0% found this document useful (0 votes)
29 views6 pages

Rewiev Problems

Uploaded by

sen.nisagoksen
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views6 pages

Rewiev Problems

Uploaded by

sen.nisagoksen
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

Rewiev Problems:

———————————-
1. Let S = ft + 3; t 4g and T = ft + 4; 2t + 1g be two ordered bases for
P1 :
(a) Find the coordinate vector [p(t)]T for p(t) = t + 14:
We will …nd a; b such that
p(t) = t + 14 = a(t + 4) + b( 2t + 1)
t + 14 = (a 2b)t + (4a + b)
Then
a 2b = 1
+ (2)4a + b = 14
————————
9a = 1 + 28 = 27 : a = 3 and from the second eqn. b = 14 4a = 2
a 3
The coordinate vector [p(t)]T = =
b 2
(b) Find the transition matrix PS T from T basis to S basis.
1 1
Take the S basis S = ft + 3; t 4g : t + 3 ! ; t 4!
3 4
1 2
Take the T basis T = ft + 4; 2t + 1g : t + 4 ! ; 2t + 1 !
4 1
1 1 1 2 1 1 1 2
Construct A = 3R1 + R2 ! R2
3 4 4 1 ! 0 1 1 7
1 1 1 2 1 0 0 9
R2 ! R2 R2 + R1 ! R1
! 0 1 1 7 ! 0 1 1 7
= [I2 jPS T ]
0 9
Then PS T =
1 7
(c) Using PS T …nd the coordinate vector [p(t)]S :
For p(t) = t + 14:
0 9 3 18
[p(t)]S = PS T [p(t)]T = =
1 7 2 17
Then we have t + 14 = 18(t + 3) 17( t 4) = t 54 + 68 = t + 14
— — — — —8 —2— — —3— 2 ——— 3 —2— —3—9– 82 3 2 3 2 39
< 1 1 2 = < 3 2 6 =
2. Let S = 4 1 5 ; 4 1 5 ; 4 1 5 and T = 4 0 5 ; 4 3 5 ; 4 2 5
: ; : ;
1 1 1 2 1 4
be two ordered bases for R3 : Find the transition matrix PS T from T basis
to S basis. 2 3
1 1 2 3 2 6
Construct A = 4 1 1 1 0 3 2 5,
21 1 1 2 1 4 3
1 0 0 1 1 1
row echelon form: 4 0 1 0 0 1 1 5 = [I3 jPS T ]
0 0 1 1 1 2

1
2 3
1 1 1
Then PS T = 4 0 1 1 5 is the transition matrix from T to S basis.
1 1 2
——————————————————
2 3
1 0 2 1 6
6 1 1 1 0 1 7
3. Let A = 6 4 1 1 5 0
7:
3 5
2 1 7 0 4
(a) Find a basis for the row space of A:
(b) Find the rank of A:
(c) Find a basis for the null space of A:
(d) Find the nullity
2 of A: 3
1 0 2 1 6
6 1 1 1 0 1 7
Transform A = 6 4 1 1 5 0
7 to a REF or RREF.
3 5
2 2 1 3 7 0 4 2 3
1 0 2 1 6 1 0 2 1 6
6 1 1 1 0 1 7 R1 + R2 ! R2 6 0 1 3 1 5 7
A=6 4 1 1 5 0
7 R1 + R3 ! R3 6 7
3 5 4 0 1 3 1 9 5
2R1 + R4 ! R4
2 1 7 0 4 0 1 3 2 16
2 3 ! 2 3
1 0 2 1 6 1 0 2 1 6
R2 + R3 ! R3 6 6 0 1 3 1 5 7 1
7
6 0 1 3 1 5 7
R ! R3 6 7
R2 + R4 ! R4 4 0 0 0 2 14 5 2 3 !4 0 0 0 1 7 5
! 0 0 0 33 21 0 0 0 3 21
2
1 0 2 1 6
6 0 1 3 1 5 7
2R3 + R4 ! R4 6 7 = C in REF
!4 0 0 0 1 7 5
0 0 0 0 0
(a) Find a basis for the row space of A:
A basis for the row space of A is T = f 1 0 2 1 6 ; 0 1 3 1 5 ; 0 0 0 1 7 g
(the nonzero rows of C)
(b) Find the rank of A:
rank(A) = 3 (the dimension of the row space of A)
(c) Find a basis for the null space of A:
Solve Ax = 0( or equivalently Cx = 0):
Cx = 0 : x1 + 2x3 + x4 + 6x5 = 0
x2 + 3x3 + x4 + 5x5 = 0
x4 + 7x5 = 0
Here x1 ; x2 ; x4 are basic and x3 ; x5 are free variables.
Let x3 = s; x5 = r:
Then x4 = 7r
x2 = 3s ( 7r) 5r = 3s + 2r
x1 = 2s ( 7r) 6r = 2s + r
The solutions of Ax = 0 ( The null space of A)

