397                     0.81      9.407       4          18.629
S9    5                  1.2          0.578                     0.81      7.588       4          16.264
S10   5                  1.2          0.578                     0.81      7.588       4          16.264
S11   -                  -                           -          -         0                      0
S12   5                  1.2                         0.064                6.264       3          12.943
S13   5                  1.2          2.19           0.064                8.454       3          15.79
S14   5                  1.2                         0.064                6.264       3          12.943
S15   5                  1.2                         0.064                6.264       3          12.943
S16   5                  1.2                                    0.81      7.01        4          15.513
S17   5                  1.2                                    0.81      7.01        4          15.513
S18   5                  1.2                         0.064                6.264       3          12.94    point
                                                                                                          load=13.68
              3. DETERMINATION OF DESIGN INTERNAL FORCES
          For a slab with Ly/Lx <2 and supported by beam, we use coefficient method which is specified on
          EBCS 2, 1995 for flexure at span and support.
Types of support for coefficient of moment calculation
Fig. type of support condition
     panel   support     Ly/Lx   PD(KN/m^2/m)       Lx^2(m^2)   αxs     αys     αxf     αyf     Mxs      Mys      Mxf      Myf      remark
                                                                                                                                               Ta
bl           condition                                                                                                                         e
3
     S1      1           1.29    13.856             28.623      0.046   0.032   0.035   0.024   18.085   12.691   13.762   9.518
     S2      1           1.64    11.286             17.64       0.056   0.032   0.042   0.024   11.149   6.371    8.362    4.778
     S3      1           1.44    14.133             23.04       0.051   0.032   0.038   0.024   16.607   10.42    12.374   7.815
     S4      1           1.64    11.286             17.64       0.056   0.032   0.042   0.024   11.149   6.371    8.362    4.778
     S5      2           1.06    12.943             42.25       0.041   0.039   0.031   0.029   22.421   21.327   16.952   15.858
     S6      1           0.86    13.856             28.623      0.025   0.039   0.018   0.029   9.915    15.467   7.139    11.501
     S7      1           1.1     14.607             17.64       0.037   0.032   0.028   0.024   9.534    8.245    7.215    6.184
     S8      1           0.96    16.972             23.04       0.03    0.032   0.022   0.024   11.731   12.513   8.603    9.385
     S9      1           1.1     14.607             17.64       0.037   0.032   0.028   0.02    9.534    8.245    7.215    6.184
     S10     2           0.71    14.607             42.25       0.025   0.039   0.017   0.029   15.429   24.069   10.491   17.897
     S11     3           1.29    0                  28.623      0.046   0.047   0.035   0.036   0        0        0        0
     S12     1           1.64    11.286             17.64       0.056   0.039   0.042   0.029   11.149   7.764    8.362    5.773
     S13     1           1.44    14.133             23.04       0.051   0.032   0.038   0.024   16.607   10.42    12.374   7.815
     S14     1           1.64    11.286             17.64       0.056   0.032   0.042   0.024   11.149   6.371    8.362    4.778
     S15     1           1.06    12.943             42.25       0.042   0.039   0.031   0.029   22.967   21.327   16.952   15.858
     S16     4                   13.856                                                         10.258                              M=Wl^2/2
     S17     4                   13.856                                                         13.11                               "
     S18     4                   pt=13.68,W=12.94                                               28.72                               "
summarized value of support and span moments
Support moment adjustment
Length
                  115       535               420             480            420               650
K                0.828      0.172            0.238        0.208              0.238            0.154
DF                          0.432     0.568 0.534        0.446 0.554 0.238 0.607 0.393
ΔM                                   6.936           5.458          5.458          11.272
Adjusted M                          15.089           14.064         14.064           17.991
Length                       535            420                480               420                    650
K                            0.172         0.238               0.208             0.238               0.154
DF                             0.432   0.568 0.534         0.446    0.554    0.238 0.607          0.393
ΔM                                     5.993          2.979            2.979             14.535
Adjusted M                             12.904         11.125           11.125            18.357
Length                                         690                     460                        690
K                                          0.145                     0.217                          0.145
DF                                                   0.4             0.6        0.6        0,4
ΔM                                                         5.898                      5.898
Adjusted M                                                 18.968                     18.968
Coefficients for shear calculation
SPAN MOMENT ADJUSTMENT
 Table_____ Adjusted span moment
Panel    P.to be Moment     Ly/     M      Cx      Cy      Mxf           Myf
         adjusted condition Lx
                                                           (Mxf+M+Cx)   (Myf+M+Cy)
1&2     1                  1.29    2.996   0.370   0.351   14.871        10.570
273     3                  1.44    2.543   0.407   0.323   13.409        8.636
3&4     3                  1.44    2.543   0.407   0.323   14.444        9.457
4&5     5                  1.06    4.430   0.300   0.376   18.281        17.524
6&7     6                  0.86    2.563   0.414   0.364   8.200         12.434
7&8     8                  0.96    1.338   0.389   0.304   9.123         9.792
8&9     8                  0.96    1.338   0.389   0.304   9.643         10.199
9&10    10                 0.71    5.712   0.449   0.454   13.056        20.490
5&10    5                  1.06    2.359   0.366   0.244   19.144        18.099
10&15   15                 1.06    2.359   0.366   0.244   17.815        16.444
                                    Fig. Adjusted moment
Check depth for flexure
          Design strengths and constants
          Design strengths and constants
           max                  = , cu= 0.0035
           yd   =   ,E=200GPa
      =               =1.304*10-3
               max   =
           =0.019
           m=            =                =28.78
           dmin =
           d=76.029mm < d used OK!
Shear force calculation ……… …EBCS-2, 1995 page 114
Shear force transferred from the structure.
Vmax=66.743KN
Vc = 0.25*fctd*K1*1K2*bw*d
            fctd = 1.031 , K1=1+50ρ
            ρmin = (0.5/fyk) =0.5/300 = 1.67*
            K2 = 1.6 – d = 1.6 -0.149 = 1.451m
            Vc = 0.25*1.031*1.083 *1.451*1000*149
               =60.35KN < Vmax = 66.743 KN…….NOT OK
Hence we have to provide shear reinforcement.
Vs=Vsd-Vc=66.743-60.35=6.393KN
S=Av*Fyd*d/Vs
      = (2*π82 *260.87*149)/ (4*6.393*103) =4.1mm
Use minimum shear reinforcement, 6c/c 200mm
REINFORCEMENT DESIGN FOR FLEXURE
           Depth for calculation of reinforcement for panel 5&15
     -ds=200-15-6 = 179mm, de =200-15-12-6 =167mm
           Depth for calculation of reinforcement for other panels
     -ds=170-15-6 =149,dl=170-15-12-6=137mm
Provision of reinforcement in X direction
position    Mmt in X- depth               µ        ẁ        ₰        As         S        As
            direction                                                calculated required provided
S1          13.762          149           0.0547 0.0563 0.00245 364.31         310.45    ᴓ12C/C310
S2          8.362           149           0.0332 0.0338 0.00147 218.83         516.84    ᴓ12C/C350
S3          12.373          149           0.0492 0.0505 0.00219 326.56         346.34    ᴓ12C/C350
S4          8.362           179           0.023    0.0233 0.00101 181.19       624.22    ᴓ12C/C350
S5         16.952      149          0.0674 0.0698 0.00303 451.9     250.27   ᴓ12C/C250
S6         11.401      137          0.0536 0.0551 0.00239 328.05    344.77   ᴓ12C/C345
S7         7.125       149          0.0283 0.0287 0.00125 185.98    608.14   ᴓ12C/C350
S8         9.385       137          0.0441 0.0452 0.00196 268.66    420.97   ᴓ12C/C350
S9         7.125       149          0.0283 0.0287 0.00125 185.98    608.14   ᴓ12C/C350
S10        17.897      137          0.0842 0.088   0.00382 523.82   215.91   ᴓ12C/C215
S11                    179          0       0      0       0
S12        8.362       149          0.0332 0.0338 0.00147 218.83    516.84   ᴓ12C/C350
S13        12.373      149          0.0492 0.0505 0.00219 326.56    346.34   ᴓ12C/C350
S14        8.362       149          0.0332 0.0338 0.00147 218.83    516.84   ᴓ12C/C350
S15        16.952      179          0.0467 0.0478 0.00208 371.93    304.09   ᴓ12C/C300
S16&S1     10.258      149          0.0408 0.0416 0.00181 269.52    419.63   ᴓ12C/C350
S1&S2      15.089      149          0.06    0.0619 0.00269 400.59   282.33   ᴓ12C/C280
S2&S3      14.064      149          0.0559 0.0576 0.0025   372.55   303.58   ᴓ12C/C300
S3&S4      14.064      149          0.0559 0.0576 0.0025   372.55   303.58   ᴓ12C/C300
S4&S5      17.991      149          0.0715 0.0743 0.00323 480.71    235.28   ᴓ12C/C235
S6&S7      12.904      149          0.0513 0.0527 0.00229 340.96    331.71   ᴓ12C/C330
S7&S8      11.125      149          0.0442 0.0453 0.00197 292.84    386.22   ᴓ12C/C350
S8&S9      11.125      149          0.0442 0.0453 0.00197 292.84    386.22   ᴓ12C/C350
S9&S10     18.375      149          0.0731 0.0759 0.0033   491.39   230.16   ᴓ12C/C230
S12&S13 14.064         149          0.0559 0.0576 0.0025   372.55   303.58   ᴓ12C/C300
S13&S14 14.064         149          0.0559 0.0576 0.0025   372.55   303.58   ᴓ12C/C300
S14&S15 17.991         149          0.0715 0.0743 0.00323 480.71    235.28   ᴓ12C/C235
Provision of reinforcement in Y direction
position   Mmt in y- depth          µ       ẁ      ₰       As       S        As
         direction                                 calculated required provided
S1       9.518       137   0.0448 0.0458 0.002     272.56    414.95    ᴓ12C/C350
S2       4.778       137   0.0225 0.0227 0.001     135.23    836.37    ᴓ12C/C350
S3       7.815       137   0.0368 0.0375 0.0016    222.84    507.54    ᴓ12C/C350
S4       4.778       137   0.0225 0.0227 0.001     135.23    836.37    ᴓ12C/C350
S5       15.859      167   0.0502 0.0515 0.0022    373.65    302.69    ᴓ12C/C300
S6       7.139       179   0.0197 0.0199 0.0009    154.42    732.43    ᴓ12C/C350
S7       6.184       137   0.0291 0.0295 0.0013    175.62    643.99    ᴓ12C/C350
S8       8.603       179   0.0237 0.024    0.001   186.47    606.53    ᴓ12C/C350
S9       6.134       137   0.0288 0.0293 0.0013    174.18    649.32    ᴓ12C/C350
S10      10.491      179   0.0289 0.0293 0.0013    228.01    496.03    ᴓ12C/C350
S11
S12      5.773       137   0.0271 0.0275 0.0012    163.79    690.54    ᴓ12C/C350
S13      7.815       137   0.0368 0.0375 0.0016    222.84    507.54    ᴓ12C/C350
S14      4.778       137   0.0225 0.0227 0.001     135.23    836.37    ᴓ12C/C350
S15      15.859      167   0.0502 0.0515 0.0022    373.65    302.69    ᴓ12C/C300
S17&S1   13.11       149   0.0521 0.0536 0.0023    346.56    326.35    ᴓ12C/C325
S17&S2   28.72       149   0.1142 0.1216 0.0053    786.7     143.77    ᴓ12C/C140
S17&S3   28.72       149   0.1142 0.1216 0.0053    786.7     143.77    ᴓ12C/C140
S17&S4   28.72       149   0.1142 0.1216 0.0053    786.7     143.77    ᴓ12C/C140
S17&S5   28.72       149   0.1142 0.1216 0.0053    786.7     143.77    ᴓ12C/C140
S1&S6    12.699      149   0.0505 0.0518 0.0023    335.4     337.21    ᴓ12C/C335
S2&S7    7.308       149   0.0291 0.0295 0.0013    190.83    592.68    ᴓ12C/C350
S3&S8    11.076      149   0.044   0.045   0.002   291.52    387.97    ᴓ12C/C350
S4&S9    7.308       149   0.0291 0.0295 0.0013    190.83    592.68    ᴓ12C/C350
S5&S10   18.968      149   0.0754 0.0785 0.0034    507.92    222.67    ᴓ12C/C220
S7&S12   7.308       149   0.0291 0.0295 0.0013    190.83    592.68    ᴓ12C/C350
S8&S13   11.076   149   0.044   0.045   0.002   291.52   387.97   ᴓ12C/C350
S9&S14   7.078    149   0.0281 0.0285 0.0012    184.73   612.24   ᴓ12C/C350
S10&S15 18.968    149   0.0754 0.0785 0.0034    507.92   222.67   ᴓ12C/C220
S6&S11   12.699   149   0.0505 0.0518 0.0023    335.4    337.21   ᴓ12C/C335
S7&S12   7.308    149   0.0291 0.0295 0.0013    190.83   592.68   ᴓ12C/C350
S8&S13   11.076   149   0.044   0.045   0.002   291.52   387.97   ᴓ12C/C350
S9&S14   7.308    149   0.0291 0.0295 0.0013    190.83   592.68   ᴓ12C/C350
S10&S15 18.968    149   0.0754 0.0785 0.0034    507.92   222.67   ᴓ12C/C220
SOLID SLAB DETAILING
                            DESIGN AND ANALYSIS OF PART TWO
Design of 1st floor.
Depth determination for deflection requirement
dmin= (0.4 +         )( )   , where le ( shorter length)
d>= 0.85*le/Ba where le=Lx.
