The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: An Update
The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: An Update
PMID: 37619764
Author information Article notes Copyright and License information PMC Disclaimer
Associated Data
Supplementary Materials
Go to:
Abstract
Statement of Significance
Introduction
With the decline in the birth rate and extension of life expectancy, the
composition of the global population is changing dramatically; in
particular, the proportion of citizens over 60 y of age is growing rapidly.
For example, in 2019, the global population over 60 was one billion; by
2050, it is expected to reach 2.1 billion, accounting for one-fifth of the
world’s population [1]. Aging is a major risk factor for many chronic
human diseases; in addition, the incidence of many age-related diseases
such as hypertension, atherosclerosis, diabetes mellitus, cancer,
Alzheimer’s disease, as well as many other cardiovascular and
cerebrovascular diseases have risen drastically, leading to a heavy global
socioeconomic and medical burden
[[2], [3], [4], [5], [6], [7], [8], [9], [10]]. This phenomenon, combined with
the human longing for better health and longer lifespan, has created a
huge demand for antiaging (the preventative approach to improve late-
life health) products. Among various antiaging healthcare products, as an
antiaging product, nicotinamide mononucleotide (NMN) has attracted
great attention in North America, Europe, and China over the past
decade. NMN is used as a dietary supplement and is widely applied in
cosmetic products. The global market for NMN was valued at US $252.7
million in 2020 and is expected to reach US $385.7 million by the end of
2027 [11].
NAD exists in 2 forms, the oxidized (NAD+) and reduced (NADH) forms, in
which NAD+ accepts a hydride ion to become NADH. The conversion
process is crucial for the central carbon metabolism as NAD+ serves as a
coenzyme for redox reactions, making it a vital component of energy
metabolism [16,30,[38], [39], [40]]; in addition, it is an essential cofactor
for nonredox enzymes such as sirtuins and poly(adenosine diphosphate-
ribose) polymerases (PARPs) [12,22,41]. It is also critical for maintaining
tissue and metabolic homeostasis for healthy aging. There have been
extensive reviews of the relationship between NAD+ and the 9 aging
hallmarks, namely genomic instability [[42], [43], [44], [45]], telomere
attrition [46], epigenetic alterations [47], loss of proteostasis [44,
[48], [49], [50]], deregulated nutrient sensing [[51], [52], [53]],
mitochondrial dysfunction [54,55], cellular senescence [55,56], stem cell
exhaustion [[57], [58], [59], [60]], and altered intercellular
communication [[60], [61], [62], [63]]. Aging is accompanied by a
gradual decline of NAD+ concentration across multiple human tissues,
including skin, blood, liver, muscle, and brain
[[64], [65], [66], [67], [68], [69], [70]]. For instance, the average
NAD+ concentration in human skin tissues is several times lower in
adults than in newborn babies [66]. Two magnetic resonance imaging-
based studies revealed that NAD+ concentrations in the human brain
declined 10% to 25% from young adulthood to old age [69,70]. Many
factors, including DNA damage, chronic inflammation, oxidative stress
[31], and increased NAD+-consuming enzyme activities [71], have also
been shown to accelerate NAD+ degradation. Lowering the
concentrations of NAD+ in cell or tissue results in decreased energy
production within mitochondria, which contributes to the development
of aging and a range of age-related disorders, including atherosclerosis,
arthritis, hypertension, cognitive decline, diabetes, and cancer [22,
[72], [73], [74], [75], [76], [77], [78]].
TABLE 1
Preclinical studies (after 2015) in mouse models using NAD+ boosting strategies (NMN
intervention)
Al, aluminum; APP, amyloid precursor protein; FKN, fractalkine; FXN, frataxin; GABA, γ-
aminobutyric acid; IL, interleukin miRNA, microRNA; mtROS, mitochondrial reactive
oxygen species; NAD, nicotinamide adenine dinucleotide; NMN, nicotinamide
mononucleotide; NOD, nucleotide-binding oligomerization domain; Nrf, nuclear factor
erythroid 2-related factor; PAR, poly-ADP-ribose; ROS, reactive oxygen species; SIRT,
sirtuin; STZ, streptozotocin; UVB, ultraviolet B;
FIGURE 1
+ +
The changes of NAD levels during aging (a), the approaches to restore NAD levels (b), and
+
the health benefits of restoring NAD levels by NMN supplementation (c). NAD,
nicotinamide adenine dinucleotide; NMN, nicotinamide mononucleotide.
Numerous studies have validated that alterations in NAD+ homeostasis
can adversely impact the normal functions of cells. Nevertheless, a
precise definition of the association between NAD+ homeostasis and
human health outcomes remains necessary. Recently, Zapata et al. [123]
reviewed the relationship between NAD+ homeostasis and human health
outcomes. They highlighted that NAD+ depletion could lead to various
pathological phenotypes, including rare inherited defects, Leber
congenital amaurosis, severe neonatal encephalopathy, and pellagra
[123]. Primary NAD+ deficiencies result from impaired biosynthesis, such
as when deleterious variants of NAD+-related genes are mutated. In
contrast, the secondary deficiencies may be caused by other factors
affecting NAD+ homeostasis, such as increased NAD+ consumption or a
dietary deficiency of NAD+ precursors [123]. Furthermore, several recent
epidemiological studies have attempted to define the relationship
between NAD+ concentrations (in blood, sperm, and skeletal muscle) and
disease. Tran et al. [124] evaluated skeletal muscle NAD+ and NADH
concentrations in asymptomatic middle-aged people with HIV, revealing
that decreased NAD+ concentrations in skeletal muscle are related to
increased physiological weakness and coinfection with the virus. Yang
et al. [125] analyzed the relationship between blood
NAD+ concentrations and anemia in 727 female participants from the
Jidong community in China. Blood samples were collected from the large
antecubital veins after overnight fasting. NAD+ concentrations in blood
were then stratified into 4 categories: Q1 (<27.6 μmol), Q2 (27.6–31.0
μmol), Q3 (31.0–34.5 μmol), and Q4 (≥34.5 μmol). The study findings
indicated that an increased concentration of blood NAD+ was strongly
linked to a decreased occurrence of anemia among women, specifically
microcytic and normocytic anemia [125]. Bai et al. [126] found that
sperm NAD+ concentration was independent of age and negatively
correlated with sperm quality in males, indicating that NAD+ has a unique
role in spermatogenesis. Xiao et al. [127] analyzed the metabolomics and
cytokine/chemokine profiling in serum samples from 17 healthy
controls and 20 mild and 44 severe COVID-19 patients and observed that
NAD+ concentrations decreased with the increase in the severity of
COVID-19. However, such observations remain correlational and do not
prove the relationship between NAD+ and diseases. Furthermore, it
remains to be determined how much NAD+ is required for normal tissue
function and the threshold level to trigger pathophysiological changes in
different tissues.
The primary precursors for NAD+ are NA, NAM, NR, and NMN. NA acts
like a vitamin in preventing pellagra and is a widely used drug for
dyslipidemia treatment. Its pharmacological effect involves inhibiting
adipose tissue lipolysis, leading to a reduction in free fatty acid
concentration and its transport to the liver [148]. Compared with other
precursors, the side effects of NA are well known. The most common
adverse effects of NA include flushing, rash, hyperglycemia,
hyperuricemia, and gastrointestinal disorders. Additional side effects of
NA have also been reported, including a small reduction in both platelet
count and prolongation of prothrombin time, rhabdomyolysis, and other
dermopathies [148]. NAM is a water-soluble compound found in meat,
fish, mushrooms, grains, nuts, and legumes [149]. Besides treating
pellagra, NAM has a potential for clinical use in the prevention and
treatment of various diseases, such as rosacea, acne [149], and
hyperphosphatemia [150]. Furthermore, NAM has been tested for the
treatment of diabetes. The European NAM diabetes intervention test
allowed children to receive 5 to 3000 mg NAM daily for 5 y. No
significant difference in the incidence rate of adverse events was found
between the NAM and placebo groups [151]. Supplementing 1 g of NAM
daily is a safe and effective way to improve the metabolic abnormalities
and quality of life in diabetes patients with nonalcoholic fatty liver
disease [152]. Compared to NA, NAM has shown far greater tolerability
in humans, and its tolerance dose can be almost up to 3 g/d in adults
[149]. Nonetheless, certain side effects exist, including epigenetic
changes, impeded bioenergetics and gastrointestinal disturbance
(nausea, vomiting, diarrhea) for NAM [149,153]. Moreover, NAM has
shorter retention in rats’ bodies than NMN [154]. On the other hand,
existing human clinical trials have not shown any side effects of NR and
NMN. While the pharmacokinetics and metabolic mechanisms of NR and
NMN are still being investigated, it is important to note that not all cells
have the ability to convert all NAD+ precursors to NAD+ [155]. The fates of
NAD+ precursors appear to depend on the tissue distribution and
expression levels of NAD+ biosynthetic enzymes, nucleosidase, and
presumptive transporters for each specific precursor. Furthermore,
these precursors are differentially utilized in tissues and organs
[155,156]. To identify the potential mechanisms for the physiological
and side effects of each precursor, it is necessary to comprehend the
distinct features of the metabolism of every NAD+ precursor.