2
82 3 9
>
> 2s + r >
>
>
> >
<66 3s + 2r 7
7
>
=
Null space of A is 6 6 s 7 j s; r 2 R
> 7 >
>
> 4 7r 5 >
>
>
: >
;
2 3 2 3 r 2 3
2s + r 1 2
6 3s + 2r 7 6 2 7 6 3 7
6 7 6 7 6 7
6 s 7 = r6 0 7 + s6 1 7
6 7 6 7 6 7
4 7r 5 4 7 5 4 0 5
r 1 802 3 2 39
>
> 1 2 >>
>
> 7>
<6 7 6
6 2 7 6 3 7=
>
A basis for the Null space of A is 6 6 0 7;6 1 7
7 6 7
>4 7 5 4 0 5>
> >
>
> >
>
: ;
1 0
(d) Find the nullity of A:
N ulluty(A) = 2 (Dimension of the Null space of A)
————————————-
4. (a) Is the expression (x; y) = 2x1 y1 x1 y2 x2 y1 + 5x2 y2
an inner product on R2 ?
Check the conditions:
(1): Is (x; x) 0:
(x; x) = 2x1 x1 x1 x2 x2 x1 + 5x2 x2 = 2x21 2x1 x2 + 5x22
= x21 2x1 x2 + x22 + x21 + 4x22
= (x1 x2 )2 + x21 + 4x22 0
0
If (x; x) = 0 is x =
0
If (x; x) = 0 then (x1 x2 )2 + x21 + 4x22 = 0 : x1 x2 = 0; x1 = 0; x2 = 0
0
So x =
0
(2) Is (x; y) = (y; x)?
(x; y) = 2x1 y1 x1 y2 x2 y1 + 5x2 y2
(y; x) = 2y1 x1 y1 x2 y2 x1 + 5y2 x1
Then (x; y) = (y; x)
(3) Is (x + y; z) = (x; z) + (y; z)?
(x + y; z) = 2(x1 + y1 )z1 (x1 + y1 )z2 (x2 + y2 )z1 + 5(x2 + y2 )z2
= (2x1 z1 x1 z2 x2 z1 + 5x2 z2 ) + (2y1 z1 y1 z2 y2 z1 + 5y2 z2 )
(x; z) + (y; z)
(4) Is (cx; y) = c(x; y)?
(cx; y) = 2cx1 y1 cx1 y2 cx2 y1 + 5cx2 y2
= c(2x1 y1 x1 y2 x2 y1 + 5x2 y2 ) = c(x; y)
All the conditions hold so (x; y) = 2x1 y1 x1 y2 x2 y1 + 5x2 y2
is an inner product on R2 :
(b) Is the expression (x; y) = x1 y1 + x1 y2 + x1 y3
an inner product on R3 ?

3
Check the conditions:
(1) Is (x; x) 0?
(x; x) = x12x1 + x31 x2 + x1 x3 is not always 0:
1
Take x = 4 1 5 then (x; x) = 1:1 + 1( 1) + 1( 2) = 2 < 0
2
Then the expression (x; y) = x1 y1 + x1 y2 + x1 y3 is not an inner product.
(c) (b) Is the expression (u; v) = u1 v1 u2 v1 + u1 v2
an inner product on R2 ?
Exercise.
—————— 8— 2—— 3 —2— —3— 2 ——— 39————————
>
> 1 2 0 > >
<6 7=
0 7 6 7 6
7 ; 6 1 7 ; 6 0 7 be a basis for the subspace W
5. Let B = 6 4 1 5 4 2 5 4 1 5>
>
> >
: ;
0 0 1
of the inner product space R4 with the standard inner product:
(a) Find an orthogonal 8 basis
2 for 3 W:2 3 2 39
> 1
> 2 0 >>
<6 6 1 7 6 0 7=
6 0 7
7 6 7 6 7
Let B = fu1 ; u2 ; u3 g = 4 ; ;
> 1 5 4 2 5 4 1 5>
> >
: ;
0 0 1
Use Gram-Schmidt 2 method3 :
1
6 0 7
Take v1 = u1 = 6 4 1 5
7