Table 1.2 depth determination
panel          Ly(cm)       Lx(cm)      Ly/Lx         Ba         d min(m)   d(mm)
P1             560          460         1.217         37.826                103.368
P2             560          460         1.217         37.826                103.368
P3             560          460         1.217         37.826                103.368
P4             690          420         1.6428        33.57                 106.345
P5             460          420         1.09          44.1                  80.95
P6             690          420         1.6428        33.57                 106.345
P7             690          480         1.438         35.62                 114.54
P8             480          460         1.043         44.57                 87.73
P9             690          480         1.438         35.62                 114.54
P10            690          420         1.6428        33.57                 106.345
P11            460          420         1.095         44.05                 81.04
P12            690          420         1.6428        33.57                 106.345
P13            690          560         1.232         37.68                 126.33
Canti.1        570          150         3.8           40                    127.5
Canti.2        790          155         5.097         40                    131.75
Canti.3        560          377         1.485         10.97                 292.114
Governing Effective Depth for all panels and cantilever 1 & 2 = 131.75mm.
i.e. D = 131.75 + 15+ 6=152.75mm. take D= 180mm.
        for cantilever 3, d= 292.144mm.
        D = 292.144 + 15 + 12 =319.144mm, Take D =350mm
        Since D is sufficiently large, we have taken the cantilever x-section as a trapezoid as shown in the figure
        below.
     350m
                                                           180mm
     m
               4. LOADING
                 A. DEAD LOAD
                        1. Marble = 0.03 * 27 = 0.81KN/m
                        2. PVC tile =0.02 * 16 = 0.032KN/m
                        3. Cement screed = (0.03 * 20)*2 = 1.2KN/m
                        4. Partition wall = ((0.15*14) + (0.05*20))*3.6 /area =11.16/area
                        5. External wall = ((0.25*14) + (0.05*20))*3.6 /area =13.68/area
        B. IMPOSED LOAD
                        From EBCS-2, 1995 page 46 the category for class room is C2 and for this category the
                        imposed load for class room and veranda is respectively 3& 4KN/m2
                        Design load, p = 1.3 GK + 1.6qk
                                      d
                        Table 2.2 -Summarized loadings on each panel is presented as follows
panel   selfwt       Floor             finish partition load(KN/m)         sum(DL) LL                        PD
                     (Ceramic/PVC/Marble)
        (KN/m2)                                 + plastering                           (KN/m2)
                     KN/m2
P1      2.975        0.42                           8.432                          11.827      3.155         20.423
P2      3.23         0.302                          2.07                           5.602       3.22          12.432
P3      4.5          1.67                           -                              6.17        3.16          13.07
P4      4.5            1.18                          -                        5.68        3.14         12.408
P5      4.5            4.045                         1.66                     10.205      3.21         18.4
P6      4.5            1.18                          -                        5.68        3.14         12.408
P7      4.5            3.33                          -                        7.83        3.12         15.171
P8      4.5            4.045                         4.418                    12.963      3.18         21.94
P9      4.5            3.33                          -                        7.83        3.12         15.171
P10     4.5            1.18                          -                        5.68        3.14         12.408
panel   selfwt         Floor            finish partition load(KN/m)           sum(DL) LL               PD
                       (Ceramic/PVC/Marble)
        (KN/m2)                                + plastering                               (KN/m2)
                       KN/m2
P11     4.5            4.045                   1.66                           10.205      3.21         18.4
P12     4.5            1.18                          -                        5.68        3.14         12.408
P13
Cant.1 4.5             0.72                          1.44                     6.265       3.47         13.697
Cant.2 4.5             0.32                          3.179                    7.99        3.3          15.667
Cant.3 4.5
              5. DETERMINATION OF DESIGN INTERNAL FORCES
        For a two way slab with Ly/Lx <2 and supported by beam, we use coefficient method which is specified
        on EBCS 2, 1995 for flexure at span and support.Types of support conditions encountered for the
        determination of moment.
        Fig. type of support condition
                 Calculation of moment for cantilever 3.
Pd = 17.7 – 1.46x.
Pd @ x= 0 =17.7 KN
Pd @x=3.77=12.19 KN.
M =(3.77*12.19*3.77/2) + (0.5*5.51*3.77*3.72/3)
M = 99.7 KN.m.
       Calculation of moment for cantilever 2.
       Calculation of moment for cantilever 1.
REINFORCEMENT DESIGN FOR FLEXURE
           Depth for calculation of reinforcement for all panels and cantilever 1 and 2.
Governing d=131.75.
D = 131.75 + 15+ 6=152.75mm. take D= 180mm.
Depth for calculation of reinforcement for other panels
     -ds=180-15-6 =159mm.
     -dl=180-15-12-6=147mm
Provision of reinforcement in X direction
Position     Mmt in X- depth                µ         ẁ        ₰        As         S        As
             direction                                                  calculated required provided
s1           26.63            107           0.00447   0.0669   0.0101   1077        105     Ø12C/C 120
s2           9.29             107           0.00649   0.0805   0.0032   345.1       327.7   Ø12C/C 280
s3          12.95       107         0.00606   0.0779       0.0046    488.9      231.3    Ø12C/C 240
s4          10.58       119         0.00657   0.0811       0.003     352.3      321      Ø12C/C 280
s5          6.536       119         0.00695   0.0834       0.0018    214.7      526.8    Ø12C/C 280
s6          10.58       119         0.00657   0.0811       0.003     352.3      321      Ø12C/C 280
s7          12.16       119         0.00643   0.0802       0.0034    407.2      277.7    Ø12C/C 270
s8          6.768       107         0.00678   0.0824       0.0023    248.7      454.7    Ø12C/C 280
s9          12.16       119         0.00643   0.0802       0.0034    407.2      277.7    Ø12C/C 270
s10         10.58       107         0.00634   0.0796       0.0037    395.2      286.1    Ø12C/C 280
Position    Mmt in X- depth         µ         ẁ            ₰         As         S        As
            direction                                                calculated required provided
s11         6.536       107         0.00681   0.0825       0.0022    240        471.3    Ø12C/C 280
s12         10.58       119         0.00657   0.0811       0.003     352.3      321      Ø12C/C 280
S1 & Cant   36.6        119         0.00413   0.0642       0.0114    1354       83.5     Ø12C/C 80
S2 & Cant   36.6        119         0.00413   0.0642       0.0114    1354       83.5     Ø12C/C 80
                                                                                         Ø12C/C
S3 & S5     13.08       119         0.00634   0.0796       0.0037    439.4      257.4    250
                                                                                         Ø12C/C
S4 & S7     15.69       119         0.00609   0.0781       0.0045    532        212.6    210
                                                                                         Ø12C/C
S5 & S8     9.02        119         0.00672   0.082        0.0025    298.7      378.6    280
                                                                                         Ø12C/C
S6 & S9     15.69       119         0.00609   0.0781       0.0045    532        212.6    210
                                                                                         Ø12C/C
S7 & S10    15.69       119         0.00609   0.0781       0.0045    532        212.6    210
S8 & S 11   8.64        119         0.00676   0.0822       0.0024    285.8      395.7    Ø12C/C 280
                                                                                         Ø12C/C
S9 &S12     15.69       119         0.00609   0.0781       0.0045    532        212.6    210
Provision of reinforcement in Y direction.
Position    Mmt in Y- depth         µ         ẁ        ₰            As         S        As
            direction                                               calculated required provided
                                                                         Ø12C/C
s1          24.07      119    0.0053 0.0728 0.0071   842.9     134.2     130
                                                                         Ø12C/C
s2          5.25       119    0.0071 0.0841 0.0014   171.7     658.7     280
                                                                         Ø12C/C
s3          19.43      119    0.0057 0.0758 0.0056   668.2     169.3     160
                                                                         Ø12C/C
s4          6.818      107    0.0068 0.0823 0.0023   250.6     451.2     280
                                                                         Ø12C/C
s5          5.64       107    0.0069 0.0831 0.0019   206.3     548.2     280
s6          6.818      107    0.0068 0.0823 0.0023   250.6     451.2     Ø12C/C 280
Position    Mmt in Y- depth   µ      ẁ      ₰        As         S        As
            direction                                calculated required provided
                                                                         Ø12C/C
s7          7.369      107    0.0067 0.0819 0.0025   271.5     416.5     280
                                                                         Ø12C/C
s8          7.248      119    0.0069 0.0830 0.0020   238.6     474.0     280
                                                                         Ø12C/C
s9          7.369      107    0.0067 0.0819 0.0025   271.5     416.5     280
                                                                         Ø12C/C
s10         6.818      119    0.0069 0.0832 0.0019   224.1     504.6     280
                                                                         Ø12C/C
s11         5.64       119    0.0070 0.0839 0.0016   184.7     612.3     280
                                                                         Ø12C/C
s12         6.818      107    0.0068 0.0823 0.0023   250.6     451.2     280
                                                                         Ø12C/C
S1 & S2     20.26      119    0.0057 0.0753 0.0059   698.8     161.8     160
S4 & Cant   31.86      119    0.0046 0.0676 0.0097   1153.2    98.1      Ø12C/C 95
                                                                         Ø12C/C
S4 & S5     7.52       119    0.0069 0.0828 0.0021   247.8     456.4     280
                                                                         Ø12C/C
S5 & S6     9.17       119    0.0067 0.0819 0.0026   303.9     372.2     280
S6& Cant    31.86      119    0.0046 0.0676 0.0097   1153.2    98.1      Ø12C/C 95
S7 & Cant   31.86   119   0.0046 0.0676 0.0097   1153.2   98.1    Ø12C/C 95
                                                                  Ø12C/C
S7 & S8     9.82    119   0.0066 0.0815 0.0027   326.1    346.8   280
                                                                  Ø12C/C
S8 & S9     9.82    119   0.0066 0.0815 0.0027   326.1    346.8   280
S9 & Cant   31.86   119   0.0046 0.0676 0.0097   1153.2   98.1    Ø12C/C 95
CHECK FOR SHEAR
Vmax=89.59KNm
Vc=0.25fctdK1 K2 bw d
  =0.25*1.032*1.64*1.44*1000*159
   =96.87KNm
Vmax < Vc      OK!
REINFORCEMENT DETAILING FOR THE SLAB
IN THE X- DIRECTION
IN THE Y- DIRECTION
       2.2 ANALYSIS AND DESIGN OF2ND, 3rd AND 4th FLOOR SLAB
                                       RIBBED SLAB
                                      INTRODUCTION
The functions of the floors are mainly for classrooms with live load of 3KN/m 2 and corridors
with live load of 4KN/m2. All slabs are designed as ribbed slab rather than solid slab as the live
load is moderately light and the span are somewhat long. This makes the design to be more
economical.
Most of the joists are arranged in the shorter direction of panels, but some joists are arranged in
longer direction to preserve the uniformity of joist arrangement. Since it is difficult to maintain
the outer cantilever of the slab by ribs, it can be maintained by solid slab.
Fig. Grouping of panel and direction of ribs
                            ANALYSIS AND DESIGN OF JOISTS
It is clearly shown in fig above that the length of the joists in the panels have variable length.
There are many joists which need separate analysis and design but this is very difficult task.
Therefore; it is decided to analyze one joist from each panel hav ing different dimensions. The
reinforcement is provided at support and middle (span of joists). This makes the design safer.
The analyses of joists are done manually. The bending moment diagram and shear force diagram
are shown in each joist design. The detail procedure for the design of joists is shown at the first
joist design and the remaining joists are shown in table
Table Determination of depth of joists for deflection requirement
Joist             Span length(mm)     βa                le/βa        Dmin=(0.4+0.6*fyk/400)*le/βa
1                 5350                24                222.917      189.479
2                 4200                28                150.000      127.500
3                 4800                28                171.429      145.714
5                 6500                24                270.830      230.208
Panel 5 is the governing panel for minimum depth from deflection requirement.
dmin = dj = 230.208
Assume 14 reinforcement for the joist and 15mm for cover.
Dj=230.208+15+14/2=252.208mm
Use Dj=260mm,
dj=260-15-14/2=238mm
Assume the hollow block dimension is 500*230mm as shown in the figure below.
Figure 2.15 hollow block dimension and topping
A=A1+3A2+2A3
A=0.02*0.5+3*(0.21*0.04) +2*(0.14*0.04) =0.0464m2
Requirements from EBCS-2 1995 pp 84
            Thickness of slab (topping) Dt
            Rib width bw     70mm
            Over all depth Dj    4*bw+ thickness of topping (Dt)
            Rib spacing is generally less than 1m.
Determination of thickness of topping
Dt
Dt=50mm
Dj = 210+50 = 260mm→dj = 260-15-14/2 = 238mm
Check for the requirement
       Dj   4bw+ Dt = 4*100+50=450mm>260…..OK!
     Total floor thickness=Dj+20mm=260+20=280mm
LOADING
     SLAB DEAD LOAD CALCULATION
         1. Class room
                                  0.2cm pvc f.f (γ=16KN/m3)
                                   4.8cm cement screed (γ =23KN/m3)
                                  RC floor slab
                                   3cm cement plastering (γ =23KN/m3)
            2. Corridor
                                    3cm marble tiles f.f (γ=27KN/m3)
                                    2cm cement screed (γ =23KN/m3)
                                     RC floor slab
                                     3cm cement plastering (γ =23KN/m3)
Dead load from:
Pvc floor finish = 0.002*16*0.5 = 0.016KN/m
Marble tiles=0.03*0.5*27=0.405KN/m
Cement screed = 0.048*23*0.5 =0.552KN/m
Cement screed=0.02*0.5*23=0.23KN/m
Topping = 0.05*25*0.5 = 0.625KN/m
Load from HCB = γ*A = 14*0.0464 = 0.65KN/m,
Joist self-weight = bw *(Dj-Dt)* γ= 0.1*(0.26-0.05)*25 = 0.525KN/m
Plastering = 0.03*23 = 0.69 KN/m
Total slab dead load for class room = 3.058 KN/m
Total slab dead load for corridor=3.025KN/m
Therefore take total slab dead load=3.058KN/m
SLAB LIVE LOAD CALCULATION
          For class room from EBCS 2, 1995 q=3KN/m2, Q=4KN
          Therefore LL=3 + 4/A
          For corridor from EBCS 2, 1995 q=4KN/m2, Q=4KN
          Therefore LL=4 + 4/A
The detailed calculation is presented by the table below.