For the past few years, researchers have started to assess the safety and
effects of NMN supplementation in humans to determine whether the
effects observed in cells and animal models can be translated to humans.
Thus far, we have identified 10 published human clinical trials, although
more studies have yet to be published. The first clinical trial that
assessed the safety of NMN in humans came from the Keio University
School of Medicine (UMIN000021309) in 2016 [35]. To investigate the
safety of NMN, a short-term study was conducted on 10 healthy men.
During each visit, after overnight fasting, the participants orally
consumed NMN capsules containing 100, 250, or 500 mg of NMN at
09:00. They were then monitored for 5 h at rest and were only allowed
to drink water freely. The results of the study showed that the
concentration of NMN metabolites (N-methyl-2-pyridine-5-carboxamide
[2Py] and N-methyl-4-pyridone-5-carboxamide [4Py]) in human plasma
increased as a result of NMN consumption, but there were no significant
clinical symptoms, harmful effects, or changes in heart rate, blood
pressure, oxygen saturation, or body temperature. The single oral
administration of NMN up to 500 mg was safe and well-tolerated by the
participants. Seven other studies conducted human clinical trials with
the same NMN oral doses (250 mg once daily for 6 or 12 wk) or different
doses (300, 600, and 1200 mg once daily for 6 wk; 300 mg once daily for
60 d) [36,118,140,141,[145], [146], [147]]. The highest NMN oral dose
administered was 1000 mg twice daily for 14 d by Harvard Medical
School [122]. The findings of these studies suggest that the
administration of NMN orally is safe and has good tolerance. A recent
investigation examined the safety of NMN in oral form (1250 mg/d for 4
wk) in 31 healthy individuals aged 20 to 65 and conducted an Ames test.
The results revealed that NMN is a nonmutagenic substance that is safe
and well-tolerated [178]. However, most selected participants were
older individuals (age ≥55 y), and only 2 trials recruited middle-aged
people (age <40 y) as partial participants, one from Guangzhou Sport
University in China [145] and the other from the University of Toyama in
Japan [140]. Nonetheless, it is believed that antiaging interventions
should be initiated at a comparatively younger and healthier age than at
a very old age, which will last longer. Therefore, there is a need for
further investigation and determination of the safety and dietary
reference intake of NMN in different age groups for long-term oral
administration. Additionally, the number of participants in the human
clinical trials conducted so far is limited. Eight studies included a range
of 8 to 66 participants, which is primarily at the phase I clinical trial
level. The University of Tsukuba in Japan conducted the most extensive
trial with 108 older individuals as participants, utilizing a rigorous
double-blind, randomized, placebo-controlled study method, which
barely reached the level of a phase II clinical trial. In addition, 2 of these
clinical trials evaluated the safety of oral NMN and the change of
NAD+ and its metabolite concentrations in blood. Okabe et al. [140]
reported that the concentrations of NAD+ and NAMN were significantly
increased in whole blood after NMN intervention, but the levels of NMN,
NAAD, NR, nicotinic acid nucleoside (NAR), NAM, NA, and N-methyl
nicotinamide (MNAM) remained unchanged; however, the pulse rate
exhibited a strong positive correlation with the increase of
NAD+ concentration in blood. Although the exact reason is unclear, the
association of pulse rate with energy consumption might be a direction
for further investigation [140]. Pencina et al. [122] found that a higher
dose of NMN was associated with a more pronounced increase in NMN
and NAD+ concentration in the blood and the concentration of
NAD+ metabolites (NAM and 2Py) in the urine. Three of the clinical trials
included in the studies mentioned above evaluated both the safety of oral
NMN and its potential antiaging effects, as well as the changes of NAD+ or
its metabolite concentrations in blood, PBMCs, plasma, skeletal muscle,
or urine.
1.
Humans usually take supplements for a long time and sometimes for
most of their lifespan. Thus, the long-term safety issue should be
addressed about NMN supplementation. Also, a larger/more diverse
population should be examined, as certain adverse effects could only be
observed in a very small number of people. Furthermore, it remains to
be seen whether the beneficial effects of NMN were only limited to a
specific group or the general population. For instance, NMN
supplementation increased skeletal muscle insulin signaling, insulin
sensitivity, and muscle remodeling in postmenopausal women with
prediabetes, how about other populations? Finally, better-controlled
clinical trials will avoid biased results.
2.
3.
Footnotes
Appendix A
Supplementary data to this article can be found online
at https://doi.org/10.1016/j.advnut.2023.08.008.
Go to:
Author contributions
Go to:
Conflicts of interest
Go to:
Funding
This work was supported in part by grants from the National Natural
Science Foundation of China (Nos. 31971138, 32270186 and 62202136),
Zhejiang Provincial Natural Science Foundation (LZ19H260001 and
LQY20F030001), and Health Commission of Zhejiang Province (No.
2022506699).
Go to:
Multimedia component 1:
Click here to view.(36K, docx)Multimedia component 1
Go to:
References
1. WHO launches digital app to improve care for older people [Internet] World Health
Organization; 2019. https://www.who.int/news/item/30-09-2019-who-launches-
digital-app-to-improve-care-for-older-people [cited 5 June, 2022]. Available
from: [Google Scholar]
2. GBD 2019 Ageing Collaborators, Global, regional, and national burden of diseases
and injuries for adults 70 years and older: systematic analysis for the global burden
of disease 2019 study. BMJ. 2022;376 doi: 10.1136/bmj-2021-068208. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
3. Cai Y.S., Song W., Li J.M., Jing Y., Liang C.Q., Zhang L.Y., et al. The landscape of
aging. Sci. China Life Sci. 2022;65(12):2354–2454. doi: 10.1007/s11427-022-2161-
3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Schmauck-Medina T., Molière A., Lautrup S., Zhang J., Chlopicki S., Madsen H.B., et
al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging
(Albany NY) 2022;14(16):6829–6839. doi: 10.18632/aging.204248. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
5. Cai A.P., Zhou D., Liu L., Zhou Y.L., Tang S.T., Feng Y.Q. Age-related alterations in
cardiac and arterial structure and function in hypertensive women and men. J. Clin.
Hypertens. (Greenwich) 2021;23(7):1322–1334. doi: 10.1111/jch.14262. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
6. Xiang Q.Y., Tian F., Xu J., Du X., Zhang S.L., Liu L. New insight into dyslipidemia-
induced cellular senescence in atherosclerosis. Biol. Rev. Camb. Philos.
Soc. 2022;97(5):1844–1867. doi: 10.1111/brv.12866. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
9. Wang Y.Q., Xue M.Z., Xia F.Q., Zhu L.Q., Jia D.K., Gao Y., et al. Long non-coding RNA
GAS5 in age-related diseases. Curr. Med. Chem. 2022;29(16):2863–2877.
doi: 10.2174/0929867328666211027123932. [PubMed] [CrossRef] [Google
Scholar]
10. Segen V., Ying J., Morgan E., Brandon M., Wolbers T. Path integration in normal
aging and Alzheimer’s disease. Trends Cogn. Sci. 2022;26(2):142–158.
doi: 10.1016/j.tics.2021.11.001. [PubMed] [CrossRef] [Google Scholar]
11. GeneHarbor Herbalmax, Formulas Genex. 2021. Shinkowa Pharmaceutical,
Maac10 Formulas, EffePharm, et al. Global nicotinamide mononucleotide (NMN)
sales market report 2021.https://www.precisionreports.co/global-nicotinamide-
mononucleotide-nmn-sales-market-17556260 [Internet]]. Precision Reports. [cited
5 June, 2022]. Available from: [Google Scholar]
13. Kane A.E., Sinclair D.A. Sirtuins and NAD+ in the development and treatment of
metabolic and cardiovascular diseases. Circ. Res. 2018;123(7):868–885.
doi: 10.1161/CIRCRESAHA.118.312498. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
14. Camacho-Pereira J., Tarragó M.G., Chini C.C.S., Nin V., Escande C., Warner G.M., et
al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an
SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127–1139.
doi: 10.1016/j.cmet.2016.05.006. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
15. Yang Y., Sauve A.A. NAD+ metabolism: bioenergetics, signaling and manipulation
for therapy. Biochim. Biophys. Acta. 2016;1864(12):1787–1800.
doi: 10.1016/j.bbapap.2016.06.014. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
16. Cantó C., Menzies K.J., Auwerx J. NAD+ metabolism and the control of energy
homeostasis: a balancing act between mitochondria and the nucleus. Cell
Metab. 2015;22(1):31–53. doi: 10.1016/j.cmet.2015.05.023. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
17. Zheng T., Xu S.Y., Zhou S.Q., Lai L.Y., Li L. Nicotinamide adenine dinucleotide
(NAD+) repletion attenuates bupivacaine-induced neurotoxicity. Neurochem.
