0% found this document useful (0 votes)
63 views4 pages

Introduction To Integration

Uploaded by

boromis763
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
63 views4 pages

Introduction To Integration

Uploaded by

boromis763
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

Introduction to Integration

Definition: Integration is the process of finding the integral of a function, which


can be interpreted as the area under the curve of the function on a given
interval. The integral of a function f(x)f(x)f(x) over an interval [a,b][a, b][a,b] is
denoted as ∫abf(x) dx\int_a^b f(x) \, dx∫abf(x)dx.
Conceptual Understanding:
 Antiderivative: The integral of a function f(x)f(x)f(x) is also known as the
antiderivative of f(x)f(x)f(x), which is a function F(x)F(x)F(x) such that F′
(x)=f(x)F'(x) = f(x)F′(x)=f(x).
 Area Interpretation: The definite integral ∫abf(x) dx\int_a^b f(x) \, dx∫ab
f(x)dx represents the signed area between the function f(x)f(x)f(x) and the
x-axis from x=ax = ax=a to x=bx = bx=b.

2. Fundamental Theorem of Calculus


1. First Part of the Fundamental Theorem: If F(x)F(x)F(x) is an antiderivative
of f(x)f(x)f(x) on [a,b][a, b][a,b], then: ∫abf(x) dx=F(b)−F(a)\int_a^b f(x) \, dx =
F(b) - F(a)∫abf(x)dx=F(b)−F(a)
2. Second Part of the Fundamental Theorem: If f(x)f(x)f(x) is continuous on
[a,b][a, b][a,b], then the function F(x)F(x)F(x) defined by: F(x)=∫axf(t) dtF(x) = \
int_a^x f(t) \, dtF(x)=∫axf(t)dt is continuous on [a,b][a, b][a,b], differentiable on
(a,b)(a, b)(a,b), and F′(x)=f(x)F'(x) = f(x)F′(x)=f(x).

3. Basic Rules of Integration


1. Power Rule: If f(x)=xnf(x) = x^nf(x)=xn where n≠−1n \neq -1n =−1, then:
∫xn dx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C∫xndx=n+1xn+1
+C where CCC is the constant of integration.

2. Constant Multiple Rule: If f(x)=c⋅g(x)f(x) = c \cdot g(x)f(x)=c⋅g(x), then:


∫c⋅g(x) dx=c⋅∫g(x) dx\int c \cdot g(x) \, dx = c \cdot \int g(x) \,
dx∫c⋅g(x)dx=c⋅∫g(x)dx
3. Sum Rule: If f(x)=g(x)+h(x)f(x) = g(x) + h(x)f(x)=g(x)+h(x), then: ∫[g(x)
+h(x)] dx=∫g(x) dx+∫h(x) dx\int [g(x) + h(x)] \, dx = \int g(x) \, dx + \int h(x) \,
dx∫[g(x)+h(x)]dx=∫g(x)dx+∫h(x)dx
4. Difference Rule: If f(x)=g(x)−h(x)f(x) = g(x) - h(x)f(x)=g(x)−h(x), then:
∫[g(x)−h(x)] dx=∫g(x) dx−∫h(x) dx\int [g(x) - h(x)] \, dx = \int g(x) \, dx - \int
h(x) \, dx∫[g(x)−h(x)]dx=∫g(x)dx−∫h(x)dx

4. Integration Techniques
1. Substitution: Used to simplify integrals by substituting a new variable.
 Process: Let u=g(x)u = g(x)u=g(x). Then du=g′(x) dxdu = g'(x) \, dxdu=g
′(x)dx, and the integral becomes: ∫f(g(x))⋅g′(x) dx=∫f(u) du\int f(g(x)) \cdot
g'(x) \, dx = \int f(u) \, du∫f(g(x))⋅g′(x)dx=∫f(u)du
2. Integration by Parts: Based on the product rule for differentiation.
 Formula: ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu
where uuu and vvv are functions of xxx, and dududu and dvdvdv are their
respective differentials.
3. Partial Fraction Decomposition: Used for rational functions.
 Process: Express the rational function as a sum of simpler fractions. Then
integrate each fraction separately.
 Example: For P(x)Q(x)\frac{P(x)}{Q(x)}Q(x)P(x), where Q(x)Q(x)Q(x) can
be factored into simpler linear or quadratic terms.
4. Trigonometric Substitution: Used for integrals involving square roots of
quadratic expressions.
 Common Substitutions:

o For a2−x2\sqrt{a^2 - x^2}a2−x2, use x=asin⁡(θ)x = a \sin(\


theta)x=asin(θ)

o For a2+x2\sqrt{a^2 + x^2}a2+x2, use x=atan⁡(θ)x = a \tan(\


theta)x=atan(θ)

o For x2−a2\sqrt{x^2 - a^2}x2−a2, use x=asec⁡(θ)x = a \sec(\


theta)x=asec(θ)
5. Integration by Trigonometric Identities: Use identities to simplify
integrals involving trigonometric functions.

 Example: For ∫sin⁡2(x) dx\int \sin^2(x) \, dx∫sin2(x)dx, use the identity


sin⁡2(x)=1−cos⁡(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}sin2(x)=21−cos(2x).
6. Numerical Integration: Used when an integral cannot be expressed in
closed form.
 Methods: Trapezoidal rule, Simpson’s rule.