Table live load calculation for each panel
panel        S1      S2       S3       S4        S5         S6      S7      S8      S9      S10
       2)
Area(m       34.51 26.80 30.82 26.80             42.21      22.66   17.60   20.24   17.60   27.72
LL(KN/m2) 3.12       3.15     3.13     3.15      3.09       4.18    4.23    4.20    4.23    4.14
LL(KN/m) 1.560 1.575 1.565 1.575                 1.545      2.299   2.221   2.310   2.221   2.103
LOAD FROM PARTITION WALL
Partition load for each panel is shown in table___ and the sample calculation is show for the
third panel
Panel 3
Thickness of wall (t) =0.2m
Height of wall (h) =3.6m ,Length (l) =6.9m
Unit weight (γ) =17KN/m3
Area (A) =30.82m2
HCB wall
Areal load= (t*h*l* γ)/A= (0.2*3.6*6.9*17)/30.82=2.74KN/m2
Line load =2.74*0.5=1.37KN/m
Plaster
t=0.03*2=0.06m ,h=3.6m ,l=6.9m ,γ=23KN/m3
Areal load= (0.06*3.6*6.9*23)/30.82=1.112KN/m2
Line load=1.112*0.5=0.556KN/m
Total partition load =1.37 +0.556=1.926KN/m
Table___    calculated partition load
panel             S1      S2      S3      S4       S5            S6     S7        S8       S9       S10
Par.load(KN/m) -          -       1.926 -          -             -      4.107     3.664    4.107    2.617
Total design dead load =slab dead load + partition load
Table_____ total design dead load
panel        S1,S2,S4,S5,S6 S3                   S7,S9       S8                 S10
DL(KN/m) -                    1.926              4.107       3.664              2.617
LL(KN/m)     3.058            3.058              3.058       3.058              3.058
Pd(KN/m)     3.058            4.984              7.165       6.722              5.675
Design load(Pd)=1.3DL + 1.6LL
Table___calculation of design load
panel        S1       S2      S3        S4       S5      S6        S7        S8         S9       S10
DL(KN/m)     3.058    3.058   4.984     3.058    3.058   3.058     7.165     6.722      7.165    5.675
LL(KN/m)     1.560    1.575   1.565     1.575    1.545   2.299     2.221     2.310      2.221    2.103
Pd(KN/m)     6.471    6.495   9.129     6.495    6.447   7.654     12.868    12.235     12.868   10.742
Analysis
The analysis for each joist is done manually and the sample calculation is shown for the first
panel as follows.
Panel 1
Pd=6.471KN/m,L=4.95m
Table______Calculated internal forces
panel       Pd(KN/m)      L(m)          Msupport(KNm)     Mspan(KNm)        Vmax(KN)      Transferred
                                                                                          load
1           6.471         4.95          14.414            9.9097            16.0157
2           6.495         3.8           8.5262            5.8617            12.3405
3           9.129         4.4           16.067            11.046            20.0838
4           6.495         3.8           8.5262            5.8617            12.3405
5            6.447         6.1          21.808          14.993       19.6633
6            7.654         4.95         17.049          11.721       18.9436
7            12.868        3.8          16.892          11.613       24.4492
panel        Pd(KN/m)      L(m)         Msupport(KNm)   Mspan(KNm)   Vmax(KN)   Transferred
                                                                                load
8            12.235        4.4          21.534          14.804       26.9170
9            12.868        3.8          16.892          11.613       24.4492
10           10.742        6.1          36.337          24.982       32.7631
11           6.495         3.8          8.5262          5.8617       12.3405
12           9.129         4.4          16.067          11.046       20.0838
13           6.495         3.8          8.5262          5.8617       12.3405
14           6.447         6.1          21.808          14.993       19.66335
MA=MB=Pd L2/11=6.471*4.552/11=14.414KNm
Mspan= Pd L2/16=6.471*4.552/16=9.91KNm
VA=VB=P d L/2=6.471*4.55/2=16.016KN
Design for flexure (joist design)
Design constants
Fcd =11.33MPa fyd = 260.87MPa       m = 28.78
For simplicity of work, both the support and the span moments which have approximate values are
grouped and designed on the maximum moment.
Mmax=36.337KN.m
dmin=                 =                 =141.24.5mm < 238…..ok!
            i.      Support reinforcement
                 For support Mmax = 36.337KN.m
                   ρ=                     *
                     = 0.003524
A(area) = ρbd = 0.003524*100*238 = 419.386mm2
Use 3 14 bars → (A=462mm2)
             ii.     Span reinforcement Mmax = 24.982KN.m
→ be                              le-effective length of beam
 be                  =1482mm
  be = 500mm
ρ=                      *
= 0.003524
Neutral axis = x = ρmd =0.003524*28.78*238 = 24.14 < 50mm, so it is rectangular section
Note! 1. If 0.8x < hf, section is rectangular
       2. If 0.8x > hf, sectionis analyzed as T-beam
A= ρbed = 0.003524*500*238= 419.386mm2. Therefore Use 3 14
Table________ Reinforcement provision for support
panel        depth       Msupport(KNm) µ       ῳ       ῥ         As calculatedAs min As prov
         1           238          14.414 0.0449 0.0460     0.0020 237.62029      198.33 2ᴓ14
         2           238          8.5262 0.0266 0.0269     0.0012 139.20110      198.33 2ᴓ12
         3           238          16.067 0.0501 0.0514     0.0022 265.60666      198.33 2ᴓ14
         4           238          8.5262 0.0266 0.0269     0.0012 139.20110      198.33 2ᴓ12
         5           238          21.808 0.068 0.0704      0.0031 364.07176      198.33 2ᴓ14
         6           238          17.049 0.0531 0.0546     0.0024 282.30847      198.33 2ᴓ14
         7           238          16.892 0.0526 0.0541     0.0023 279.63439      198.33 2ᴓ14
         8           238          21.534 0.0671 0.0695     0.0030 359.32652      198.33 2ᴓ14
         9           238          16.892 0.0526 0.0541     0.0023 279.63439      198.33 2ᴓ14
        10           238          36.337 0.1132 0.1205     0.0052 622.78100      198.33 4ᴓ14
        11           238          8.5262 0.0266 0.0269     0.0012 139.20110      198.33 2ᴓ12
        12           238          16.067 0.0501 0.0514     0.0022 265.60666      198.33 2ᴓ14
        13           238          8.5262 0.0266 0.0269     0.0012 139.20110      198.33 2ᴓ12
        14           238          21.808 0.068 0.0704      0.0031 364.07176      198.33 3ᴓ14
Table________ Reinforcement provision for span
panel        depth       Mspan(KNm)    µ      ῳ       ῥ          As calculatedAs min As prov
         1           238         9.9097 0.0309 0.0314     0.0014 162.15347       198.33 2ᴓ12
         2           238         5.8617 0.0183 0.0184     0.0008    95.28941     198.33 2ᴓ12
         3           238         11.046 0.0344 0.0350     0.0015 181.08378       198.33 2ᴓ12
         4           238         5.8617 0.0183 0.0184     0.0008    95.28941     198.33 2ᴓ12
         5           238         14.993 0.0467 0.0479     0.0021 247.40503       198.33 2ᴓ14
         6           238         11.721 0.0365 0.0372     0.0016 192.36312       198.33 2ᴓ12
         7           238         11.613 0.0362 0.0369     0.0016 190.55671       198.33 2ᴓ12
         8           238         14.804 0.0461 0.0473     0.0021 244.20891       198.33 2ᴓ14
         9           238         11.613 0.0362 0.0369     0.0016 190.55671       198.33 2ᴓ12
        10           238         24.982 0.0779 0.0811     0.0035 419.38599       198.33 3ᴓ14
        11           238         5.8617 0.0183 0.0184     0.0008    95.28941     198.33 2ᴓ12
        12           238         11.046 0.0344 0.0350     0.0015 181.08378       198.33 2ᴓ12
        13           238         5.8617 0.0183 0.0184     0.0008    95.28941     198.33 2ᴓ12
        14           238         14.993 0.0467 0.0479     0.0021 247.40503       198.33 2ᴓ14
Design for shear
   Vsd,= 30.36KN
   At support :
   Vc = 0.25*fctd*k1*k2*bw*d                               fctd = 1.031                        ,
                         k1 = 1+50ρmin = 1+50*0.0017 = 1.085,
                                                            k2 = 1.6-d = 1.6-0.238= 1.362
   Vc = 9.057KN
   1.1Vc=1.1*9.057 = 9.96KN <30.36KN…Not OK!
   Hence shear reinforcement is required.
   Vs=Vsd-Vc=30.36-9.96=20.40KN
   S=Av*Fyd*d/Vs
    =(2*π82*260.87*238)/(4*20.40*103)
    =305.96mm
Vrd=0.25*Fcd*bw*d = 0.25*11.33*100*238 =67.41KN
2/3*Vrd=44.94KN>Vsd , Hence the maximum spacing to resist shear will be the minimum of:
S<=
Use 8c/c 115mm
SECOND PART
LOADING
    PANEL A
               0.2cm pvc f.f (γ=16KN/m3)
                4.8cm cement screed (γ =23KN/m3)
               RC floor slab
               3cm cement plastering (γ =23KN/m3)
    Corridor
                 2cm marble tiles f.f (γ=27KN/m3)
                 4.8cm cement screed (γ =23KN/m3)
                 RC floor slab
                                        3cm cement plastering (γ =23KN/m3)
Dead load from:
Pvc floor finish = 0.002*16*0.5 = 0.016KN/m
Marble tiles=0.03*0.5*27=0.405KN/m
Cement screed = 0.048*23*0.5 =0.552KN/m
Cement screed=0.02*0.5*23=0.23KN/m
Topping = 0.05*25*0.5 = 0.625KN/m
Load from HCB = γ*A = 14*0.0464 = 0.65KN/m,
Joist self-weight = bw *(Dj-Dt)* γ= 0.1*(0.26-0.05)*25 = 0.525KN/m
Plastering = 0.03*23 = 0.69 KN/m
Total slab dead load for class room = 3.058 KN/m
Total slab dead load for corridor=3.025KN/m
Therefore take total slab dead load=3.058KN/m
SLAB LIVE LOAD CALCULATION
       For toilet from EBCS 2, 1995 q=2KN/m2, Q=2KN
       Therefore LL=2 + 2/A
       For corridor from EBCS 2, 1995 q=4KN/m2, Q=4KN
       Therefore LL=4 + 4/A
The detailed calculation is presented by the table below.
Table live load calculation for each panel
panel q           Q          A          Q/A        q+Q/A(kn/m2)    (q+Q/A)*0.5(kN/M)
A       4         4        25.76        0.155      4.115           2.077
C       2         2        25.76        0.078      2.078           1.039
D       2         2        25.76        0.078      2.078           1.039
    Table_______ analysed design load
    Panel       Slab DL     Parti.L     LL          Total DL   1.3Dl       1.6LL   Pd
   A           2.666      -             2.077         2.666           3.460        3.323       6.783
   C           2.670      1.443         1.039         4.113           5.346        1.662       7.000
   D           2.670      2.288         1.039         4.958           6.445        1.662       8.110
   Analysis
   Sample calculation
   MA=MB=Pd L2/11=6.783*5.22/11=16.614KNm
   Mspan= Pd L2/16=6.783*5.22/16=11.463KNm
   VA=VB=P d L/2=6.783*5.2/2=17.64KN
Table______Calculated internal forces
panel      Pd(KN/m)        L(m)           Msupport(KNm)         Mspan(KNm)          Vmax(KN)
A          6.783           5.2            16.674                11.463              17.640
C          7.000           5.2            17.207                11.830              18.200
D          8.110           5.2            19.936                13.706              21.086
1          6.471           3.8            8.495                 5.840               12.295
2          9.129           4.4            16.067                11.046              20.084
7          12.868          3.8            15.969                10.978              24.442
8          12.235          4.4            21.415                14.723              28.309
Table _____________support reinforcement provision
                                                                              As
panel     depth          Msupport(KNm)       µ         ῳ          ῥ           calculated   As min      As prov
A         238            16.674              0.2598    0.3069     0.0133      317.23969    198.33      3ᴓ12
C         238            17.207              0.2681    0.3190     0.0139      329.73473    198.33      3ᴓ12
D         238            19.936              0.3106    0.3846     0.0167      397.54403    198.33      3ᴓ14
1         238            8.495               0.1324    0.1425     0.0062      147.32245    198.33      2ᴓ12
2         238            16.067              0.2504    0.2934     0.0127      303.27017    198.33      3ᴓ12
7         238            15.969              0.2488    0.2912     0.0126      301.03977    198.33      3ᴓ12
8         238            21.415              0.3337    0.4233     0.0184      437.50777    198.33      3ᴓ14
Table________ span reinforcement provision
panel     depth          Msupport(KNm) µ               ῳ          ῥ           As           As min      As prov
                                                                              calculated
 A             238             11.463              0.0357   0.0364   0.0016   188.04889    198.33   2ᴓ12
 C             238             11.83               0.0369   0.0376   0.0016   194.18692    198.33   2ᴓ12
 D             238             13.706              0.0427   0.0437   0.0019   225.68185    198.33   2ᴓ12
 1             238             5.84                0.0182   0.0184   0.0008   94.93334     198.33   2ᴓ12
 2             238             11.046              0.0344   0.0350   0.0015   181.08378    198.33   2ᴓ12
 7             238             10.978              0.0342   0.0348   0.0015   179.94891    198.33   2ᴓ12
 8             238             14.723              0.0459   0.0470   0.0020   242.83978    198.33   2ᴓ14
Design for shear
     (28.309/2.4)=Vsd/(2.162)
     Vsd,= 25.502KN
At support :
     Vc = 0.25*fctd*k1*k2*bw*d                                 ,
                 k1 = 1+50ρmin = 1+50*0.0017 = 1.085,
                 k2 = 1.6-d = 1.6-0.238= 1.362
                 fctd = 1.031
     Vc = 9.065KN
     1.1Vc=1.1*9.057 = 9.963KN <25.502KN…Not OK!
