0% found this document useful (0 votes)
30 views4 pages

INtegration Last

integration

Uploaded by

happysarma12345
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views4 pages

INtegration Last

integration

Uploaded by

happysarma12345
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

TO BE SUBMITTED SHEET-

Strenthening your Concept TBS-Integration-Last


maths by rupesh k jha.....9864030380
www.infinity4maths.com....7086055586
ASKING DOUBTSARE YOUR FUNDAMENTAL RIGHT,

By Taking factor common


(ax 2  b) dx 5 x 4  4 x5
Q1  x c2 x 2  (ax 2  b) 2
Q2 
x 5

 x 1
2 dx

By Adjusting ex
1 sin x  cos x
2  e x  sin x
Q.3 Let F(x) = dx and F(0) = 1 then F(x) is equal to

(A) ln 1  e x sin x  1 (B) ln 1  e x sin x


1 1
(C) ln (1  e x sin x )  1 (D) ln (1  e x sin x )  2
2 2

Integration by Parts and Cancellation


coec 2 x  2005
Q4  cos 2005 x dx
Diff Both Side
Q.5 If x
2
·e 2 x dx = e–2x(ax2 + bx + c) + d, then

1 1 1 1 1 1
(A) a = – ,b=– ,c=– (B) a = – , b = – , c =
2 2 4 2 2 4
1 1 1
(C) a = – , b = – 1, c = – (D) a = 1, b = 1, c = –
2 2 2
3e x  5 sin x  10 cos x
Q.6 Let  e x  4 sin x  3 cos x dx = m x + n ln (ex + 4 sin x + 3 cos x) + C,
where C is constant of integration. Find the value of (m2 + n2).

By integrating Both Side


3
Q.7 Let f be a twice differentiable function on R and satisfying f "(x) = x  1  2

2
for all x  R.
If f ' (0) = 0 and f (1) = 2 + 1 , then f (0) is equal to
(A) 0 (B) 2 (C) 3 (D) 5
Misc


1 x dx 1
Q8 Prove that : 3 =– 2 tan
–1 x  1 + C
1 x x  x2  x x

 tan x  1 2  tan 2 x  tan x


 tan x  2 dx =tan–1   + ln C
2
Q9 Prove That
 2  tan 2 x  2 2  tan 2 x  tan x
7
cosec 2 x  1 cosec x  cot x  2 
If  = cosec x  cot x      C where C is constant of
2
Q.10 dx
9  
cosec x  cot x 2  11 
integration and N, then is equal to
7
(1) 5 (2) (3) 10 (4) 7
2

3 cos x  2
Q.11  (3  2 cos x ) 2 dx is equal to

sin x  2 cos x sin x sin x


(1) C (2) C (3) C (4) C
3  2 cos x 3  2 cos x 3  2 cos x 2  3 cos x
Integration in Pair
ex e x
Q.12 Let I =  4x dx and J =  4 x dx
e 1 e 1
Then for any arbitrary constant C, match the following
Column-I Column-II

1  e2x  1 
 
(A) I (P)
2
tan–1  2e x   C
 

1  e 2 x  2e x  1 
(B) J+I (Q) ln  C
2 2  e 2 x  2e x  1 

1 1  e 2 x  1  1  e 2 x  2e x  1  
 tan    
(C) J–I (R)
2 2   2e x   2 ln  e 2 x  2e x  1    C
   

1 1  e 2 x  1  1  e 2 x  2e x  1  
 tan    
(S)
2 2   2 e x   2 ln  e 2 x  2 e x  1    C
   

By Forcing Integrals
x2
Q13  ( xsinx  cosx)2 dx
Derived Substitution

 
 1  x 1 

1
Q14 tan  2 tan  dx
 1 x 1 

PART-11
1
Q.1 If  f (x ) dx = g (x), then  f ( x ) dx is

(A) x f–1 (x) + C  


(B) f g 1 ( x )  C

(C) x f 1 ( x )  g f 1 ( x )  C  1
(D) g ( x )  C

 1 x 
ln  ln  
  1  x   dx Ans.
Q.2  1 x2

Q.3  (sin x)11/3 (cos x)1/3dx


Q.4 Let f be a polynomial function such that for all real x f (x2 + 1) = x4 + 5x2 + 2, then  f (x ) dx is

x 3 3x 2 x 3 3x 2
(A)  – 2x + C (B)  + 2x + C
3 2 3 2

x 3 3x 2 x 3 3x 2
(C)  – 2x + C (D)  + 2x + C
3 2 3 2

3x 4  1
Q.5 Primitive of w.r.t. x is :
( x 4  x  1) 2
x x x 1 x 1
(A) +c (B)  +c (C) +c (D)  +c
x 4  x 1 4
x  x 1 4
x  x 1 4
x  x 1
cos x  sin x  1  x
Q.6 If  e x  sin x  x
dx = ln  f ( x )  + g(x) + C where C is the constant of integration and f (x) is positive,

then f (x) + g (x) has the value equal to


(A) ex + sin x + 2x (B) ex + sin x (C) ex – sin x (D) ex + sin x + x

dx
Q.7  equals
2

x x 1 5
4/5

5
1 x 5 5
1 x 5
5
1 x 5 5
1 x 5
(A) c + (B) c  (C) c  (D) c +
4x x 5x x

 (x
3
Q.8 If  2 x 2  5)e 3x dx = e3x (Ax3 + Bx2 + Cx + D) then the statement which is incorrect is
(A) C + 3D = 5 (B) A + B + 2/3 = 0 (C) C + 2B = 0 (D) A + B + C = 0
dx 1  x q 
Q.9 Let  2008 = p ln  r  +C
x x 1 x 
where p, q, r  N and need not be distinct, then the value of (p + q + r) equals
(A) 6024 (B) 6022 (C) 6021 (D) 6020

Q10 
Evaluate  sin7 x cos x dx
5

1 1
Q.11 If  ( x 9  x 6  x 3 ) (2 x 6  3x 3  6) 3 dx = (2x9 + 3x6 + 6x3)B + C, where C is integration constant then AB
A
is equal to
(1) 32 (2) 16 (3) 8 (4) 4

Answer

1 
ax 2  b  x1 x5
1) sin   k (2) C– 5 or C + 5 (3)a 4)-
 cx  x  x1 x  x 1
(cotx)(secx)2005+c
5)a 6)5 7)b 10)4
11)3 12)A) R ; (B) P ; (C) Q
 xsecx 4 5/4
13) c 14) x +c
( xsinx  cosx 5

1  1 x   1 x   1  x 
1)c 2) ln  1  x  ·ln  ln 1  x   ln  1  x  + C
2       

3) 

3 1 4 tan 2 x  +C 4)a 5)b
8(tan x ) 8 / 3
6)b 7)b 8)c 9)c
10)-(cos6x)(cosx)6/6+c 11)1

You might also like