Res. 2013;38(9):1880–1894. doi: 10.1007/s11064-013-1094-0. [PubMed]
[CrossRef] [Google Scholar]
18. Preyat N., Rossi M., Kers J., Chen L., Bertin J., Gough P.J., et al. Intracellular
nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-
dependent manner. Cell Death Differ. 2016;23(1):29–40.
doi: 10.1038/cdd.2015.60. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Wilk A., Hayat F., Cunningham R., Li J.F., Garavaglia S., Zamani L., et al.
Extracellular NAD+ enhances PARP-dependent DNA repair capacity independently of
CD73 activity. Sci. Rep. 2020;10(1):651. doi: 10.1038/s41598-020-57506-9. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
20. Sánchez-Ramírez E., Ung T.P.L., Alarcón Del Carmen A., del Toro-Ríos X., Fajardo-
Orduña G.R., Noriega L.G., et al. Coordinated metabolic transitions and gene
expression by NAD+ during adipogenesis. J. Cell Biol. 2022;221(12)
doi: 10.1083/jcb.202111137. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
21. Elvehjem C.A., Madden R.J., Strong F.M., Woolley D.W. Relation of nicotinic acid
and nicotinic acid amide to canine black tongue. J. Am. Chem. Soc. 1937;59(9):1767–
1768. doi: 10.1021/ja01288a509. [CrossRef] [Google Scholar]
22. Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ metabolism and its roles
in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 2021;22(2):119–141.
doi: 10.1038/s41580-020-00313-x. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
23. Houtkooper R.H., Auwerx J. Exploring the therapeutic space around NAD+ J. Cell
Biol. 2012;199(2):205–209. doi: 10.1083/jcb.201207019. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
24. Yoshino J., Mills K.F., Yoon M.J., Imai S.I. Nicotinamide mononucleotide, a key
NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in
mice. Cell Metab. 2011;14(4):528–536. doi: 10.1016/j.cmet.2011.08.014. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
25. Poljsak B., Kovač V., Milisav I. Healthy lifestyle recommendations: do the
beneficial effects originate from NAD+ amount at the cellular level? Oxid. Med. Cell.
Longev. 2020;2020:8819627. doi: 10.1155/2020/8819627. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
26. Menssen A., Hydbring P., Kapelle K., Vervoorts J., Diebold J., Lüscher B., et al. The
c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1
deacetylase form a positive feedback loop. Proc. Natl. Acad. Sci. U. S.
A. 2012;109(4):E187–E196. doi: 10.1073/pnas.1105304109. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
27. Massudi H., Grant R., Guillemin G.J., Braidy N. NAD+ metabolism and oxidative
stress: the golden nucleotide on a crown of thorns. Redox Rep. 2012;17(1):28–46.
doi: 10.1179/1351000212Y.0000000001. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
28. Lin S.J., Ford E., Haigis M., Liszt G., Guarente L. Calorie restriction extends yeast
life span by lowering the level of NADH. Genes Dev. 2004;18(1):12–16.
doi: 10.1101/gad.1164804. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29. Reiten O.K., Wilvang M.A., Mitchell S.J., Hu Z.P., Fang E.F. Preclinical and clinical
evidence of NAD+ precursors in health, disease, and ageing. Mech. Ageing
Dev. 2021;199:111567. doi: 10.1016/j.mad.2021.111567. [PubMed]
[CrossRef] [Google Scholar]
30. Rajman L., Chwalek K., Sinclair D.A. Therapeutic potential of NAD-boosting
molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–547.
doi: 10.1016/j.cmet.2018.02.011. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
31. Gomes A.P., Price N.L., Ling A.J.Y., Moslehi J.J., Montgomery M.K., Rajman L., et al.
Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial
communication during aging. Cell. 2013;155(7):1624–1638.
doi: 10.1016/j.cell.2013.11.037. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
32. Das A., Huang G.X., Bonkowski M.S., Longchamp A., Li C., Schultz M.B., et al.
Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of
vascular aging. Cell. 2019;176(4):944–945. doi: 10.1016/j.cell.2019.01.026. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
33. Fang T., Yang J., Liu L., Xiao H., Wei X. Nicotinamide mononucleotide ameliorates
senescence in alveolar epithelial cells. MedComm. 2021;2(2):279–287.
doi: 10.1002/mco2.62. 2020. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
34. Ru M., Wang W.W., Zhai Z.Y., Wang R.X., Li Y.M., Liang J., et al. Nicotinamide
mononucleotide supplementation protects the intestinal function in aging mice and
d-galactose induced senescent cells. Food Funct. 2022;13(14):7507–7519.
doi: 10.1039/d2fo00525e. [PubMed] [CrossRef] [Google Scholar]
35. Irie J., Inagaki E., Fujita M., Nakaya H., Mitsuishi M., Yamaguchi S., et al. Effect of
oral administration of nicotinamide mononucleotide on clinical parameters and
nicotinamide metabolite levels in healthy Japanese men. Endocr. J. 2020;67(2):153–
160. doi: 10.1507/endocrj.EJ19-0313. [PubMed] [CrossRef] [Google Scholar]
36. Yoshino M., Yoshino J., Kayser B.D., Patti G.J., Franczyk M.P., Mills K.F., et al.
Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic
women. Science. 2021;372(6547):1224–1229. doi: 10.1126/science.abe9985. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
37. Revollo J.R., Körner A., Mills K.F., Satoh A., Wang T., Garten A., et al.
Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD
biosynthetic enzyme. Cell Metab. 2007;6(5):363–375.
doi: 10.1016/j.cmet.2007.09.003. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
39. Cuenoud B., Ipek Ö., Shevlyakova M., Beaumont M., Cunnane S.C., Gruetter R., et
al. Brain NAD is associated with ATP energy production and membrane
phospholipid turnover in humans. Front. Aging Neurosci. 2020;12:609517.
doi: 10.3389/fnagi.2020.609517. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
41. Dudev T., Lim C. Factors controlling the mechanism of NAD+ non-redox
reactions. J. Am. Chem. Soc. 2010;132(46):16533–16543.
doi: 10.1021/ja106600k. [PubMed] [CrossRef] [Google Scholar]
42. Scheibye-Knudsen M., Mitchell S.J., Fang E.F., Iyama T., Ward T., Wang J., et al.
A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in Cockayne
syndrome. Cell Metab. 2014;20(5):840–855. doi: 10.1016/j.cmet.2014.10.005. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
43. Yu P.L., Liu Z.M., Yu X.F., Ye P.W., Liu H., Xue X.W., et al. Direct gating of the
TRPM2 channel by cADPR via specific interactions with the ADPR binding
pocket. Cell Rep. 2019;27(12):3684–3695.e4.
doi: 10.1016/j.celrep.2019.05.067. [PubMed] [CrossRef] [Google Scholar]
44. Zhang P., Kishimoto Y., Grammatikakis I., Gottimukkala K., Cutler R.G., Zhang S.,
et al. Senolytic therapy alleviates abeta-associated oligodendrocyte progenitor cell
senescence and cognitive deficits in an Alzheimer’s disease model. Nat.
Neurosci. 2019;22(5):719–728. doi: 10.1038/s41593-019-0372-9. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
45. Kauppinen T.M., Suh S.W., Higashi Y., Berman A.E., Escartin C., Won S.J., et al.
Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid
β J. Neuroinflammation. 2011;8:152. doi: 10.1186/1742-2094-8-152. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
46. Ernst I.M., Fliegert R., Guse A.H. Adenine dinucleotide second messengers and T-
lymphocyte calcium signaling. Front. Immunol. 2013;4:259.
doi: 10.3389/fimmu.2013.00259. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
47. Turunc Bayrakdar E., Uyanikgil Y., Kanit L., Koylu E., Yalcin A. Nicotinamide
treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in
Aβ(1-42)-induced rat model of Alzheimer's disease. Free Radic.