     Hence shear reinforcement is required.
     Extra shear force resisted by stirrups will be:
     Vs=Vsd-Vc=25.502-9.963=15.54KN
     S=Av*Fyd*d/Vs
      =(2*π82*260.87*238)/(4*15.54*103)
      =401.65mm
Vrd=0.25*Fcd*bw*d = 0.25*11.33*100*238 =67.41KN
2/3*Vrd=44.94KN>Vsd , Hence the maximum spacing to resist shear will be the minimum of:
S<=
S calculated is greater than maximum spacing,hence:
Use 8c/c 115mm
                                    CHAPTER THREE
                         ANALYSIS AND DESIGN OF BEAM
The frame is analyzed by using software ETABS 2009.It is a finite element analysis software and
capable of analyzing structures under static and dynamic condition.
   DESIGN OF BEAM
  Beams are flexural members which transfer the load from slab to columns. Basically beams
should be designed for flexure(moment).Further more it is essential to check & design the
section for shear..
      In our case, we have designed a representative beam on axis k of first floor
ANALISIS & Design of the beam
PART ONE
                  Beam design along axis G
From L- beam section the effective width can be taken as:
            Beff ≤ {bw+lo/10                 =400+4200/10=820mm
                 {c/c distance      =5350mm
Deff=500-(25+20/2)=465mm
              Design for span AB for sample.
Assumme N.A lie within the flange
                                 =0.074988
From chart for        =0.074988          Kx= 0.12
X= Kx*d      =0.12*465=55.8 ≤ 149 ok!
The area of reinforcement required is determined from the following equations
If µsd ≤ µus compression reinforcement is not required
                     As =
If μsd > µus compression reinforcement is required
                 As11 =
                 As12 =
     As =                        = 982
    # bars =         ,
             =           = 3.127 ≈ 4 bars
Provide 4Ø20 bars on span AB.
Design for spans BC and CD are shown in the following table.
 suppor                                                                                 As
 t          Msd      fcd       b(mm)     d(mm)   µsd     μus*    Kx      X       As     min     # bars   As prov
 A          120.71   11.33     500       565     0.067   0.295   0.152   85.88   872    372     2.776    3Ø20 bars
 B          159.04   11.33     500       565     0.088   0.295   0.168   94.92   1157   372     3.682    4Ø20bars
 C          158.02   11.33     500       565     0.087   0.295   0.168   94.92   1149   372     3.658    4Ø20bars
 D          121.95   11.33     500       565     0.067   0.295   0.151   85.32   881    372     2.803    3Ø20 bars
 Span
 AB         137.84 11.33 820             565     0.046 0.295 0.12 67.8 982              790.5   3.127    4Ø20 bars
 BC         7.29   11.33 850             565     0.002 0.295 0.038 21.47 50.2           790.5   2.516    3Ø20 bars
 CD         137.64 11.33 850             565     0.045 0.295 0.12 67.8 981              790.5   3.122    4Ø20 bars
 Design for shear
The critical shear will be occurred at d distance from face of the support
Design shear using ETABS is shown on the figure.
If   Vsd > Vc provide shear reinforcement
If Vsd < Vc provide stirrups for ting purpose with maximum spacing
         Capacity of concrete for shear at section 1&6.
             K1=(1+50ρ) ≤2 =                  =
             K1=(1+50*2.6689*10-3=1.133
             K2=1.6-d(m) ≥ 1 = 1.6-0.565=1.035 ok!
VC1=0.25*1.032*1.133*1.035*400*565=66.063 KN
         Capacity of concrete for shear at section (2&3 and 4&5 )
K1 = (1+50          =1.178 ≤ 2 OK!
VC =0.25*1.032*1.178*1.035*400*565 =71.09 KN
Vsd maX =162.57> VC , so shear reinforcement is required
         The capacity of concrete for diagonal compression resistance is
                    VRD= 0.25fcdbwd
                 VRD=0.25*11.33*400*565=640.15KN
Maximum spacing                       for Vsd <     VRD
                       =                  for Vsd > VRD
  VRD =        *640.15= 426.77
    Vsdmax <      VRD use the first formula
Smax
               Smax=280 mm
         Extra shear force resisted by stirrups;-
            Vs=Vsd-Vc
         For span AB ,     vsd =162.57-71.09KN=91.48KN
         Vs =
         S=                           = 647.89
         S>Smax
Use S=Smax
Provide 8φc/c 280mm
Design of girder along axis C on story 3
                     Analysis result of ETABS
D=600mm ,d=600-25-20/2=565mm
b=400mm
By using the advantage of symmetry of the section we can design only for two supports.
I.e. Supports A&B are symmetric to support C&D .Span can also be designed in a similar
fashion.
Reinforcement provision
Minimum reinforcement=(0.5/fyk)*d*b=(0.5/300)*400*565=376.66mm2
At support A
Msd=6.42KNm
Km=        =7.094
Km is less than the minimum value of Km for C-25,so we will take the minimum Km=19
so the value of Ks=3.95
As=Ks*Msd/d=3.95*6.42/.565=44.88mm2<Asmin=376.66mm2
Use As=Asmin=376.66 mm2
Use 2φ20
At support B
Msd=304.62KNm
Km=        =48.84
Ks=4.38
As=Ks*Msd/d=4.38*304.62/.565=2362.02mm2
Provide 8φ20 in tow rows
Design for span
Msd=249.24KNm
      Check for T-beam
      Beff<                =
      Beff=1780mm
      Assume the neutral axis lies in the flange
      µsd=Msd/fcd*b*d2=(249.24*106)/(11.33*1780*5652)=0.038
      From the chart µsd =0.038 ,Kx=0.1
      Then X=Kx*d=0.1*565mm=56.5mm which is greater than hf=50mm.Hence treat the
beam as T-beam.
      As1*fyd=fcd*0.8*x*b
      As1=11.33*0.8*56.5*400/260.87=785.24mm2
      M2=fyd(d-0.4x)=260.87*(565-0.4*56.5)=111.108 KNm
      Msd2=Msd1-M2=249.24-111.108=138.13KNm
      As2=Msd2/260.87(565-d2)=999.05mm2,d2=35mm
      Assuming the yielding of compression reinforcement As*fyd=As12*fyd
      £yd=fyd/Es=1.04*10-3
      €s2/x-d=0.0035/x
      €s2=0.00133>£yd=1.04*10-3,so the compression is yielded.
      As12=As2=99905mm2
      Astotal=As1+As2=785.24+999.05=1784.29mm2
      Provide 6φ20 tension reinforcement
      Compression reinforcement=999.05/φ20
      Provide 4φ20 on the compression side.
      For span BC
         Check for T-beam
         Beff<                  =
         Beff=1320mm
         Assume the neutral axis lies in the flange
         µsd=Msd/fcd*b*d2=(57.72*106)/(11.33*1320*5652)=0.012
      Then X=Kx*d=0.012*565mm=33.9mm which is less than hf=50mm.Hence treat the
beam as rectangular section.
         As=Msd/fyd(d-0.4x)=57.72*1o6/260.87(565-0.4*33.9)=401.24mm2
         Provide 2φ16
         DESIGN FOR SHEAR
The critical shear occurs at d distance from the face of column.
      If Vsd>Vc, provide shear reinforcement and if Vsd<Vc provide stirrups for tying purpose
with maximum spacing.The output result of analysis by ETABS is as follows.
         Vc1=267.80                               Vc4=203.93
         Vc2=291.81                               Vc1=291.62
         Vc3=213.09                               Vc1=268.03
         Capacity of concrete for shear at section 1&6.
             K1= (1+50ρ) ≤2 =               =
             K1=(1+50*2.6689*10-3=1.133
             K2=1.6-d(m) ≥ 1 = 1.6-0.565=1.035 ok!
VC1=0.25*1.032*1.133*1.035*400*565=65.72 KN
         Capacity of concrete for shear at section (2&3 and 4&5 )
K1 = (1+50           =1.355 ≤ 2 OK!
VC2= V3C= V4C= VC5(take Vsd max=291.62)
VC2 =0.25*1.032*1.355*1.035*400*565 =81.77 KN
In all cases the design shear force is greater the the capacity of the concrete for shear,therefore shear
reinforcement is required.The capacity of the concrete for diagonal compression resistance
       VRD= 0.25fcdbwd
       VRD=0.25*11.33*400*565=640.15KN
Maximum spacing                     for Vsd <       VRD
                      =                  for Vsd > VRD
  VRD =        *640.15= 426.77
    Vsdmax <      VRD use the first formula
Smax
             Smax=280 mm
        Extra shear force resisted by stirrups ;-
             Vs=Vsd-Vc
        For section 1&6 ,    vs =Vsd-Vc=268.03-65.72KN=202.31KN
        Vs =
      S=                       =   73.24<Smax
      Provide φ8 c/c 70mm.
      For the span AB and CD
      Take the maximum Vsd from the face
      Vs=291.84-81.77=210.07KN
      S=                       =   70.53<Smax
      Provide φ8 c/c 70mm
For span BC
Vs=213.09-81.77=131.32KN
      S=                       =   112.8<Smax
      Provide φ8 c/c 110mm
PART TWO
(L beam on axis k 278.095)
Km=     , As=
We used C25 and S300 for our design.
Fcd=11.33 N/mm2                fyd =261.87N/mm2
Support moment         M1=276.333KN.m                M2=271.008KN.m
                       M3=278.095KN.m                M4=269.002KNm
For M1=276.233
    KM=              =72.39
    Compression reinforcement is required because
     Km*57.83
     Km>Km*
     72.39>57.8
         = 0.1
Km/km* = 72.39/57.83 =1.252
       Ks =
      Ks ’ =
      Correction factors ρ and ρ’
      For                 ρ=1.01 and ρ’=1.03
    (i)        Tension reinforcement
                As=          =                     =3456.3mm2
                   For   Ø24         bars,   as=   452.389mm2   and   For   Ø20   bars,   a s=314.6mm2
                for Ø24 As/ as =7.64≈ 8 bars and for Ø20 A s/ as =11.0 ≈12bars but using Ø24 is more
                economical for our design.
                Therefore provide 8Ø24
    (ii)       Compression reinforcement
               As’ =             =                    = 1166.3 mm2
                for Ø24 As/ as =2.57 ≈ 3 and for Ø20 As/ as =3.7 ≈4
                Therefore provide 4Ø20
For M2 =271.008KN.m
Km=              =71.7          Km*= 57.33
Km > Km* →compression reinforcement is required.
Km /Km* =1.239 and d2/d= 0.1
        Ks =
        Ks ’ =
        Correction factors ρ and ρ’
        For                 ρ=1.01 and ρ’=1.03
      (i)        Tension reinforcement
                 As=        =                =3396.216mm2
                   For Ø24 bars, as= 452.389mm2 and For Ø20 bars, as=314.6mm2
                  for Ø24 As/ as =7.5≈ 8 and for Ø20 A s/ as =11.0 ≈11 bars, but using Ø24 is more
                  economical for our design.
                  Therefore provide 8Ø24
      (ii)       Compression reinforcement
                 As’ =          =                  = 1104.25 mm2
                  for Ø24 As/ as =2.44 ≈ 3 and for Ø20 A s/ as =3.5 ≈4 bars, but using Ø20 is more
                  economical for our design.
                 Therefore provide 4Ø20
For M3 =278.095KN.m
Km=              = 72.64          Km*= 57.83
Km > Km* →compression reinforcement is required.
Km /Km* =1.256 and d2/d= 0.1
        Ks =
        Ks ’ =
Correction factors ρ and ρ’
        For                   ρ=1.01 and ρ’=1.03
(i)     Tension reinforcement
              As=             =                =3474.2 mm2
                For Ø24 bars, as= 452.389mm2 and For Ø20 bars, as=314.6mm2
               for Ø24 As/ as =7.68 ≈ 8 and for Ø20 A s/ as =11.04 ≈11 bars, but using Ø24 is more
               economical for our design.
               Therefore provide 8Ø24
(ii)    Compression reinforcement
              As’ =               =                = 1186.78 mm2
               for Ø24 As/ as =2.62 ≈ 3 and for Ø20 A s/ as =3.77 ≈4 bars, but using Ø20 is more
               economical for our design.
              Therefore provide 4Ø20
For M4 =269.062KN.m
Km=           = 71.45             Km*= 57.83
Km > Km* →compression reinforcement is required.
Km /Km* =1.24 and d2/d= 0.1
        Ks =
        Ks ’ =
Correction factors ρ and ρ’
        For                   ρ=1.01 and ρ’=1.03
      (i)        Tension reinforcement
                 As=          =                =3391.3 mm2
                   For Ø24 bars, as= 452.389mm2 and For Ø20 bars, as=314.6mm2
                  for Ø24 As/ as =7.496 ≈ 8 bars
                  Therefore provide 8Ø24
      (ii)       Compression reinforcement
                 As’ =            =                = 1099.375 mm2
                  for Ø24 As/ as =2.43 ≈ 3 and for Ø20 A s/ as =3.49 ≈4 bars, but using Ø20 is more
                  economical for our design.
                 Therefore provide 4Ø20
DESIGN FOR SHEAR
   Vrd = 0.25*fcd*b*d.
   Vrd = 0.25 * 11.33 * 400 * 363 = 411.279 KN.
   Vmax = 248.28 KN (from fig above).
   Vc = 0.25*k1*k2*fctd*b*d.
    Where
    Vc = 0.25*2*1.237*1.032*400*363.
    Vc =92.67999KN.
    For span (8-6).
     Vc ≤ Vd≤ Vrd.
     92.7≤Vd≤274.189.
     (i). Vd right of 8=208.84KN.
          Vc<Vd.
          Vs=203.84-92.67999.
          Vs=111.2KN.
          Taking φ 8  Av=50.26.
            S=              =85.601mm < Smax         Provide φ 8 c/c 85mm.
     (ii). Vd left of 6 = 202.33KN.
           Vs =202.33 – 92.67999=109.65KN.
         S=                 =86.81mm < Smax      .