0
v2 = u2 (v (v
1 ;u2 )
v 1
21 ;v1 )3 2 3
1 2
6 0 7 6 1 7
(v1 ; u2 ) = (6 7 6 7
4 1 5 ; 4 2 5) = 2 + 0 + 2 + 0 = 4
0 0
2 3 2 3
1 1
6 0 7 6 0 7
(v1 ; v1 ) = (6 7 6 7
4 1 5 ; 4 1 5) = 1 + 0 + 1 + 0 = 2
0 02
2 3 3 2 3 2 3
2 1 2 2 0
6 1 7 46 0 7 6 1 0 7 6 1 7
Then v2 = 6 7 6
4 2 5 24 1 5=4 2 2 5=4 0 5
7 6 7 6 7

0 0 0 0 0
(v1 ;u3 ) (v2 ;u3 )
v3 = u3 (v1 ;v1 ) v1 (v2 ;v2 ) v2
2 3 2 3
1 0
6 0 7 6 0 7
(v1 ; u3 ) = (6 7 6 7
4 1 5 ; 4 1 5) = 0 + 0 + 1 + 0 = 1
0 1
(v1 ; v1 ) = 2

4
2 3 2 3
0 0
6 1 7 6 0 7
(v2 ; u3 ) = (6
4
7;6
5 4 1
7) = 0 + 0 + 0 + 0 = 0
5
0
0 1
2 3 2 3
0 0
6 17 6 1 7
(v2 ; v2 ) = (6
4
7;6
5 4 0
7) = +1 + 0 + 0 = 1
5
0
0 0
2 3 2 3 2 3 2 1 3
0 1 0 2
6 0 7 6
1 6 0 7
7 6 7 6 0 7
0 6 1 7
v3 = 6 7
4 1 5 2 4 1 5
6
1 4 0 5=4 1 5
7
2
1 0 0 1
2 1
3 2 3
2 1
6 0 7 6 0 7
6
Take v3 = 2 4 1 7 6
5=4 1 5
7
2
1 2
2 3 2 3 2 3
1 0 1
6 0 7 6 1 7 6 0 7
Then the set fv1 ; v2 ; v3 g = f6 7 6 7 6
4 1 5;4 0 5;4 1
7gis orthogonal.
5
0 0 2
Verify: 2 3 2 3
1 0
6 0 7 6 1 7
(v1 ; v2 ) = (6 7 6 7
4 1 5 ; 4 0 5) = 0
0 0
2 3 2 3
1 1
6 0 7 6 0 7
(v1 ; v3 ) = (6 7 6 7
4 1 5 ; 4 1 5) = 1 + 0 + 1 + 0 = 0
2 0 3 2 2 3
0 1
6 1 7 6 0 7
(v2 ; v3 ) = (6 7 6 7
4 0 5 ; 4 1 5) = 0 + 0 + 0 + 0 = 0
0 2
(b) Find an orthonormal basis for W:
2 3 2 p1 3
1 2
6
1 6 0 7
7 6 0 7
1
De…ne w1 = jjv1 jj v1 = 2 4 p = 6 7
1 5 4 p12 5
0 0
2 3 2 3
0 0
6 1 7 6 1 7
w2 = jjv12 jj v2 = 11 6 7 6 7
4 0 5=4 0 5
0 0

5
2 3 2 p1 3
1 6
6 0 7 6 6 0 77
1 1 6
w3 = jjv3 jj v3 = p1+0+1+4 4 7 =6 7
1 5 4 p16 5
2 p2
6
Then the set fw1 ; w2 ; w3 g is an orthonormal basis for W:
—————————————–
6. Consider the subspace W = f a + c a + b c b + c ; j a; b; c 2 Rg
of the inner product space R4 with the standard inner product.
(a) Find a basis for W:
a + c a + b c b + c = a 1 1 0 0 +b 0 1 0 1 +c 1 0 1 1
Then W = spanf 1 1 0 0 ; 0 1 0 1 ; 1 0 1 1 g
To …nd a2basis for W3: 2 3
1 0 1 1 0 0
6 1 1 0 7 6 0 1 0 7
Let A = 6 7 6
4 0 0 1 5, row echelon form: 4 0 0 1 5
7

0 1 1 0 0 0
All columns contains leading 1s. Then the vectors
f 1 1 0 0 ; 0 1 0 1 ; 1 0 1 1 g
are linearly independent and a basis for W is
T = fu1 ; u2 ; u3 g = f 1 1 0 0 ; 0 1 0 1 ; 1 0 1 1 g
(b) Find an orthogonal basis for W:
Exercise.
(c) Find an orthonormal basis for W:
Exercise.
————————————————-

You might also like