5. Special Integrals
1. Exponential Functions:
 ∫ex dx=ex+C\int e^x \, dx = e^x + C∫exdx=ex+C

 ∫ax dx=axln⁡(a)+C\int a^x \, dx = \frac{a^x}{\ln(a)} + C∫axdx=ln(a)ax


+C, where aaa is a positive constant.
2. Logarithmic Functions:

 ∫ln⁡(x) dx=xln⁡(x)−x+C\int \ln(x) \, dx = x \ln(x) - x + C∫ln(x)dx=xln(x)−x+C

 ∫1x dx=ln⁡∣x∣+C\int \frac{1}{x} \, dx = \ln|x| + C∫x1dx=ln∣x∣+C


3. Trigonometric Functions:

 ∫sin⁡(x) dx=−cos⁡(x)+C\int \sin(x) \, dx = -\cos(x) + C∫sin(x)dx=−cos(x)+C

 ∫cos⁡(x) dx=sin⁡(x)+C\int \cos(x) \, dx = \sin(x) + C∫cos(x)dx=sin(x)+C

 ∫tan⁡(x) dx=ln⁡∣sec⁡(x)∣+C\int \tan(x) \, dx = \ln|\sec(x)| +


C∫tan(x)dx=ln∣sec(x)∣+C

 ∫cot⁡(x) dx=ln⁡∣sin⁡(x)∣+C\int \cot(x) \, dx = \ln|\sin(x)| +


C∫cot(x)dx=ln∣sin(x)∣+C

 ∫sec⁡(x) dx=ln⁡∣sec⁡(x)+tan⁡(x)∣+C\int \sec(x) \, dx = \ln|\sec(x) + \tan(x)| +


C∫sec(x)dx=ln∣sec(x)+tan(x)∣+C

 ∫csc⁡(x) dx=ln⁡∣csc⁡(x)−cot⁡(x)∣+C\int \csc(x) \, dx = \ln|\csc(x) - \cot(x)| +


C∫csc(x)dx=ln∣csc(x)−cot(x)∣+C
4. Inverse Trigonometric Functions:

 ∫11−x2 dx=arcsin⁡(x)+C\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin(x) +


C∫1−x21dx=arcsin(x)+C

 ∫11+x2 dx=arctan⁡(x)+C\int \frac{1}{1 + x^2} \, dx = \arctan(x) +


C∫1+x21dx=arctan(x)+C

 ∫1∣x∣x2−1 dx=\arcsec(∣x∣)+C\int \frac{1}{|x| \sqrt{x^2 - 1}} \, dx = \


arcsec(|x|) + C∫∣x∣x2−11dx=\arcsec(∣x∣)+C

6. Improper Integrals
Definition: Improper integrals are those where either the interval of integration
is infinite or the integrand has an infinite discontinuity within the interval.
1. Infinite Limits:
 Example: ∫a∞f(x) dx\int_a^\infty f(x) \, dx∫a∞f(x)dx Evaluate the limit as
b→∞b \to \inftyb→∞: ∫a∞f(x) dx=lim⁡b→∞∫abf(x) dx\int_a^\infty f(x) \, dx = \
lim_{b \to \infty} \int_a^b f(x) \, dx∫a∞f(x)dx=limb→∞∫abf(x)dx
2. Discontinuous Integrands:
 Example: ∫ab1x−a dx\int_a^b \frac{1}{\sqrt{x - a}} \, dx∫abx−a1dx
Evaluate the limit as xxx approaches the point of discontinuity: ∫ab1x−a
dx=lim⁡ϵ→0+[∫aa+ϵ1x−a dx+∫a+ϵb1x−a dx]\int_a^b \frac{1}{\sqrt{x -
a}} \, dx = \lim_{\epsilon \to 0^+} \left[ \int_a^{a+\epsilon} \frac{1}{\
sqrt{x - a}} \, dx + \int_{a+\epsilon}^b \frac{1}{\sqrt{x - a}} \, dx \
right]∫abx−a1dx=limϵ→0+[∫aa+ϵx−a1dx+∫a+ϵbx−a1dx]

7. Applications of Integration
1. Area Between Curves: To find the area between two curves f(x)f(x)f(x) and
g(x)g(x)g(x), where f(x)≥g(x)f(x) \geq g(x)f(x)≥g(x): Area=∫ab[f(x)−g(x)] dx\
text{Area} = \int_a^b [f(x) - g(x)] \, dxArea=∫ab[f(x)−g(x)]dx
2. Volume of Solids of Revolution: Using the disk method: V=π∫ab[f(x)]2 dxV
= \pi \int_a^b [f(x)]^2 \, dxV=π∫ab[f(x)]2dx Using the washer method:
V=π∫ab[[R(x)]2−[r(x)]2] dxV = \pi \int_a^b \left[ [R(x)]^2 - [r(x)]^2 \right] \,
dxV=π∫ab[[R(x)]2−[r(x)]2]dx where R(x)R(x)R(x) and r(x)r(x)r(x) are the outer
and inner radii.
3. Arc Length: To find the arc length of a curve y=f(x)y = f(x)y=f(x) from x=ax
= ax=a to x=bx = bx=b: Arc Length=∫ab1+[f′(x)]2 dx\text{Arc Length} = \
int_a^b \sqrt{1 + [f'(x)]^2} \, dxArc Length=∫ab1+[f′(x)]2dx
4. Surface Area of Revolution: For revolving y=f(x)y = f(x)y=f(x) around the
x-axis: Surface Area=2π∫abf(x)1+[f′(x)]2 dx\text{Surface Area} = 2\pi \int_a^b
f(x) \sqrt{1 + [f'(x)]^2} \, dxSurface Area=2π∫abf(x)1+[f′(x)]2dx

You might also like