       Provide φ 8 c/c 85mm
    For span (6-5).
     Vc ≤ Vd≤ Vrd.
     92.7≤Vd≤274.189.
     (i) Vd right of 6=97.32KN.
         Vc<Vd.
         Vs=97.32-92.67999.
         Vs=4.64KN.
         Taking φ 8  Av=50.26.
        S=                =2051.47mm > Smax, take Smax = 180mm.
            Provide φ 8 c/c 180mm.
(ii). Vd left of 5 =96.23KN.
          Vc<Vd.
          Vs=96.23-92.67999=3.55KN.
          Vs=3.55KN.
             S=                     =2681.36mm > Smax, take Smax = 180mm.
            Provide φ 8 c/c 180mm.
         For span (5-3).
          Vc ≤ Vd≤ Vrd.
          92.7≤Vd≤274.189.
          (i) Vd right of 5 =204.4KN.
              Vc<Vd.
              Vs=204.4-92.679.
              Vs=111.721KN.
              Taking φ 8  Av=50.26.
             S=                     =85.2mm < Smax
            Provide φ 8 c/c 85mm.
          (ii). Vd left of 3 =201.78KN.
          Vc<Vd.
          Vs=201.78-92.679=109.101KN.
          Vs=109.101KN.
             S=                     =87.25mm < Smax       .
          Provide φ 8 c/c 180mm
.BEAM DETAILING DEVELOPMENT LENGTH.
    (i)        ld =         , fbd=2*1.032=2.064.
lbent a* ld*Ascal/Asprov.
  lbent≥           forbar on tension.      lbent≥   forbar on compression.
  (ii). ld=         =ф(31.598).
        24*31.598=756.51mm
        provided for all sections of the beam.
  Curtailment.
        SUPPORT A
                             X1 =1484mm.
Length = x1 + (lbreq +al).
           = 1484 + (722.744 +0.743631).
           = 2478.994 mm.
-lb =             , as=0.75 (363).
     =                 = 722.477mm.
Lbmin =                           , Lbmin =240mm˂ 722.477mm ok!!
          Support B
                                        X1=5528mm,X2=8069mm.
          Length = (X2-X1)+2(lbreq+2l).
          =(8069-5528)-2(709.92+0.75(363)).
          =4505.34mm.
          Lbreq=a*ld*Ascal/Aspro.
               =             =709.92mm.
          Lb min =
          Support C
                                     X1=5480mm,X2=8015mm.
          lbreq=         =           =726.23mm.
          Lb min =
          lbreq>lbmin=240mm ok!!
          Length= (8015-5480)+2(726.23+0.75(363))
                     = 4531.96mm.
          Support D
                               X1=1360mm.
Length = x1 + (lbreq +al).
    = 1360 + (708.89 +272.25).
    = 2341.14 mm.
=               = 708.89mm.
    Lbmin =
    lbmin =240mm.
    lbreq>240mm …ok!!
    Span
    Ld =        =φ*31.598 =756.61mm (for all).
     For AB, lb=              =             =708.628mm.
    Lbmin =
    lbmin =240mm.
    lbreq>240mm …ok!!
                                  X1=1484mm, X2=5528mm.
    Length = (5528-1484)+2(708.628+0.75(159)).
              = 5699.756mm.
    For BC
    lb=           =                  =335.137mm.
   Lbmin =
                                    X1=1169mm,X2=3485mm.
   Length= (3485-1169)+2(335.135+0.75(159)).
             = 3224.77mm.
                                  X1=1420mm,X2=5540mm.
   Lbreq=a*ld*Ascal/Aspro.
        =                    =709.48mm.
   Lb min =
   lbmin =240mm.
   lbreq>240mm …ok!!
   Length= (5540-1420)+2(709.48+0.75(159))
             = 5777.46mm
CURTAILMENT DETAILING.
                                   CHAPTER FOUR
                        ANALYSIS &DESIGN OF COLUMN
                             DESIGN OF COLUMNS
  A column is vertical member subjected to axial compressive force, with or without bending
moment and transmitting the load to the ground through the foundation According to EBCS
2.1995 the maximum and minimum longitudinal reinforcement that can be provided to a column
of cross-section Ac equals to 0.08Ac and 0.008Ac respectively
The effective length,Le, of the column is given by
a) Sway mode       =                           ≥ 1.15
b) Non sway mode        =        ≥ 0.7
    Where: 𝞪1=                           𝞪2=
             𝞪m=
    K1 ,K2=are column stiffness coefficient (      )
    Kc =the design column stiffness coefficient
    Kij =is the effective beam stiffness coefficients
                Design of isolated columns
    1) Total eccentricity :
         The total eccentricity to be used for the design of columns of constant cross-section
         is given by:
               etot =ee +ea + e2 ,
         Where ee =is the equivalent first order eccentricity of the design axial load
                     ea =is additional eccentricity
                       ea =    ≥ 20mm      (Le – is the effective length mm)
                   e2 – is the second order eccentricity
        For first order moment varying linearly along the length , the equivalent eccentricity is
        the higher of the following two values:
                   etot =0.6e02 + 0.4e01 or
                    ee =0.4e02
        Where e01 and e02 are first order eccentricities at the ends , e 02 being positive and greater
        in magnitude than e01
        For different eccentricities at the ends (negative and positive)
        Tthe critical end section shall be checked for first order moments
              etot =e02 + ea
 Second order eccentricity
Non-sway frames, the second order eccentricity e 2 of an isolated column may be
obtained as
          e2 =           (       )
           K1 =       -0.75                   For 15   ʎ      35
              K1 = 1.0                        For ʎ
   is the curvature at the critical section
         = k2 ( )*10-3               ,where
d – is the column dimension in the buckling plane less the cover to the center of the
longitudinal reinforcement
       K2 =
The second order eccentricity can be neglected when :
                For sway frames
                             λ                         Vd =
                      For non-sway frames
                              λ                 ,where M1 and M2 are first order moments,
                              M2 being positive and greater than M1
M1 =
PART ONE
ETABS frame output result
Story    Column       Load        Loc    P          V2         T          M2         M3
STORY6   C1           COMB1       0      -54.1475   -8.48137   0.041861   -11.8607   -13.3462
STORY6   C1           COMB1       1.55   -49.8747   -8.48137   0.041861   -2.47257   -0.20043
STORY6   C1           COMB1       3.1    -45.6018   -8.48137   0.041861   6.928945   12.94639
STORY5   C1           COMB1       0      -99.8527   -6.13055   0.1056     -12.384    -11.0686
STORY5   C1           COMB1       1.55   -95.5798   -6.13055   0.1056     -0.82454   -1.57378
STORY5   C1           COMB1       3.1    -91.3069   -6.13055   0.1056     10.74353   7.937474
STORY4   C1           COMB1       0      -176.84    -13.8752   0.197486   -19.2324   -22.5587
STORY6   C2           COMB1       0      -67.7096   -5.08161   0.035246   -88.2295   -10.6241
STORY6   C2           COMB1       1.55   -63.4367   -5.08161   0.035246   -32.4186   -2.76204
STORY6   C2           COMB1       3.1    -59.1638   -5.08161   0.035246   23.61633   5.119084
STORY5   C2           COMB1       0      -462.126   -6.56894   0.104544   -80.7808   -10.8779
STORY5   C2           COMB1       1.55   -457.853   -6.56894   0.104544   0.648704   -0.70237
STORY5   C2           COMB1       3.1    -453.58    -6.56894   0.104544   82.04842   9.508535
STORY4   C2           COMB1       0      -893.616   -12.3112   0.112765   -143.768   -20.7726
STORY4   C2           COMB1       1.5    -886.264   -12.3112   0.112765   -20.0058   -2.36735
STORY4   C2           COMB1       3      -878.913   -12.3112   0.112765   104.3326   16.10619
STORY3   C2           COMB1       0      -1329.65   -11.1988   0.08221    -84.8421   -19.2832
STORY3   C2           COMB1       1.5    -1322.3    -11.1988   0.08221    -2.57543   -2.50765
STORY3   C2           COMB1       3      -1314.95   -11.1988   0.08221    79.80383   14.37567
STORY2   C2           COMB1       0      -1684.04   -11.6824   0.106301   -40.3386   -13.0063
STORY2   C2           COMB1       1.5    -1672.55   -11.6824   0.106301   14.42777   4.62317
STORY2   C2           COMB1       3      -1661.06   -11.6824   0.106301   68.87352   22.14991
STORY1   C2           COMB1       0      -1758.65   0.210581   -0.26698   -5.61225   -0.50048
STORY1   C2           COMB1       0.5    -1754.82   0.210581   -0.26698   -4.40952   -0.60513
STORY1   C2           COMB1       1      -1750.99   0.210581   -0.26698   -3.19529   -0.70821
STORY6   C7   COMB1   0      -122.062   -13.43     0.057473   -4.78107   -21.4613
STORY6   C7   COMB1   1.55   -117.789   -13.43     0.057473   0.104541   -0.64169
STORY6   C7   COMB1   3.1    -113.516   -13.43     0.057473   4.988814   20.1862
STORY5   C7   COMB1   0      -240.173   -9.2047    0.071952   -7.1032    -16.3031
STORY5   C7   COMB1   1.55   -235.9     -9.2047    0.071952   -1.29483   -2.05382
STORY5   C7   COMB1   3.1    -231.627   -9.2047    0.071952   4.546996   12.24852
STORY4   C7   COMB1   0      -409.491   -20.0079   0.170839   -13.8267   -32.2373
STORY4   C7   COMB1   1.5    -402.14    -20.0079   0.170839   -1.88854   -2.23742
STORY4   C7   COMB1   3      -394.789   -20.0079   0.170839   10.07432   27.79176
STORY3   C7   COMB1   0      -579.218   -17.3488   0.051151   -8.29606   -31.5466
STORY3   C7   COMB1   1.5    -571.867   -17.3488   0.051151   -0.25932   -5.54996
STORY3   C7   COMB1   3      -564.516   -17.3488   0.051151   7.782279   20.54989
STORY2   C7   COMB1   0      -782.656   -21.723    -0.08705   -2.63687   -25.7881
STORY2   C7   COMB1   1.5    -771.17    -21.723    -0.08705   0.671671   6.877746
STORY2   C7   COMB1   3      -759.684   -21.723    -0.08705   3.973318   39.47301
STORY1   C7   COMB1   0      -869.088   -8.75614   0.083398   1.8558     -6.62475
STORY1   C7   COMB1   0.5    -865.259   -8.75614   0.083398   0.265812   -2.24201
STORY1   C7   COMB1   1      -861.43    -8.75614   0.083398   -1.32452   2.143603
STORY6   C8   COMB1   0      -112.774   -3.54452   0.046136   33.50499   -6.97072
STORY6   C8   COMB1   1.55   -108.502   -3.54452   0.046136   14.41113   -1.49256
STORY6   C8   COMB1   3.1    -104.229   -3.54452   0.046136   -4.85372   4.003306
STORY5   C8   COMB1   0      -752.958   -4.51326   0.083802   29.58311   -7.80582
STORY5   C8   COMB1   1.55   -748.685   -4.51326   0.083802   -1.37238   -0.84843
STORY5   C8   COMB1   3.1    -744.412   -4.51326   0.083802   -32.2192   6.178365
STORY4   C8   COMB1   0      -1415.96   -9.75039   0.119272   52.61626   -16.27
STORY4   C8   COMB1   1.5    -1408.61   -9.75039   0.119272   7.731877   -1.73101
STORY4   C8   COMB1   3      -1401.26   -9.75039   0.119272   -37.5061   12.88732
STORY3   C8   COMB1   0      -2082.36   -6.3502    0.071204   32.31274   -8.96545
STORY3   C8   COMB1   1.5    -2075.01   -6.3502    0.071204   2.077879   0.647446
STORY3   C8   COMB1   3      -2067.66   -6.3502    0.071204   -28.2979   10.2178
STORY2   C8   COMB1   0      -2635.05   -4.00477   0.014282   13.98913   -5.87915
STORY2   C8   COMB1   1.5    -2623.56   -4.00477   0.014282   -8.01485   0.166866
STORY2   C8   COMB1   3      -2612.08   -4.00477   0.014282   -29.7401   6.207185
STORY1   C8   COMB1   0      -2722.3    -6.87018   -0.01577   -3.81364   -4.5895
STORY1   C8   COMB1   0.5    -2718.47   -6.87018   -0.01577   -0.251     -1.14411
STORY1   C8   COMB1   1      -2714.64   -6.87018   -0.01577   3.312642   2.305888
STORY6   C9   COMB1   0      -112.684   6.83E-05   0.035053   28.11107   0.286211
STORY6   C9   COMB1   1.55   -108.412   6.83E-05   0.035053   12.05794   0.280316
STORY6   C9   COMB1   3.1    -104.139   6.83E-05   0.035053   -4.13814   0.271098
STORY5   C9   COMB1   0      -800.514   0.130452   0.041165   25.47236   0.28654
STORY5   C9   COMB1   1.55   -796.241   0.130452   0.041165   -1.01632   0.046049
STORY5   C9   COMB1   3.1    -791.969   0.130452   0.041165   -27.42     -0.19843
STORY4   C9   COMB1   0      -1519.13   1.383115   0.066311   42.23584   2.820133
STORY4   C9    COMB1   1.5    -1511.78   1.383115   0.066311   5.676357   0.664774
STORY4   C9    COMB1   3      -1504.43   1.383115   0.066311   -31.1617   -1.52313
STORY3   C9    COMB1   0      -2232.32   -3.77898   0.072619   41.64035   -8.71421
STORY3   C9    COMB1   1.5    -2224.97   -3.77898   0.072619   7.955797   -3.17329
STORY3   C9    COMB1   3      -2217.62   -3.77898   0.072619   -26.3007   2.595084
STORY2   C9    COMB1   0      -2952.01   -8.74301   0.096691   27.11566   -10.0944
STORY2   C9    COMB1   1.5    -2940.52   -8.74301   0.096691   -12.8013   3.18023
STORY2   C9    COMB1   3      -2929.04   -8.74301   0.096691   -52.22     16.33117
STORY1   C9    COMB1   0      -3035.01   0.376296   0.026904   -6.59926   -0.54394
STORY1   C9    COMB1   0.5    -3031.18   0.376296   0.026904   -0.36345   -0.73092
STORY1   C9    COMB1   1      -3027.35   0.376296   0.026904   5.873985   -0.9146
STORY6   C10   COMB1   0      -116.237   -0.05197   0.035319   28.10473   -0.37613
STORY6   C10   COMB1   1.55   -111.964   -0.05197   0.035319   12.07622   -0.3053
STORY6   C10   COMB1   3.1    -107.692   -0.05197   0.035319   -4.10016   -0.23073
STORY5   C10   COMB1   0      -810.127   -0.59303   0.024881   25.70427   -0.95992
STORY5   C10   COMB1   1.55   -805.854   -0.59303   0.024881   -0.98514   -0.08418
STORY5   C10   COMB1   3.1    -801.582   -0.59303   0.024881   -27.5913   0.798975
STORY4   C10   COMB1   0      -1540.49   -1.28849   0.078038   41.9907    -2.19841
STORY4   C10   COMB1   1.5    -1533.14   -1.28849   0.078038   5.611426   -0.3588
STORY4   C10   COMB1   3      -1525.79   -1.28849   0.078038   -31.0472   1.498654
STORY3   C10   COMB1   0      -2267.14   2.634969   0.058622   42.1869    8.385346
STORY3   C10   COMB1   1.5    -2259.79   2.634969   0.058622   8.090903   4.62943
STORY3   C10   COMB1   3      -2252.44   2.634969   0.058622   -26.5957   0.536912
STORY2   C10   COMB1   0      -2974.24   7.378525   0.079289   28.15074   6.093689
STORY2   C10   COMB1   1.5    -2962.76   7.378525   0.079289   -12.6627   -5.10975
STORY2   C10   COMB1   3      -2951.27   7.378525   0.079289   -52.9795   -16.1127
STORY1   C10   COMB1   0      -3062.88   -2.95013   0.035399   -6.49519   -0.51093
STORY1   C10   COMB1   0.5    -3059.05   -2.95013   0.035399   -0.14558   0.965778
STORY1   C10   COMB1   1      -3055.22   -2.95013   0.035399   6.204685   2.438097
STORY6   C11   COMB1   0      -115.885   -0.75815   0.036338   33.89455   -0.44548