Res. 2014;48(2):146–158. doi: 10.3109/10715762.2013.857018. [PubMed]
[CrossRef] [Google Scholar]
48. Elkhal A., Biefer H.R.C., Heinbokel T., Uehara H., Quante M., Seyda M., et al.
NAD+ plus regulates Treg cell fate and promotes allograft survival via a systemic IL-
10 production that is CD4+ CD25+ Foxp3+ T cells independent. Sci.
Rep. 2016;6 doi: 10.1038/srep22325. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
49. Wu X.L., Wang P., Liu Y.H., Xue Y.X. Effects of poly (ADP-ribose) polymerase
inhibitor 3-aminobenzamide on blood-brain barrier and dopaminergic neurons of
rats with lipopolysaccharide-induced Parkinson’s disease. J. Mol.
Neurosci. 2014;53(1):1–9. doi: 10.1007/s12031-013-0175-5. [PubMed]
[CrossRef] [Google Scholar]
50. Mandir A.S., Przedborski S., Jackson-Lewis V., Wang Z.Q., Simbulan-Rosenthal
C.M., Smulson M.E., et al. Poly(ADP-ribose) polymerase activation mediates 1-
methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc.
Natl. Acad. Sci. U S A. 1999;96(10):5774–5779. doi: 10.1073/pnas.96.10.5774. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
51. Kim T.W., Cho H.M., Choi S.Y., Suguira Y., Hayasaka T., Setou M., et al. (ADP-
ribose) polymerase 1 and AMP-activated protein kinase mediate progressive
dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell
Death Dis. 2013;4(11):e919. doi: 10.1038/cddis.2013.447. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
52. Hou Y., Lautrup S., Cordonnier S., Wang Y., Croteau D.L., Zavala E., et al.
NAD+ supplementation normalizes key Alzheimer’s features and DNA damage
responses in a new AD mouse model with introduced DNA repair deficiency. Proc.
Natl. Acad. Sci. U S A. 2018;115(8):E1876–E1885.
doi: 10.1073/pnas.1718819115. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
53. Yao Z.W., Yang W.H., Gao Z.G., Jia P. Nicotinamide mononucleotide inhibits JNK
activation to reverse Alzheimer disease. Neurosci. Lett. 2017;647:133–140.
doi: 10.1016/j.neulet.2017.03.027. [PubMed] [CrossRef] [Google Scholar]
54. Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear
ADP-ribosyltransferase. J. Biol. Chem. 2005;280(22):21313–21320.
doi: 10.1074/jbc.M413296200. [PubMed] [CrossRef] [Google Scholar]
55. Wang X., Hu X., Yang Y., Takata T., Sakurai T. Nicotinamide mononucleotide
protects against beta-amyloid oligomer-induced cognitive impairment and neuronal
death. Brain Res. 2016;1643:1–9. doi: 10.1016/j.brainres.2016.04.060. [PubMed]
[CrossRef] [Google Scholar]
56. Chi Y.L., Sauve A.A. Nicotinamide riboside, a trace nutrient in foods, is a Vitamin
B3 with effects on energy metabolism and neuroprotection. Curr. Opin. Clin. Nutr.
and Metab. Care. 2013;16(6):657–661.
doi: 10.1097/MCO.0b013e32836510c0. [PubMed] [CrossRef] [Google Scholar]
57. Torti M., Bertoni A., Canobbio I., Sinigaglia F., Balduini C. Hydrolysis of NADP+ by
platelet CD38 in the absence of synthesis and degradation of cyclic ADP-ribose 2’-
phosphate. FEBS Lett. 1999;455(3):359–363. doi: 10.1016/s0014-5793(99)00913-
8. [PubMed] [CrossRef] [Google Scholar]
58. Sorrentino V., Omani M.R., Ouchiroud L.M., Beck J.S., Zhang H.B., D’Amico D., et al.
Enhancing mitochondrial proteostasis reduces amyloid-β
proteotoxicity. Nature. 2017;552(7684):187–193. doi: 10.1038/nature25143. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
59. Fang E.F., Hou Y.J., Palikaras K., Adriaanse B.A., Kerr J.S., Yang B.M., et al.
Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits
in models of Alzheimer’s disease. Nat. Neurosci. 2019;22(3):401–412.
doi: 10.1038/s41593-018-0332-9. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
60. Lehmann S., Loh S.H.Y., Martins L.M. Enhancing NAD+ salvage metabolism is
neuroprotective in a PINK1 model of Parkinson’s disease. Biol.
Open. 2017;6(2):141–147. doi: 10.1242/bio.022186. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
61. Fagnoni F.F., Vescovini R., Mazzola M., Bologna G., Nigro E., Lavagetto G., et al.
Expansion of cytotoxic CD8+ CD28− T cells in healthy ageing people, including
centenarians. Immunology. 1996;88(4):501–507. doi: 10.1046/j.1365-
2567.1996.d01-689.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Weng N.P., Akbar A.N., Goronzy J. CD28− T cells: their role in the age-associated
decline of immune function. Trends Immunol. 2009;30(7):306–312.
doi: 10.1016/j.it.2009.03.013. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
63. Jia H.Q., Li X., Gao H.X., Feng Z., Li X., Zhao L., et al. High doses of nicotinamide
prevent oxidative mitochondrial dysfunction in a cellular model and improve motor
deficit in a Drosophila model of Parkinson’s disease. J. Neurosci.
Res. 2008;86(9):2083–2090. doi: 10.1002/jnr.21650. [PubMed] [CrossRef] [Google
Scholar]
64. Minhas P.S., Liu L., Moon P.K., Joshi A.U., Dove C., Mhatre S., et al. Macrophage de
novo NAD+ synthesis specifies immune function in aging and inflammation. Nat.
Immunol. 2019;20(1):50–63. doi: 10.1038/s41590-018-0255-3. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
65. Clement J., Wong M., Poljak A., Sachdev P., Braidy N. The plasma
NAD+ metabolome is dysregulated in “normal” aging. Rejuvenation
Res. 2019;22(2):121–130. doi: 10.1089/rej.2018.2077. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
66. Massudi H., Grant R., Braidy N., Guest J., Farnsworth B., Guillemin G.J. Age-
associated changes in oxidative stress and NAD+ metabolism in human tissue. PLOS
ONE. 2012;7(7) doi: 10.1371/journal.pone.0042357. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
67. Zhou C.C., Yang X., Hua X., Liu J., Fan M.B., Li G.Q., et al. Hepatic NAD+ deficiency as
a therapeutic target for nonalcoholic fatty liver disease in ageing. Br. J.
Pharmacol. 2016;173(15):2352–2368. doi: 10.1111/bph.13513. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
68. Janssens G.E., Grevendonk L., Perez R.Z., Schomakers B.V., Bosch J.V., Geurts J.W.,
et al. Healthy aging and muscle function are positively associated with
NAD+ abundance in humans. Nat. Aging. 2022;2(3):254–263. doi: 10.1038/s43587-
022-00174-3. [PubMed] [CrossRef] [Google Scholar]
69. Bagga P., Hariharan H., Wilson N.E., Beer J.C., Shinohara R.T., Elliott M.A., et al.
Single-voxel 1H MR spectroscopy of cerebral nicotinamide adenine dinucleotide
(NAD+) in humans at 7T using a 32-channel volume coil. Magn. Reson.
Med. 2020;83(3):806–814. doi: 10.1002/mrm.27971. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
70. Zhu X.H., Lu M., Lee B.Y., Ugurbil K., Chen W. In vivo NAD assay reveals the
intracellular NAD contents and redox state in healthy human brain and their age
dependences. Proc. Natl. Acad. Sci. U S A. 2015;112(9):2876–2881.
doi: 10.1073/pnas.1417921112. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
71. Fang E.F., Lautrup S., Hou Y.J., Demarest T.G., Croteau D.L., Mattson M.P., et al.
NAD+ in aging: molecular mechanisms and translational implications. Trends Mol.