STORY6   C11   COMB1   1.55   -111.612   -0.75815   0.036338   14.25364   0.730056
STORY6   C11   COMB1   3.1    -107.339   -0.75815   0.036338   -5.56125   1.896682
STORY5   C11   COMB1   0      -883.795   0.724826   0.024092   31.0093    1.372997
STORY5   C11   COMB1   1.55   -879.523   0.724826   0.024092   -1.05182   0.201938
STORY5   C11   COMB1   3.1    -875.25    0.724826   0.024092   -33.0168   -0.98844
STORY4   C11   COMB1   0      -1674.22   3.493051   0.081812   52.07969   7.170659
STORY4   C11   COMB1   1.5    -1666.87   3.493051   0.081812   7.189652   1.884647
STORY4   C11   COMB1   3      -1659.52   3.493051   0.081812   -38.0892   -3.50299
STORY3   C11   COMB1   0      -2460.6    -9.36762   0.052265   47.23487   -24.2061
STORY3   C11   COMB1   1.5    -2453.25   -9.36762   0.052265   7.891688   -10.6535
STORY3   C11   COMB1   3      -2445.9    -9.36762   0.052265   -32.0769   3.7394
STORY2   C11   COMB1   0      -3259.85   -25.6949   0.062457   30.12942   -28.5268
STORY2   C11   COMB1   1.5    -3248.36   -25.6949   0.062457   -13.2128   10.54839
STORY2   C11   COMB1   3      -3236.88   -25.6949   0.062457   -55.9875   49.17062
STORY1   C11   COMB1   0      -3344.18   13.92237   0.030472   -6.3133    7.87003
STORY1   C11   COMB1   0.5    -3340.35   13.92237   0.030472   0.105013   0.88678
STORY1   C11   COMB1   1      -3336.52   13.92237   0.030472   6.522809   -6.10087
STORY6   C12   COMB1   0      -109.566   15.17978   0.04854    23.4997    24.16219
STORY6   C12   COMB1   1.55   -105.293   15.17978   0.04854    9.007183   0.614012
STORY6   C12   COMB1   3.1    -101.02    15.17978   0.04854    -5.58903   -22.9413
STORY5   C12   COMB1   0      -425.159   9.697305   0.022642   21.54002   17.19243
STORY5   C12   COMB1   1.55   -420.886   9.697305   0.022642   -0.29539   2.149414
STORY5   C12   COMB1   3.1    -416.613   9.697305   0.022642   -22.1178   -12.9927
STORY4   C12   COMB1   0      -776.502   20.21462   0.092021   37.11896   31.45562
STORY4   C12   COMB1   1.5    -769.151   20.21462   0.092021   4.821817   1.039593
STORY4   C12   COMB1   3      -761.799   20.21462   0.092021   -27.596    -29.4027
STORY3   C12   COMB1   0      -1126.3    29.3585    0.049694   35.59616   64.49963
STORY3   C12   COMB1   1.5    -1118.95   29.3585    0.049694   6.378196   20.82867
STORY3   C12   COMB1   3      -1111.6    29.3585    0.049694   -23.0715   -23.5979
STORY2   C12   COMB1   0      -1675.34   48.80981   0.060378   25.10062   48.75536
STORY2   C12   COMB1   1.5    -1663.85   48.80981   0.060378   -9.30959   -24.9281
STORY2   C12   COMB1   3      -1652.37   48.80981   0.060378   -43.514    -98.0602
STORY1   C12   COMB1   0      -1756.72   0.429663   0.033497   -3.19306   7.007693
STORY1   C12   COMB1   0.5    -1752.89   0.429663   0.033497   0.264647   6.783671
STORY1   C12   COMB1   1      -1749.06   0.429663   0.033497   3.721664   6.541996
STORY6   C20   COMB1   0      -67.4145   -0.52116   0.037932   90.63664   -0.65758
STORY6   C20   COMB1   1.55   -63.1416   -0.52116   0.037932   33.83037   0.152193
STORY6   C20   COMB1   3.1    -58.8687   -0.52116   0.037932   -23.2086   0.960924
STORY5   C20   COMB1   0      -521.155   -0.76735   0.125242   81.50184   -1.62751
STORY5   C20   COMB1   1.55   -516.882   -0.76735   0.125242   -1.05101   -0.42743
STORY5   C20   COMB1   3.1    -512.61    -0.76735   0.125242   -83.5481   0.79675
STORY4   C20   COMB1   0      -1010.31   -2.3022    0.087224   144.3222   -4.23605
STORY4   C20   COMB1   1.5    -1002.96   -2.3022    0.087224   18.9016    -0.78407
STORY4   C20   COMB1   3      -995.604   -2.3022    0.087224   -107.136   2.693448
STORY3   C20   COMB1   0      -1501.46   2.212459   0.091353   115.1461   7.160244
STORY3   C20   COMB1   1.5    -1494.1    2.212459   0.091353   15.68519   3.994043
STORY3   C20   COMB1   3      -1486.75   2.212459   0.091353   -84.5365   0.634927
STORY2   C20   COMB1   0      -2146.78   8.453311   0.027276   59.70449   8.3632
STORY2   C20   COMB1   1.5    -2135.29   8.453311   0.027276   -32.4721   -4.42315
STORY2   C20   COMB1   3      -2123.81   8.453311   0.027276   -123.728   -17.0841
STORY1   C20   COMB1   0      -2218.5    -7.47051   -0.00441   5.468602   -4.72595
STORY1   C20   COMB1   0.5    -2214.67   -7.47051   -0.00441   8.43905    -0.98202
STORY1   C20   COMB1   1      -2210.84   -7.47051   -0.00441   11.38175   2.765147
Method of calculation of area of reinforcement
(Mb)Msdy =P* etot
V =
µb =
Using biaxial chart no. (9&10)
By interpolation we can get the value of ῳ and after that the area of reinforcement can be
calculated by the formula :
                 Asmain =          =
Check whether the the calculated area is within the limit
For type one column
               Check Asmin = 0.008Ac = 0.008*500*500 =2000mm2
               Asmax = 0.08Ac = 0.08*400*500 =20,000000mm2
               Asmin < Asprovide < Asmax……………………ok
For type two column
               Check Asmin = 0.008Ac = 0.008*400*400 =1280mm2
               Asmax = 0.08Ac = 0.08*400*500 =12,800mm2
               Asmin < Asprovide < Asmax……………………ok
For type three column
            Check Asmin = 0.008Ac = 0.008*300*300 =720mm2
            Asmax = 0.08Ac = 0.08*400*500 =7,200mm2
            Asmin > Asprovide …………..not ok
             Provide minimum reinforcement.
Fig___ stiffness factor of beam and column along axis c
Fig____ stiffness factor of beam and column along axis 3
DESIGN OF COLUMN ON AXIS C
Table_____Calculation of effective length
 column    Kb1       Kb2       Kc           K1      K2         ἁ1         ἁ2         ἁm         L,m        Le,m
 C19                           3.038                           1                     1.635
           0.785     1         3.038                1.013                 2.269                 1          0.836
 C29       0.785     1         1.013        3.038              2.269                 1.359
           0.785     1         1.013                0.415                 0.8                   3          2.444
 C39       0.785     1         0.415        1.013              0.8                   0.633
           0.785     1         0.415                0.415                 0.465                 3          2.163
 C49       0.785     1         0.415        0.415              0.465                 0.385
           0.785     1         0.415                0.127                 0.304                 3          2.1
 C59       0.785     1         0.127        0.415              0.304                 0.316
           0.785     1         0.127                0.127                 0.328                 3.1        2.17
 C69       0.785     1         0.127        0.127              0.328                 0.246
           0.785     1         0.127                                      0.164                 3.1        2.17
Table____Check for mode of the column
story     N          H        L         δx1         δy1        δx2        δy2        Δx         Δy         ΔN/HL      remark
6         689.18     58.45    3.1       0.000561    0.00038    0.000561   0.00038    0.000246   0.000034   0.000936   non
                                                                                                                      sway
5         3912.42    92.13    3.1       0.000315    0.000346   0.000315   0.000346   0.000297   0.000168   0.004069   non
                                                                                                                      sway
4         7335.79    138.05   3         0.00018     0.000178   0.00018    0.000178   0.00001    0.000002   0.000177   non
                                                                                                                      sway
3         10747.94   116.76   3         0.000028    0.000176   0.000028   0.000176   0.000004   0.000099   0.003038   non
                                                                                                                      sway
2         14279.15   121.22   3         0.000032    0.000077   0.000032   0.000077   0.000018   0.000072   0.002827   non
                                                                                                                      sway
1         14790.17   54.99    1         0.000014    0.000005   0.000014   0.000005   0.000014   0.000005   0.003765   non
                                                                                                                      sway
Table____check for consideration of second order effect
                                                                                            50-
                                                                                            25(M1/           2nd    order
 column     Le(m)      b(h)       A(m^2)     I           i       λ          M1(KNm) M2(KNm) M2)              effect
                                                                                                             not
 C19        0.836      0.5        0.25       0.005208 0.144338 5.791978 2.31           4.59       35.6528    considered
                                                                                                             not
 C29        2.444      0.5        0.25       0.005208 0.144338 16.93253 5.88           6.21       30.21767   considered
                                                                                                             not
 C39        2.163      0.4        0.16       0.002133 0.11547    18.73213 8.97         10.22      30.19361   considered
                                                                                                             not
 C49        2.1        0.4        0.16       0.002133 0.11547    18.18653 12.89        16.27      28.05773   considered
                                                                                                             not
 C59        2.17       0.3        0.09       0.000675 0.086603 25.057       6.18       7.81       26.3285    considered
                                                                                                             not
 C69        2.17       0.3        0.09       0.000675 0.086603 25.057       4          6.97       37.4183    considered
Table___Design moment determination for non-sway mode
column     le         Nsd        M1          M2         ea(mm) eo1         eo2        eo         etot(mm) Msd(KN-
                                                                                                          M)
C19        0.836      2722.3     2.31        4.59       20      0.000849   0.001686   0.001351   20.00135 54.44968
C29        2.444      2635.05    5.88        6.21       20      0.002231   0.002357   0.002307   20.00231 52.70708
C39        2.163      2082.36    8.97        10.22      20      0.004308   0.004908   0.004668   20.00467 41.65692
C49        2.1        1415.96    12.89       16.27      20      0.009103   0.01149    0.010536   20.01054 28.33412
C59        2.17       752.96     6.18        7.81       20      0.008208   0.010372   0.009506   20.00951 15.06636
C69        2.17       112.77     4           6.97       20      0.03547    0.061807   0.051273   20.05127 2.261182
DESIGN OF COLUMN ON AXIS 3
Table_____Calculation of effective length
column   Kb1       Kb2  Kc        K1            K2        ἁ1       ἁ2        ἁm        L,m     Le,m
C19                     3.329                             1                  2.573     1       0.881
       0.0666 1         3.329                   1.109              4.145
C29    0.0666 1         1.109     1.109                   4.415              2.941     3       2.679
       0.0666 1         1.109                   0.454              1.466
C39    0.0666 1         0.454     0.454                   1.466              1.159     3       2.387
       0.0666 1         0.454                   0.454              0.852
C49    0.0666 1         0.454     0.454                   0.852              0.704     3       2.202
       0.0666 1         0.454                   0.139              0.556
C59    0.0666 1         0.139     0.139                   0.556              0.47      3.1     2.17
       0.0666 1         0.139                   0.139              0.385
C69    0.0666 1         0.139     0.139                   0.385              0.289     3.1     2.17
       0.0666 1         0.139                                      0.192
Table____Check for mode of the column
story    N          H        L        δx1      δy1             δx2      δy2           Δx       Δy       ΔN/HL    remark
6        689.18     58.45    3.1      0.000561 0.00038         0.000561 0.00038       0.000246 0.000034 0.000936 non
                                                                                                                 sway
5        3912.42    92.13    3.1      0.000315 0.000346 0.000315 0.000346             0.000297 0.000168 0.004069 non
                                                                                                                 sway
4        7335.79    138.05   3        0.00018        0.000178 0.00018      0.000178   0.00001 0.000002 0.000177 non
                                                                                                                 sway
3        10747.94 116.76     3        0.000028 0.000176 0.000028 0.000176             0.000004 0.000099 0.003038 non
                                                                                                                 sway
2        14279.15 121.22     3        0.000032 0.000077 0.000032 0.000077             0.000018 0.000072 0.002827 non
                                                                                                                 sway
1        14790.17 54.99      1        0.000014 0.000005 0.000014 0.000005             0.000014 0.000005 0.003765 n. sway
                                                                                               50-         2nd     order
column    Le(m)    b(h)     A(m^2)   I           i          λ           M1(KNm)    M2(KNm)     25(M1/M2)   effect
C19       0.881    0.5      0.25     0.005208    0.144338   6.103747    3.31       3.81        46.3806     n.considered
C29       2.679    0.5      0.25     0.005208    0.144338   18.56066    13.99      29.74       27.04842    not consid.
C39       2.387    0.4      0.16     0.002133    0.11547    20.67203    28.3       32.31       32.17883    not consid.
C49       2.202    0.4      0.16     0.002133    0.11547    19.06988    37.51      52.62       28.10275    not consid.
C59       2.17     0.3      0.09     0.000675    0.086603   25.057      29.58      32.22       38.23974    not consid.
C69       2.17     0.3      0.09     0.000675    0.086603   25.057      4.85       33.5        28.28084    not consid.
Table___Design moment determination for non-sway mode
column   le       Nsd       M1       M2         ea(mm) eo1             eo2        eo         etot(mm) Msd(KN-
                                                                                                      M)
C19      0.881    2722.3    3.31     3.81       20      0.001216       0.0014     0.001326   20.00133 54.44961
C29      2.679    2635.05   13.99    29.74      20      0.005309       0.011286   0.008895   20.0089 52.72444
C39      2.387    2082.36   28.3     32.31      20      0.01359        0.015516   0.014746   20.01475 41.67791
C49      2.202    1415.96   37.51    52.62      20      0.026491       0.037162   0.032894   20.03289 28.36578
C59      2.17     752.96    29.58    32.22      20      0.039285       0.042791   0.041389   20.04139 15.09036
C69      2.17     112.77    4.85     33.5       20      0.043008       0.297065   0.195442   20.19544 2.27744
Calculation of reinforcement requirement with a combined effect
colum   Nsd       Msd(KN-     Msd(KN   b(h),m   diamet   µh=Mh/       µb=Mb/            V=N/        ω       As        As(mi   As      Reinforceme
                  M)y-y       -M)x-x   m        er of    fcd*Ac*h     fcd*Ac*b          fcd*Ac                        n)              nt provided
n
                                                bar
C19     2722.3    54.4496 54.4496 500          24       0.038446        0.07509         0.961094 0.4        4343.15   2000    4343.   9.600
                  8         1                                                                               9                 2
C29     2635.0 52.7070 52.7244 500             24       0.037216        0.037228        0.930291 0.38       4126.00   2000    4126.   9.120
        5         8         4                                                                               1                 0
C39     2082.3 41.6569 41.6779 400             20       0.057448        0.057477        1.148698 0.36       2501.66   1280    2501.   7.963
        6         2         1                                                                                                 7
C49     1415.9 28.3341 28.3657 400             16       0.039075        0.039119        0.78109     0.1     694.905   1280    1280.   6.366
        6         2         8                                                                               5                 0
C59     752.96 15.0663 15.0903 300             12       0.049251        0.049329        0.738413 0.001      4.69061   720     720.0   6.366
                  6         6                                                                    2          2
C69     112.77 2.26118 2.27744 300             12       0.007392        0.007445        0.110591 0.002      7.81768   720     720.0   6.366
                  2                                                                                         7
provided reinforcement from bottom to top respectively are:10,10,8,8,8,8
column As calc       As eff      φ         Ib      Lb     Ib net      Lo min       Io            Io
                                                   min                                           provided
C19       4343.16    4523.89     24        782.6   470    751.3445    360          1051.882      1055
C29       4126       4523.89     24        782.6   470    713.7773    360          999.2882      1000
C39       2501.66    2513.27     20        652.2   391    649.1622    300          908.8271      910
C49       1280       1608.5      16        521.7   313    415.1863    240          581.2609      585
C59       720        904.78      12        391.3   300    311.3902    200          435.9462      440
C69       720        904.78      12        391.3   300    311.3902    200          435.9462      440
Lateral reinforcement
For basement and ground floor,
Use
Spacing
Use     c/c290mm
For 1st and 2nd floor
Use
Spacing
Use     c/c
      Between 1st and second floor
Use
Spacing
              Use     c/c 9 mm
              Between 2nd and 4th floor
               Use
              Spacing
              Use     c/c    mm
Sketch of cross-sectional column details
PART TWO
                 TABLES FOR DESIGN OF COLUMNS
                      Y-Y DIRECTION
        To check whether the columns in each story are sway or nonsway we used the
         formula shown bellow in the table; i.e. Sway if         0.1.
Column           δ            N              H             L               Remark
CF               0.003        1646.64        50.25         3.6   0.098     Non sway
CG               0.0165       1597.05        54.68         3.6   0.134     Non sway
CFR              0.013        1077.68        86.11         3.6   0.0452    Sway
CS               0.041        734.13         53.08         3.6   0.1575    Non sway
CT               0.036        401.15         71.92         3.6   0.05577   Sway
CFO              0.006        68.94          34.19         3.6   0.00336   Non sway
                Table for Calculation of effective length.
      column          kb1         kb2             kc             k1               k2           α1                 α2          αm        L(m)       Le(m)
      CF              -           -               3.0348         -                -            1                  -           5.0295    3.6        3.3533
                      -           0.67            3.0348         -                3.0348       -                  9.059
      CG              -           0.67            3.0348         3.0348           -            9.059              -           9.059     3.6        10.338
                      -           0.67            3.0348         -                3.0348       -                  9.059
      CFR             -           0.67            3.0348         3.0348           -            9.059              -           7.695     3.6        3.43
                      -           0.67            3.0348         -                1.2075       -                  6.332
      CS              -           0.67            1.2075         3.0348           -            6.332              -           6.332     3.6        8.866
                      -           0.67            1.2075         -                1.2075       -                  6.332
      CT              -           0.67            1.2075         1.2075           -            6.332              -           6.332     3.6        3.4
                      -           0.67            1.2075         -                1.2075       -                  6.332
      CFO             -           0.67            1.2075         1.2075           -            6.332              -           6.332     3.6        3.4
                                                  1.2075         -                -            -                  6.332
                Table to check for consideration of second order effect
                                                                                                                               25 or
                                                                                                                                        50-          Second
COLUM                              A(m                                                                                                  25(M1/       order
                                   2)                                                                                          15/
N              Le         b(h)                I             i              Kl          λ           M1      M2         Vd                M2)          effect
CF             3.35       0.5      0.25       0.005         0.1414         0.026       5.618       0.76    13.9       0.484             48.64092     NOT
                                                                                                                                                     CONSID
CG             10.3       0.5      0.25       0.005         0.1414         0.026       5.618       15.6    14.6       0.469    25                    ERED
CFR            3.43       0.5      0.25       0.005         0.1414         0.026       5.618       22.6    24.2       0.32              26.60455     NOT
                                                                                                                                                     CONSID
CS             8.87       0.4      0.16       0.002         0.1118         0.01        7.303       8.95    7.45       0.337    26.516                ERED
CT             3.4        0.4      0.16       0.002         0.1118         0.01        7.303       5.88    6.36       0.22              26.88679     NOT
CFO            3.4        0.4      0.16       0.002         0.1118         0.01        7.303       -0.85   1.21       0.032             67.56198     NOT
                FOR SWAY CASE
 COLUM     Le,    Nsd,K    M1,KN      M2,KN          ea,m        eo1,m    eo2,m       eo,m               δs*eo,m     eto    Msd,kN
 N         m      N        m          m              m           m        m           m         δs       m           t      m
 CG        10.3   1597.    15.62      14.55          34.46       9.78     9.11        9.378     1.16     10.8315     z      72.554
                                                                                      10.53     1.18
 CS        8.8    734.1    8.95       7.45           29.55       11.71    9.75        4         7        12.5038     42.    32.158
       FOR NON SWAY CASE
COLUM     Le,     Nsd,K       M1,KN          M2,KN           ea,m        eo1,m          eo2,m                                 Msd,kN
N         m       N           m              m               m           m              m              eo,mm       etot       m
CF        3.35    1646.6      0.76           13.98           20          0.4615         8.49           5.2786      25.278     41.625
CFR       3.43    1077.6      22.6           24.15           20          20.97          22.41          21.834      41.834     45.083
CT        3.4     401.15      5.88           6.36            20          14.657         15.85          15.373      35.342     14.177
CFO       3.4     68.94       -0.85          1.21            20          -12.369 17.55                 5.5824      25.582     1.763
         X-X DIRECTION
 Column           Δ                  N                       H                    L                                        Remark
 CF               0.02               1646.64                 14.84                3.6           0.4                        Non sway
       CG                0.033            1597.05           20.75            3.6        0.11                   Non sway
       CFR               0.017            1077.58           16.72            3.6        0.343                  Sway
       CS                0.035            734.13            26.75            3.6        0.19                   Non sway
       CT                0.02             401.15            46.88            3.6        0.31                   Sway
       CFO               0.056            68.94             27.9             3.6        0.3                    Non sway
  col       k                                                                                                 col
  um        b                                                                                                 um
  n         1    kb2    kc       k1         k2        α1       α2        αm             L(m)    Le(m)         n     kb1     kb2
  CF        -    -      2.756    -          -         1        -         1.878          3.6     5.57          CF    -       -
            1           2.756    -          2.756     -        2.756                                                1       -
  CG        1    -      2.756    2.756      -         5.5      -         5.5            3.6     8.37          CG    1       -
            1    -      2.756    -          2.756     -        5.5                                                  1       -
  CF                                                                                                          CF
  R         1    -      2.756    2.756      -         5.5      -         4.699          3.6     7.8           R     1       -
            1    -      2.756    -          1.142     -        3.898                                                1       -
  CS        1    -      1.142    2.756      -         3.89     -         3.091          3.6     6.63          CS    1       -
            1    -      1.142    -          1.142     -        2.284                                                1       -
  CT        1    -      1.142    1.142      -         2.28     -         2.284          3.6     6.053         CT    1       -
            1    -      1.142    -          1.142     -        2.284                                                1       -
  CF                                                                                                          CF
  O         1    -      1.142    1.142      -         2.28               1.142          3.6     4.694         O     1       -
            1    -      1.142    -          -         -        -                                                    1       -
COLU        Le   b(    A(m   I        i          Kl   ʎ            M1   M2         Vd                   50-             Second
MN                                                                                                                      order
                       h)      ^2)                                                                                       25 or 15/     25(M1/M2)       effect
CF       5.6           0.5     0.25    0.005     0.1414    0.026     5.6183         2.14      -35.4       0.484          25            -               Consider
CG       8.3           0.5     0.25    0.002     0.1414    0.026     5.6183         0.55      14.7        0.469          25            -               Consider
CFR      7.8           0.5     0.25    0.005     0.1412    0.026     5.6183         28.3      24.56       0.32           26.5165       -               Consider
CS       6.63          0.4     0.16    0.002     0.1118    0.01      7.30296        19.4      13.6        0.337          25.8390       -               Consider
CT       6.05          0.4     0.16    0.002     0.1118    0.01      7.30296        30.4      25.19       0.22           31.98010      -               Consider
CFO      4.69          0.4     0.16    0.002     0.1118    0.01      7.30296        17.0      29.75       0.032          83.85254      -               Consider
           SWAY MODE
COLUMN         Le,m          Nsd,KN    M1,KNm    M2,KNm      ea,mm    eo1,mm         eo2,mm       eo,mm     δs          δs*eo,mm      etot         Msd,kNm
CF             5.57          1646.6    2.14      -35.44      18.56    1.299          21.522       13.43     1.43        19.18203      37.7420      62.147550
CG             8.37          1597.0    0.55      14.7        27.9     0.344          9.2          5.657     1.43        8.079052      35.9790      57.460346
CFR            7.8           1077.6    28.3      24.56       26       26.26          22.79        24.17     1.23        29.73894      55.73894     60.068740
CS             6.63          734.1     19.4      13.6        22.1     26.46          18.47        21.66     1.52        32.97565      55.0756      40.432688
CT             6.053         401.1     10.28     7.85        20.18    25.6           19.57        21.98     1.124       24.70776      44.8877      18.006728
CFO            4.694         68.94     0.75      1.25        15.66    10.87          18.13        15.22     1.67        25.38174      41.0417      2.8294176
           We can now provide steel bars for the above moments obtained; using
      Biaxial chart. The reinforcements obtained are summarized by the following table. The development
      lengths are also shown in the following table.
       Column                         As,Calc,mm2         As,eff.,mm2          φ,mm           lb,mm         lb,net,mm         lo,mm          lo,prov.,mm
       CF                             1172.998            1258.64              20             631.953       588.95            824.53         830
       CG                             1172.998            1258.64              20             631.953       588.95            824.53         830
       CFR                            1172.998            1258.64              20             631.953       588.95            824.53         830
       CS                             750.72              834.132              16             505.562       455               637            640
       CT                             750.72              834.132              16             505.562       455               637            640
       CFO                            709.012             834.132              16             505.562       429.73            601.622        610
                     LATERAL REINFORCEMENT DETERMINATION
  Lateral reinforcement or stirrup is provided, if shear force carrying capacity concrete(V c) is less
                                        than shear force exerted by loads(V cu). There is also
                                        additional shear force carried by the concrete(Vcn).