Med. 2017;23(10):899–916. doi: 10.1016/j.molmed.2017.08.001. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
72. Imai S., Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell
Biol. 2014;24(8):464–471. doi: 10.1016/j.tcb.2014.04.002. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
73. Zha S.Y., Li Z., Cao Q., Wang F., Liu F. PARP1 inhibitor (PJ34) improves the
function of aging-induced endothelial progenitor cells by preserving intracellular
NAD+ levels and increasing SIRT1 activity. Stem Cell Res. Ther. 2018;9(1):224.
doi: 10.1186/s13287-018-0961-7. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
74. Wang Q.H., Li Y., Dou D.Y., Wang R., Jiang T.T., Wang L., et al. Nicotinamide
mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced
arthritis in rats by affecting peripheral immune cells differentiation. Int.
Immunopharmacol. 2021;98:107856. doi: 10.1016/j.intimp.2021.107856. [PubMed]
[CrossRef] [Google Scholar]
75. Abdellatif M., Sedej S., Kroemer G. NAD+ metabolism in cardiac health, aging, and
disease. Circulation. 2021;144(22):1795–1817.
doi: 10.1161/CIRCULATIONAHA.121.056589. [PubMed] [CrossRef] [Google Scholar]
76. She J., Sheng R., Qin Z.H. Pharmacology and potential implications of
nicotinamide adenine dinucleotide precursors. Aging Dis. 2021;12(8):1879–1897.
doi: 10.14336/AD.2021.0523. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
77. Fan L., Cacicedo J.M., Ido Y.S. Impaired nicotinamide adenine dinucleotide (NAD+)
metabolism in diabetes and diabetic tissues: implications for nicotinamide-related
compound treatment. J. Diabetes Investig. 2020;11(6):1403–1419.
doi: 10.1111/jdi.13303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. Colombo G., Gelardi E.L.M., Balestrero F.C., Moro M., Travelli C., Genazzani A.A.
Insight into nicotinamide adenine dinucleotide homeostasis as a targetable
metabolic pathway in colorectal cancer. Front. Pharmacol. 2021;12:758320.
doi: 10.3389/fphar.2021.758320. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
79. McReynolds M.R., Chellappa K., Baur J.A. Age-related NAD+ decline. Exp.
Gerontol. 2020;134:110888. doi: 10.1016/j.exger.2020.110888. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
80. Ma X.R., Zhu X.D., Xiao Y.J., Gu H.M., Zheng S.S., Li L., et al. Restoring nuclear entry
of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during
ageing. Nat. Commun. 2022;13(1225):1225. doi: 10.1038/s41467-022-28844-
1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Luo C., Ding W., Yang C., Zhang W., Liu X., Deng H. Nicotinamide mononucleotide
administration restores redox homeostasis via the Sirt3-Nrf2 axis and protects aged
mice from oxidative stress-induced liver injury. J. Proteome Res. 2022;21(7):1759–
1770. doi: 10.1021/acs.jproteome.2c00167. [PubMed] [CrossRef] [Google Scholar]
82. Ramanathan C., Lackie T., Williams D.H., Simone P.S., Zhang Y.F., Bloomer R.J.
Oral administration of nicotinamide mononucleotide increases nicotinamide
adenine dinucleotide level in an animal brain. Nutrients. 2022;14(2):300.
doi: 10.3390/nu14020300. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83. Zheng S.L., Wang D.S., Dong X., Guan Y.F., Qi Q., Hu W.J., et al. Distribution of
nicotinamide mononucleotide after intravenous injection in normal and ischemic
stroke mice. Curr. Pharm. Biotechnol. 2023;24(2):299–309.
doi: 10.2174/1389201023666220518113219. [PubMed] [CrossRef] [Google
Scholar]
84. Shen C.Y., Li X.Y., Ma P.Y., Li H.L., Xiao B., Cai W.F., et al. Nicotinamide
mononucleotide (NMN) and NMN-rich product supplementation alleviate p-
chlorophenylalanine-induced sleep disorders. J. Funct. Foods. 2022;91:105031.
doi: 10.1016/j.jff.2022.105031. [CrossRef] [Google Scholar]
85. Ma D., Hu L., Wang J., Luo M., Liang A., Lei X., et al. Nicotinamide mononucleotide
improves spermatogenic function in streptozotocin-induced diabetic mice via
modulating the glycolysis pathway. Acta Biochim. Biophys. Sin.
(Shanghai) 2022;54(9):1314–1324. doi: 10.3724/abbs.2022099. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
86. Zhou X., Du H.H., Long X., Pan Y., Hu J., Yu J., et al. Beta-nicotinamide
mononucleotide (NMN) administrated by intraperitoneal injection mediates
protection against UVB-induced skin damage in mice. J. Inflamm.
Res. 2021;14:5165–5182. doi: 10.2147/JIR.S327329. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
87. Chen X.H., Amorim J.A., Moustafa G.A., Lee J.J., Yu Z., Ishihara K., et al.
Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide
(NMN) in a photoreceptor degenerative model of retinal detachment. Aging
US. 2020;12(24):24504–24521. doi: 10.18632/aging.202453. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
88. Miao Y., Cui Z., Gao Q., Rui R., Xiong B. Nicotinamide mononucleotide
supplementation reverses the declining quality of maternally aged oocytes. Cell
Rep. 2020;32(5):107987. doi: 10.1016/j.celrep.2020.107987. [PubMed]
[CrossRef] [Google Scholar]
89. Kiss T., Giles C.B., Tarantini S., Yabluchanskiy A., Balasubramanian P., Gautam T.,
et al. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging
miRNA expression profile in the aorta of aged mice, predicting epigenetic
rejuvenation and anti-atherogenic effects. Geroscience. 2020;41(4):419–439.
doi: 10.1007/s11357-019-00095-x. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
90. Kiss T., Nyúl-Tóth Á., Balasubramanian P., Tarantini S., Ahire C., Yabluchanskiy
A., et al. Nicotinamide mononucleotide (NMN) supplementation promotes
neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1
activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic
effects. Geroscience. 2020;42(2):527–546. doi: 10.1007/s11357-020-00165-5. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
91. Liang H., Gao J., Zhang C., Li C., Wang Q., Fan J., et al. Nicotinamide
mononucleotide alleviates aluminum induced bone loss by inhibiting the TXNIP-
NLRP3 inflammasome. Toxicol. Appl. Pharmacol. 2019;362:20–27.
doi: 10.1016/j.taap.2018.10.006. [PubMed] [CrossRef] [Google Scholar]
92. Hosseini L., Farokhi-Sisakht F., Badalzadeh R., Khabbaz A., Mahmoudi J., Sadigh-
Eteghad S. Nicotinamide mononucleotide and melatonin alleviate aging-induced
cognitive impairment via modulation of mitochondrial function and apoptosis in the
prefrontal cortex and hippocampus. Neuroscience. 2019;423:29–37.
doi: 10.1016/j.neuroscience.2019.09.037. [PubMed] [CrossRef] [Google Scholar]
93. Tarantini S., Valcarcel-Ares M.N., Toth P., Yabluchanskiy A., Tucsek Z., Kiss T., et
al. Nicotinamide mononucleotide (NMN) supplementation rescues
cerebromicrovascular endothelial function and neurovascular coupling responses
and improves cognitive function in aged mice. Redox Biol. 2019;24:101192.
doi: 10.1016/j.redox.2019.101192. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
94. Sims C.A., Guan Y.X., Mukherjee S., Singh K., Botolin P., Davila A., et al.
Nicotinamide mononucleotide preserves mitochondrial function and increases
survival in hemorrhagic shock. JCI Insight. 2018;3(17)
doi: 10.1172/jci.insight.120182. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
95. Wei C.C., Kong Y.Y., Hua X., Li G.Q., Zheng S.L., Cheng M.H., et al. NAD
replenishment with nicotinamide mononucleotide protects blood-brain barrier
integrity and attenuates delayed tissue plasminogen activator-induced
haemorrhagic transformation after cerebral ischaemia. Br. J.
Pharmacol. 2017;174(21):3823–3836. doi: 10.1111/bph.13979. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
96. Wei C.C., Kong Y.Y., Li G.Q., Guan Y.F., Wang P., Miao C.Y. Nicotinamide
mononucleotide attenuates brain injury after intracerebral hemorrhage by
activating Nrf2/HO-1 signaling pathway. Sci. Rep. 2017;7(1):717.
doi: 10.1038/s41598-017-00851-z. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
97. Martin A.S., Abraham D.M., Hershberger K.A., Bhatt D.P., Mao L., Cui H.X., et al.
Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and
bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight. 2017;2(14)
doi: 10.1172/jci.insight.93885. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
98. Zhang R., Shen Y., Zhou L., Sangwung P., Fujioka H., Zhang L., et al. Short-term
administration of nicotinamide mononucleotide preserves cardiac mitochondrial
homeostasis and prevents heart failure. J. Mol. Cell. Cardiol. 2017;112:64–73.
doi: 10.1016/j.yjmcc.2017.09.001. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
99. De Picciotto N.E., Gano L.B., Johnson L.C., Martens C.R., Sindler A.L., Mills K.F., et
al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction
and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–530.
doi: 10.1111/acel.12461. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
100. Mills K.F., Yoshida S., Stein L.R., Grozio A., Kubota S., Sasaki Y., et al. Long-term
administration of nicotinamide mononucleotide mitigates age-associated
physiological decline in mice. Cell Metab. 2016;24(6):795–806.
doi: 10.1016/j.cmet.2016.09.013. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
101. Uddin G.M., Youngson N.A., Sinclair D.A., Morris M.J. Head to head comparison
of short-term treatment with the NAD+ precursor nicotinamide mononucleotide
(NMN) and 6 weeks of exercise in obese female mice. Front. Pharmacol. 2016;7:258.
doi: 10.3389/fphar.2016.00258. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
102. Lee C.F., Chavez J.D., Garcia-Menendez L., Choi Y., Roe N.D., Chiao Y.A., et al.
Normalization of NAD+ redox balance as a therapy for heart
failure. Circulation. 2016;134(12):883–894.
doi: 10.1161/CIRCULATIONAHA.116.022495. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
103. Park J.H., Long A., Owens K., Kristian T. Nicotinamide mononucleotide inhibits
postischemic NAD+ degradation and dramatically ameliorates brain damage
following global cerebral ischemia. Neurobiol. Dis. 2016;95:102–110.
doi: 10.1016/j.nbd.2016.07.018. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
104. Long A.N., Owens K., Schlappal A.E., Kristian T., Fishman P.S., Schuh R.A. Effect
of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an
Alzheimer’s disease-relevant murine model. BMC Neurol. 2015;15:19.
doi: 10.1186/s12883-015-0272-x. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
105. Fukuwatari T., Shibata K., Ishihara K., Fushiki T., Sugimoto E. Elevation of blood
NAD level after moderate exercise in young women and mice. J. Nutr. Sci. Vitaminol.
(Tokyo) 2001;47(2):177–179. doi: 10.3177/jnsv.47.177. [PubMed]
[CrossRef] [Google Scholar]
106. Wen D.T., Zheng L., Li J.X., Cheng D., Liu Y., Lu K., et al. Endurance exercise
resistance to lipotoxic cardiomyopathy is associated with cardiac NAD+/dSIR2/PGC-
1 alpha pathway activation in old Drosophila. Biol. Open. 2019;8(10):bio044719.
doi: 10.1242/bio.044719. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
107. Wei X.J., Jia R., Wang G., Hong S.Y., Song L., Sun B., et al. Depot-specific
regulation of NAD+/SIRTs metabolism identified in adipose tissue of mice in
response to high-fat diet feeding or calorie restriction. J. Nutr.
Biochem. 2020;80:108377. doi: 10.1016/j.jnutbio.2020.108377. [PubMed]
[CrossRef] [Google Scholar]
108. Moroz N., Carmona J.J., Anderson E., Hart A.C., Sinclair D.A., Blackwell T.K.
Dietary restriction involves NAD+-dependent mechanisms and a shift toward
oxidative metabolism. Aging Cell. 2014;13(6):1075–1085.
doi: 10.1111/acel.12273. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
109. Levine D.C., Hong H., Weidemann B.J., Ramsey K.M., Affinati A.H., Schmidt M.S.,
et al. NAD+ controls circadian reprogramming through PER2 nuclear translocation to
counter aging. Mol. Cell. 2020;78(5):835–849.e7.
doi: 10.1016/j.molcel.2020.04.010. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
110. Sahar S., Nin V., Barbosa M.T., Chini E.N., Sassone-Corsi P. Altered behavioral
and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging
US. 2011;3(8):794–802. doi: 10.18632/aging.100368. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
111. Benzi A., Sturla L., Heine M., Fischer A.W., Spinelli S., Magnone M., et al. CD38
downregulation modulates NAD+ and NADP(H) levels in thermogenic adipose
tissues. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021;1866(1):158819.
doi: 10.1016/j.bbalip.2020.158819. [PubMed] [CrossRef] [Google Scholar]
112. Roboon J., Hattori T., Ishii H., Takarada-Iemata M., Nguyen D.T., Heer C.D., et al.
Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate
lipopolysaccharide-induced microglial and astrocytic neuroinflammation by
increasing NAD. J. Neurochem. 2021;158(2):311–327. doi: 10.1111/jnc.15367. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
113. Almeida G.S., Bawn C.M., Galler M., Wilson I., Thomas H.D., Kyle S., et al. PARP
inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as
assessed by MRS. NMR Biomed. 2017;30(9) doi: 10.1002/nbm.3736. [PubMed]
[CrossRef] [Google Scholar]
114. Pinkerton A.B., Sessions E.H., Hershberger P., Maloney P.R., Peddibhotla S., Hopf
M., et al. Optimization of a urea-containing series of nicotinamide
phosphoribosyltransferase (NAMPT) activators. Bioorg. Med. Chem.
Lett. 2021;41:128007. doi: 10.1016/j.bmcl.2021.128007. [PubMed]
[CrossRef] [Google Scholar]
115. Zhang N., Sauve A.A. Regulatory effects of NAD+ metabolic pathways on sirtuin
activity. Prog. Mol. Biol. Transl. Sci. 2018;154:71–104.
doi: 10.1016/bs.pmbts.2017.11.012. [PubMed] [CrossRef] [Google Scholar]
116. Wang G., Han T., Nijhawan D., Theodoropoulos P., Naidoo J., Yadavalli S., et al.
P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in
NAD salvage. Cell. 2014;158(6):1324–1334. doi: 10.1016/j.cell.2014.07.040. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
117. Grant R., Berg J., Mestayer R., Braidy N., Bennett J., Broom S., et al. A pilot study
investigating changes in the human plasma and urine NAD+ metabolome during a 6
hour intravenous infusion of NAD. Front. Aging Neurosci. 2019;11:257.
doi: 10.3389/fnagi.2019.00257. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
118. Kim M., Seol J., Sato T., Fukamizu Y., Sakurai T., Okura T. Effect of 12-week
intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical
performance in older Japanese adults: a randomized, double-blind placebo-
controlled study. Nutrients. 2022;14(4):755. doi: 10.3390/nu14040755. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
119. Brakedal B., Dölle C., Riemer F., Ma Y.L., Nido G.S., Skeie G.O., et al. The
NADPARK study: a randomized phase I trial of nicotinamide riboside
supplementation in Parkinson’s disease. Cell Metab. 2022;34(3):396–407.e6.
doi: 10.1016/j.cmet.2022.02.001. [PubMed] [CrossRef] [Google Scholar]
120. Martens C.R., Denman B.A., Mazzo M.R., Armstrong M.L., Reisdorph N., McQueen
M.B., et al. Chronic nicotinamide riboside supplementation is well-tolerated and
elevates NAD+ in healthy middle-aged and older adults. Nat.
Commun. 2018;9(1):1286. doi: 10.1038/s41467-018-03421-7. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
121. Connell N.J., Grevendonk L., Fealy C.E., Moonen-Kornips E., Bruls Y.M.H.,
Schrauwen-Hinderling V.B., et al. NAD+-precursor supplementation with l-
tryptophan, nicotinic acid, and nicotinamide does not affect mitochondrial function
or skeletal muscle function in physically compromised older
adults. J. Nutr. 2021;151(10):2917–2931. doi: 10.1093/jn/nxab193. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
122. Pencina K.M., Lavu S., dos Santos M., Beleva Y.M., Cheng M., Livingston D., et al.
MIB-626, an oral formulation of a microcrystalline unique polymorph of β-
nicotinamide mononucleotide, increases circulating nicotinamide adenine
dinucleotide and its metabolome in middle-aged and older adults. J. Gerontol. A Biol.