VC=0.25fctdK1K2bwd            where:K1=1.5+50ρ 2
                             K1=1.5+(50*0.0056)=1.78 2.0
                               K2=1.6*0.45 1.15
fctd=0.21fcu2/3/1.5=1.0315 & fcu=0.8fck=20
Vc for CF, CG &CF that is column one                       with      500*500mm    x-section   will   be
0.25*1.0315*1.78*1.15*500*450*1000=118.8K
Vc for column 2 with 400*400mm x-section will be
Ρ=834.132/(400*360)=0.00579;        K1=1.79 & K2=1.24 that is; Vc=82.46KN
Vcn=0.1* bwd.*Nsd/Ac ; & so the total shear force resisted by the concrete(Vtot) is
      Vtot= Vc+ Vcn
    Total shear for columns of each stories is shown bellow.
                      COLUMN                                  Vtot
                      CF                                   148.19
                      CG                                   143.73
                      CFR                                  96.99
                      CS                                   66.07
                      CT                                   36.1
                      CFO                                  6.204
    Maximum shear force =86.11KN which is on first floor @ which Nsd=1077.58.
 CHECK FOR SHEAR
     Limiting value of ultimate shear force ;i.e. VRD =0.25*fcd* bwd=265KN
    Vtot first floor =215.79                       Scince the shear resisted is greater than the maximum
S                                                       Therefore ; provide   8 c/c 192 mm nominal reinf.
Length of lap         lo   a1lb,net              lo,min        &
    lo,min= 0.3aa1lb
     Or    200mm
     lb,net = a lb*                b.min
For bar in tension;        b.min=0.3         b
                                                    Or         300mm
For bar in compression ;           b.min   =0.6     b
                                                  Or          200mm           where; a=1 for straight bar&
                                                                      b   is anchorage length
Basic average    b= /4*fyd/fbd= /4*(260.87/2.064)=31.6
          fbd=2*fctd=2.064
 - From EBCS2,1995/Art 2.165 it can be seen that a1=1.
      DEVELOPMENT LENGTH
 Column              As,Calc,mm2   As,eff.,mm2   φ,mm    lb,mm     lb,net,mm   lo,mm     lo,prov.,mm
 CF                  1172.998      1258.64       20      631.953   588.95      824.53    830
 CG                  1172.998      1258.64       20      631.953   588.95      824.53    830
 CFR                 1172.998      1258.64       20      631.953   588.95      824.53    830
 CS                  750.72        834.132       16      505.562   455         637       640
 CT                  750.72        834.132       16      505.562   455         637       640
 CFO                 709.012       834.132       16      505.562   429.73      601.622   610
Column Detailing
                                       CHAPTER FIVE
                                 DESIGN OF STAIR CASE
Stairs are used to connect to floors that found on different elevation. Stair case analysis and
design is similar to slabs. The inclined configuration is analysed by projecting the loads on a
horizontal plane.
DESIGN OF STAIR CASE
Introduction
Staircase is structural element which provides movement from one floor to another.
Mainly there are two types of Staircases based on carrying and transferring of load to support.
    1. Transverse staircase:-supported on the shorter sides. They may be supported on wall,
       beams or cantilever.
    2. Longitudinal staircase:-supported on longer sides .They transfer load to the support in the
       longer direction
       Generally design of stair case is mainly as one way solid slab.
       In our project, of the above two types, the second type (longitudinal stair case) is used and
       the detail design as follow.
Figure - parts of stair
       MODELING
       Number of rising=number of going +1
       Taking rising=15cm, and thread=30cm
       Number of rising= (H/2)/18cm= (3.6/2)/15cm=10
       Number of thread=10-1=9
       Hence depending on the dimension of the building and the calculated number of
       rising and thread the model of the stair case and its dimension will be as follows.
       Angle of inclination of the stair (θ)
       Θ=tan-1(1.8/2.7) =33.69o
Depth for deflection requirement
d = le = 5350mm ßa = 24
d= (0.4+0.6fyk/400)*Le/Ba=0.85* Le/Ba
d = 189.48mm
AssuminØ-14 main reinforcement and cover 25mm.
D = d + cover + Ø/2 = 189.48+25+14/2 = 221.48mm
Use D = 225mm d = 225-25-14/2 = 193mm
LOADING
DEAD LOAD
   1. INCLINED PART
   1. Step
      concrete
                                     =         =10.141KN/m
      plastering
                                       =         =0.829KN/m
      steps
          =0.5*rise*width*unit weight
       =0.5*0.18*1.5*25=3.375KN/m
   marble finish
                        =1.944KN/m
    Total dead load for inclined part=10.14+0.829+3.375+1.944=16.289
2. LANDING
   Concrete =depth*width*unit weight
              =0.225*1.5*25=8.438KN/m
    Plaster   = depth*width*unit weight
              =0.02*1.5*23=0.69KN/m
    Marble    = depth*width*unit weight
              =0.03*1.5*23=1.215KN/m
    Total dead load for landing = 10.343KN/m
    LIVE LOAD
    Live load=qk + Q*width/A =3+2*1.5/ (1.5*5.35) = 3.374KN/m
    DESIGN LOAD
    Pd=1.3DL+1.6LL
    Pd1=1.3*16.289 + 1.6*3.374 =26.574
    Pd2=1.3*10.343 + 1.6*3.343 =18.844
                                          Case 1
                                         Case 2
       Case і M support = (wl2)/8 =18.844*(5.35)2/8=67.42KNm
                M span= 9/128*wl2=9/128*18.844* (5.35)2=37.924KNm
                                                             2 2                                   2
       Case     іі,     і           M    support=wc/(16l)*(3l -c )=(7.73*1.325)/(16*5.35)*[3*(5.35) -
       (1.325)2]=10.064KNm
                To calculate M span:
                MA=0
             →RB*5.35-MB-7.73*2.7[(2.7/2+1.325] =0
               RB=[10.064+20.871*2.675]/5.35=12.317KN
             Mx= RB*x-MB-[w(x-1.325)2]/2
                 =-3.865x2+22.559x-16.849
               d Mx/dx = 0 →x=2.92m
               M(2.92)=16.1KNm
             → M span=16.1KNm
               Msd span=37.924+16.1=54.024KNm
               Msd support=67.42+10.064=77.484KNm
       Check depth
            d=           =                  =124.32mm <dused …..ok!
       Reinforcement provision
Span   Msd=54.024KNm
                 μ=              =0.085
       Z=                     = 184.38
      As =          =             = 1123.18mm2
      Spacing, S=             =                 =205.583mm    , as=   *𝛑 =153.39mm2 , b=1500mm
             Smax             ≤                                                    ,      As   min =
              Smax = 350mm>S= 205.583mm……..ok!
                Provide Ø14 c/c 200mm
Support Msd= 77.484KNm
              μ=                  = 0.122
             Z=                         = 180.36
             As =         =                     1646.818mm2
      Spacing, S=             =                 =140.179mm    , as=   *𝛑 =153.39mm2 , b=1500mm
                        → S < Smax   --------   ok!
       Provide Ø14 c/c 140mm
                                     CHAPTER SIX
                                      FOUNDATION
A foundation is the under lying structure which safely transmits the structural load to beneath ground
surface.
To choose this foundation there are factors which have to be considered like
             Bearing capacity of the soil
             Function of the structure
             Type of load it must carry
             Substructure condition
             Cost
In order to be economical it must be checked whether the total area of footing is greater than
half of the total area of the building or not
Assume soil is medium stiff clay with bearing capacity 200kpa. qall = 200kpa
 qult = F.S* qall = 1.5*200 = 300kpa
To determine the type of foundation, proportioning of footing pad is made for several
columns to estimate the total area of footing using the following formula
  qult ≥ {1 ±       ±    }
Assume overburden pressure of soil & weight of footing comprises 10% of column load
ANALISIS & DESIGN OF FOUNDATION
PART ONE
DESIGN OF FOUNDATION
       Foundations are building components which transfer building loads to the underlying soil. They
consist concrete slab located under each structural column and a continuous slab under load bearing
walls.
The following points has to be considered while selecting the appropriate type of foundation
     Engineering parameters of the given soil
     Location of ground water
     Limit of settlement
     Type of structure and the load from superstructure.
There are two basic types of foundation.
    1. Shallow foundation:-are types of foundation which transfer building loads to the soil at the
       base of the structure.
       Shallow foundations have the following systems
            a. Spread footing
           b. Mat/Raft foundation
    2. Deep foundation:-they transfer structural loads far below the sub-structure. These type of
       foundations extend several dozen of feet below the building. They have the following types.
           a. Piles
           b. Piers
           c. Caissons
 Considering the following advantages we selected square footing of shallow foundation .The
advantages are:-
    Affordable cost
    Simple construction procedure
    Mostly availability of construction material
    Less need of experts
We used Software which depends on EBCS 2/1995 for the design of the foundation.
The output of the analysis is shown as below
Reinforcement provision and detailed sketch is presented as follows
PART TWO
C25                         class 1
Axial force=1646.64
Mx=13.98KN.m               My=35.44KN.m
Fcd=11.33KN.m              fyd=260.87N/mm2
ξcu =0.0035,               ξyd=0.0013
Step1 proportioning
       Assuming it is a square footing (L=B)
         δmax =
         ey =                                          ex=       =0.022m
         δmax=
                =1646.64
         If     L=2.0                          δmax=485.14KPa
                 L=2.6                             δmax=277.03KPa<300...........ok!
         Therefore take L=2.6m
         Over burden pressure=unit wt of soil*volume
                                          =16*1.5*2.62
                                          =162.34KN
         Reinforced overburden=1.3*(162.24)=210.9
         P=1646.64+210.9=1857.54KN
         δmin=
                  =210.14....................ok!
         Stress distribution
         δ=
         δ       =277.03
         δ (+,-) =219.695
         δ (-,-) =210.143
         δ (-,+) =267.148
δavg=                                            /4
=243.586KN/m2
Step 2 depth determination
VP      UP
Where vp is the shear due to presenting stress
Vup section resistance
we assume the critical section for wide beam shear to occur
1.5d distance from the face of the column.
Vp =pi+          *Aup,
Aup =CXCY+2(CX*1.5d)+2(CY*1.5d)+∏d2
=0.52+2(0.5*1.5d)*2+7.07d2
=0.25+-3d+7.07d2.........1
Vp =1646.64+                   *
=1646.64-212.386(0.25+3d+7.07d2)
=963.543-637.158d-1504.57d2
Vup=0.25fctd*k1k2ud*103
Where, Ud =(2CX+2CY+3∏d)d
             =2d+9.42d2
FCtd =
     =          =1.032
K2=1.6d take K2=1
VUP0.25*1.032*1.08*1*(2d+9.42d2)
=0.5572d+2.624d2.........2
Equate equation 1 and 2
0.5572d+2.624d2=1604.57d+963.543-637.158d
Using quadratic equation
d=601.34mm
D=d+ Ø/2+C
  =601.34+14/2+50
  =658.34
Take D=670mm,           d=670-50-7=613mm
Check whether the punching area is within the pad
1.5*0.613=0.919
1.1695<1.3............ok!
Wide beam shear
In this case the critical section is assumed to occur d distance from face of the column
For wide beam shear VW<VUW,
Where Vw=presenting shear at the section due to wide beam
   Along x-x
                                                                ,
Using similarity of triangles
δx =214.919+47.7
  =264.62KPa
Vwx=                                   Ly=296.55
Vwx=0.25fctd*k1*k2bwd
Where, Fctd =1.032, k1=1.08, k2=0.987       take k2=1
Vwx =0.25*1.032*1.08*1*2.6*0.613*106
       =444.096KN
Vwx       ................ok!
Along Y-Y
By using similarity of triangle we get      =238.812+7.986
                                      = 246.79KN
                                Vwy
                               = 245.85 KN
Vuwy = 0.25* 1.032*1.08*1*2.6*0.613*106
     = 444.096KN
  Vwy > Vuwy OK!
STEP 3. FLEXURAL DESIGN
While designing for flexure we assume the critical section to occur at the face of the column. We
provide reinforcement using the maximum moment resisted.
Along x-x (along y-axis)
By using similarity of triangle we get   =249.1KN
=217.9
Mmax =
      =128.626KNm
Along y-y (along X-axis)
Mmax =
      =117.604|+1.406
      =119.01KN
Check depth for flexure
d=
                    0.019
          Msd(KNm)        b (m)                             dcal      dprov.   remark
                                  m=
X’        128.628         1m      28.78   0.019   0.0013    697.867   613mm    OK!
Y’        119.01          1m      28.78   0.019   0.00123   597.77    613mm    OK!
Spacing by using design table
as= 153.93
         Msd(KNm)          b (m)   d (m)               Ks                                 Sprov
                                                                 As              s
                                           Km
X’       128.628       1m          0.613   18.5        3.95      829.8           185.5    Φ14 c/c 180
Y’       119.01        1m          0.613   17.79       3.95      766.86          200.72   Φ14 c/c 200
STEP 4 DEVELOPMENT LENGTHS
Lb =0.7φ/4 *
For the column bars l bc =0.7
Bent length =885mm-613mm
               =272mm
For the footing l b =0.7
In x-direction 0.61933< [1.3-0.25]
In y- direction 0.619< [1.3-0.25] therefore there is no need to bend the bars.
STEP 5 REINFORCEMENT DETAILING
BAR SCHEDULE
item                             Schedule                         spacing
A                                                                 Φ14 C/C 180
B                                                                 Φ 14C/C 200
       Conclusion
This project was a great exposure for the students to apply the theoretical background which
is gained in the courses in the real world.
The project work enables us to identify
                        What basic steps & ideas are gained to be followed in designing the
                         structure
                        What software should be used in doing the project.
                        This project work introduces us with the works that are done in
                         design office.
Generally, this project enabled us to build our confidence as a future civil engineer.