Sci. Med. Sci. 2023;78(1):90–96. doi: 10.1093/gerona/glac049. [PubMed]
[CrossRef] [Google Scholar]
123. Zapata-Perez R., Wanders R.J.A., van Karnebeek C.D.M., Houtkooper R.H.
NAD+ homeostasis in human health and disease. EMBO Mol. Med. 2021;13(7)
doi: 10.15252/emmm.202113943. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
124. Tran T., Pencina K.M., Schultz M.B., Li Z.Y., Ghattas C., Lau J., et al. Reduced
levels of NAD in skeletal muscle and increased physiologic frailty are associated
with viral coinfection in asymptomatic middle-aged adults. J. Acquir. Immune Defic.
Syndr. 2022;89(suppl 1):S15–S22. doi: 10.1097/QAI.0000000000002852. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
125. Yang F., Zhang X.G., Hu F.F., Yu Y., Luo L., Deng X., et al. Association between
NAD+ levels and anaemia among women in community-based study. J. Cell. Mol.
Med. 2022;26(9):2698–2705. doi: 10.1111/jcmm.17281. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
126. Bai X.Y., Wang P. Relationship between sperm NAD+ concentration and
reproductive aging in normozoospermia men: a cohort study. BMC
Urol. 2022;22(1):159. doi: 10.1186/s12894-022-01107-3. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
127. Xiao N., Nie M., Pang H.H., Wang B.H., Hu J.L., Meng X.J., et al. Integrated cytokine
and metabolite analysis reveals immunometabolic reprogramming in COVID-19
patients with therapeutic implications. Nat. Commun. 2021;12(1):1618.
doi: 10.1038/s41467-021-21907-9. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
128. Liu L., Su X., Quinn W.J., 3rd, Hui S., Krukenberg K., Frederick D.W., et al.
Quantitative analysis of NAD synthesis-breakdown fluxes. Cell
Metab. 2018;27(5):1067–1080.e5. doi: 10.1016/j.cmet.2018.03.018. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
129. Yiasemides E., Sivapirabu G., Halliday G.M., Park J., Damian D.L. Oral
nicotinamide protects against ultraviolet radiation-induced immunosuppression in
humans. Carcinogenesis. 2009;30(1):101–105.
doi: 10.1093/carcin/bgn248. [PubMed] [CrossRef] [Google Scholar]
130. Trammell S.A.J., Schmidt M.S., Weidemann B.J., Redpath P., Jaksch F., Dellinger
R.W., et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and
humans. Nat. Commun. 2016;7:12948. doi: 10.1038/ncomms12948. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
131. Elhassan Y.S., Kluckova K., Fletcher R.S., Schmidt M.S., Garten A., Doig C.L., et al.
Nicotinamide riboside augments the aged human skeletalmuscle NAD+ metabolome
and induces transcriptomic and anti-inflammatory signatures. Cell
Rep. 2019;28(7):1717–1728.e6. doi: 10.1016/j.celrep.2019.07.043. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
132. Airhart S.E., Shireman L.M., Risler L.J., Anderson G.D., Nagana Gowda G.A.,
Raftery D., et al. An open-label, non-randomized study of the pharmacokinetics of
the nutritional supplement nicotinamide riboside (NR) and its effects on blood
NAD+ levels in healthy volunteers. PLOS ONE. 2017;12(12)
doi: 10.1371/journal.pone.0186459. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
133. Zhou B., Wang D.D., Qiu Y., Airhart S., Liu Y., Stempien-Otero A., et al. Boosting
NAD level suppresses inflammatory activation of PBMCs in heart failure. J. Clin.
Invest. 2020;130(11):6054–6063. doi: 10.1172/JCI139828. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
134. Wu J., Singh K., Lin A., Meadows A.M., Wu K., Shing V., et al. Boosting
NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus
monocytes. J. Clin. Invest. 2022;132(5) doi: 10.1172/JCI139828. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
135. Wang D.D., Airhart S.E., Zhou B., Shireman L.M., Jiang S., Melendez Rodriguez C.,
et al. Safety and tolerability of nicotinamide riboside in heart failure with reduced
ejection fraction, JACC Basic Transl. Sci. 2022;7(12):1183–1196.
doi: 10.1016/j.jacbts.2022.06.012. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
136. Vreones M., Mustapic M., Moaddel R., Pucha K.A., Lovett J., Seals D.R., et al. Oral
nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative
pathology in plasma extracellular vesicles enriched for neuronal origin. Aging
Cell. 2023;22(1) doi: 10.1111/acel.13754. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
137. Lapatto H.A.K., Kuusela M., Heikkinen A., Muniandy M., van der Kolk B.W.,
Gopalakrishnan S., et al. Nicotinamide riboside improves muscle mitochondrial
biogenesis, satellite cell differentiation, and gut microbiota in a twin study. Sci.
Adv. 2023;9(2) doi: 10.1126/sciadv.add5163. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
138. Conze D., Brenner C., Kruger C.L. Safety and metabolism of long-term
administration of NIAGEN (nicotinamide riboside chloride) in a randomized,
double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci.
Rep. 2019;9(1):9772. doi: 10.1038/s41598-019-46120-z. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
139. Remie C.M.E., Roumans K.H.M., Moonen M.P.B., Connell N.J., Havekes B.,
Mevenkamp J., et al. Nicotinamide riboside supplementation alters body
composition and skeletal muscle acetylcarnitine concentrations in healthy obese
humans. Am. J. Clin. Nutr. 2020;112(2):413–426. doi: 10.1093/ajcn/nqaa072. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
140. Okabe K., Yaku K., Uchida Y., Fukamizu Y., Sato T., Sakurai T., et al. Oral
administration of nicotinamide mononucleotide is safe and efficiently increases
blood nicotinamide adenine dinucleotide levels in healthy subjects. Front.
Nutr. 2022;9:868640. doi: 10.3389/fnut.2022.868640. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
141. Igarashi M., Nakagawa-Nagahama Y., Miura M., Kashiwabara K., Yaku K.,
Sawada M., et al. Chronic nicotinamide mononucleotide supplementation elevates
blood nicotinamide adenine dinucleotide levels and alters muscle function in
healthy older men. NPJ Aging. 2022;8(1):5. doi: 10.1038/s41514-022-00084-
z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
142. Dollerup O.L., Chubanava S., Agerholm M., Søndergård S.D., Altıntaş A., Møller
A.B., et al. Nicotinamide riboside does not alter mitochondrial respiration, content or
morphology in skeletal muscle from obese and insulin-resistant
men. J. Physiol. 2020;598(4):731–754. doi: 10.1113/JP278752. [PubMed]
[CrossRef] [Google Scholar]
143. Dollerup O.L., Christensen B., Svart M., Schmidt M.S., Sulek K., Ringgaard S., et al.
A randomized placebo-controlled clinical trial of nicotinamide riboside in obese
men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin.
Nutr. 2018;108(2):343–353. doi: 10.1093/ajcn/nqy132. [PubMed]
[CrossRef] [Google Scholar]
144. Dolopikou C.F., Kourtzidis I.A., Margaritelis N.V., Vrabas I.S., Koidou I., Kyparos
A., et al. Acute nicotinamide riboside supplementation improves redox homeostasis
and exercise performance in old individuals: a double-blind cross-over study. Eur. J.
Nutr. 2020;59(2):505–515. doi: 10.1007/s00394-019-01919-4. [PubMed]
[CrossRef] [Google Scholar]
145. Liao B.G., Zhao Y.L., Wang D., Zhang X.W., Hao X.M., Hu M. Nicotinamide
mononucleotide supplementation enhances aerobic capacity in amateur runners: a
randomized, double-blind study. J. Int. Soc. Sports Nutr. 2021;18(1):54.
doi: 10.1186/s12970-021-00442-4. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
147. Niu K.M., Bao T.T., Gao L.M., Ru M., Li Y.M., Jiang L., et al. The impacts of short-
term NMN supplementation on serum metabolism, fecal microbiota, and telomere
length in pre-aging phase. Front. Nutr. 2021;8:756243.
doi: 10.3389/fnut.2021.756243. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
148. Kei A., Elisaf M.S. Nicotinic acid: clinical considerations. Expert Opin. Drug
Saf. 2012;11(4):551–564. doi: 10.1517/14740338.2012.682981. [PubMed]
[CrossRef] [Google Scholar]
149. Snaidr V.A., Damian D.L., Halliday G.M. Nicotinamide for photoprotection and
skin cancer chemoprevention: a review of efficacy and safety. Exp.
Dermatol. 2019;28(suppl 1):15–22. doi: 10.1111/exd.13819. [PubMed]
[CrossRef] [Google Scholar]
150. Lenglet A., Liabeuf S., El Esper N., Brisset S., Mansour J., Lemaire-Hurtel A.S., et
al. Efficacy and safety of nicotinamide in haemodialysis patients: the NICOREN
study. Nephrol. Dial, Transplant. 2017;32(5):870–879.
doi: 10.1093/ndt/gfw042. [PubMed] [CrossRef] [Google Scholar]
151. Gale E.A., Bingley P.J., Emmett C.L., Collier T. European Nicotinamide Diabetes
Intervention Trial (ENDIT) Group, European Nicotinamide Diabetes Intervention
Trial (ENDIT): a randomised controlled trial of intervention before the onset of type
1 diabetes. Lancet. 2004;363(9413):925–931. doi: 10.1016/S0140-6736(04)15786-
3. [PubMed] [CrossRef] [Google Scholar]
152. El-Kady R.R., Ali A.K., El Wakeel L.M., Sabri N.A., Shawki M.A. Nicotinamide
supplementation in diabetic nonalcoholic fatty liver disease patients: randomized
controlled trial. Ther. Adv. Chronic
Dis. 2022;13 doi: 10.1177/20406223221077958. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
155. Bogan K.L., Brenner C. Nicotinic acid nicotinamide and nicotinamide riboside: a
molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev.
Nutr. 2008;28:115–130. doi: 10.1146/annurev.nutr.28.061807.155443. [PubMed]
[CrossRef] [Google Scholar]
156. Yoshino J., Baur J.A., Imai S.I. NAD+ intermediates: the biology and therapeutic
potential of NMN and NR. Cell Metab. 2018;27(3):513–528.
doi: 10.1016/j.cmet.2017.11.002. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
157. Sharma C., Donu D., Cen Y.N. Emerging role of nicotinamide riboside in health
and diseases. Nutrients. 2022;14(19):3889. doi: 10.3390/nu14193889. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
158. Mehmel M., Jovanović N., Spitz U. Nicotinamide riboside-the current state of
research and therapeutic uses. Nutrients. 2020;12(6):1616.
doi: 10.3390/nu12061616. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
159. Bitterman K.J., Anderson R.M., Cohen H.Y., Latorre-Esteves M., Sinclair D.A.
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative
regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 2002;277(47):45099–45107.
doi: 10.1074/jbc.M205670200. [PubMed] [CrossRef] [Google Scholar]
160. Grozio A., Mills K.F., Yoshino J., Bruzzone S., Sociali G., Tokizane K., et al. Slc12a8
is a nicotinamide mononucleotide transporter. Nat. Metab. 2019;1(1):47–57.
doi: 10.1038/s42255-018-0009-4. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
162. Ratajczak J., Joffraud M., Trammell S.A.J., Ras R., Canela N., Boutant M., et al.
NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism
in mammalian cells. Nat. Commun. 2016;7:13103.
doi: 10.1038/ncomms13103. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
163. Mateuszuk Ł., Campagna R., Kutryb-Zając B., Kuś K., Słominska E.M., Smolenski
R.T., et al. Reversal of endothelial dysfunction by nicotinamide mononucleotide via
extracellular conversion to nicotinamide riboside. Biochem.
Pharmacol. 2020;178:114019. doi: 10.1016/j.bcp.2020.114019. [PubMed]
[CrossRef] [Google Scholar]
164. Fletcher R.S., Ratajczak J., Doig C.L., Oakey L.A., Callingham R., Xavier G.D., et al.
Nicotinamide riboside kinases display redundancy in mediating nicotinamide
mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol.
Metab. 2017;6(8):819–832. doi: 10.1016/j.molmet.2017.05.011. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
165. Fragola G., Mabb A.M., Taylor-Blake B., Niehaus J.K., Chronister W.D., Mao H.Q.,
et al. Deletion of topoisomerase 1 in excitatory neurons causes genomic instability
and early onset neurodegeneration. Nat. Commun. 2020;11(1):1962.
doi: 10.1038/s41467-020-15794-9. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
166. Kropotov A., Kulikova V., Nerinovski K., Yakimov A., Svetlova M., Solovjeva L., et
al. Equilibrative nucleoside transporters mediate the import of nicotinamide
riboside and nicotinic acid riboside into human cells. Int. J. Mol.
Sci. 2021;22(3):1391. doi: 10.3390/ijms22031391. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
167. Kim L.J., Chalmers T.J., Madawala R., Smith G.C., Li C., Das A., et al. Host-
microbiome interactions in nicotinamide mononucleotide (NMN)
deamidation. FEBS Lett. 2023 doi: 10.1002/1873-3468.14698. in press. [PubMed]
[CrossRef] [Google Scholar]
169. Liu X.F., Jiang Y.Y., Wang C., Li X.W., Yang Z.G., Leng K. Determination of
nicotinamide mononucleotide in the natural food materials by high performance
liquid chromatography-mass spectrometry. Food Sci. Technol. 2021;46(8):251–
256. [Google Scholar]
170. Dietary Reference Intakes for Thiamin . National Academies Press; Washington,
DC: 1998. Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin,
and Choline; p. 592. [PubMed] [Google Scholar]
171. Centers for Disease Control (CDC) Niacin intoxication from pumpernickel
bagels - New York. MMWR Morb. Mortal. Wkly.
Rep. 1983;32(23):305. [PubMed] [Google Scholar]
172. Rolfe H.M. A review of nicotinamide: treatment of skin diseases and potential
side effects. J. Cosmet. Dermatol. 2014;13(4):324–328.
doi: 10.1111/jocd.12119. [PubMed] [CrossRef] [Google Scholar]
173. Prousky J., Seely D. The treatment of migraines and tension-type headaches
with intravenous and oral niacin (nicotinic acid): systematic review of the
literature. Nutr. J. 2005;4:3. doi: 10.1186/1475-2891-4-3. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
175. Fraunfelder F.W., Fraunfelder F.T., Illingworth D.R. Adverse ocular effects
associated with niacin therapy. Br. J. Ophthalmol. 1995;79(1):54–56.
doi: 10.1136/bjo.79.1.54. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
176. Rader J.I., Calvert R.J., Hathcock J.N. Hepatic toxicity of unmodified and time-
release preparations of niacin. Am. J. Med. 1992;92(1):77–81. doi: 10.1016/0002-
9343(92)90018-7. [PubMed] [CrossRef] [Google Scholar]
178. Fukamizu Y., Uchida Y., Shigekawa A., Sato T., Kosaka H., Sakurai T. Safety
evaluation of beta-nicotinamide mononucleotide oral administration in healthy
adult men and women. Sci. Rep. 2022;12(1):14442. doi: 10.1038/s41598-022-
18272-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
179. Institute of Medicine . In: Dietary Reference Intakes: The Essential Guide to
Nutrient Requirements. Otten J.J., Hellwig J.P., Meyers L.D., editors. Niacin,National
Academies Press; Washington, DC: 2006. pp. 263–269. [Google Scholar]
180. Yang F., Deng X., Yu Y., Luo L., Chen X.D., Zheng J.P., et al. Association of human
whole blood NAD+ contents with aging. Front. Endocrinol. 2022;13:829658.
doi: 10.3389/fendo.2022.829658. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
181. European Food Safety Authority (EFSA) Scientific opinion on dietary reference
values for niacin, EFSA J. 2014;12(7):3759. [Google Scholar]
182. Bai L.B., Yau L.F., Tong T.T., Chan W.H., Zhang W., Jiang Z.H. Improvement of
tissue-specific distribution and biotransformation potential of nicotinamide
mononucleotide in combination with ginsenosides or resveratrol. Pharmacol. Res.
Perspect. 2022;10(4) doi: 10.1002/prp2.986. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
183. Black W.B., Aspacio D., Bever D., King E., Zhang L.Y., Li H. Metabolic engineering
of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a
noncanonical redox cofactor. Microb. Cell Fact. 2020;19(1):150.
doi: 10.1186/s12934-020-01415-z. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
184. Shoji S., Yamaji T., Makino H., Ishii J., Kondo A. Metabolic design for selective
production of nicotinamide mononucleotide from glucose and nicotinamide. Metab.
Eng. 2021;65:167–177. doi: 10.1016/j.ymben.2020.11.008. [PubMed]
[CrossRef] [Google Scholar]
185. Li Q.Z., Meng D.D., You C. An artificial multi-enzyme cascade biocatalysis for
biomanufacturing of nicotinamide mononucleotide from starch and nicotinamide in
one-pot. Enzyme Microb. Technol. 2023;162:110122.
doi: 10.1016/j.enzmictec.2022.110122. [PubMed] [CrossRef] [Google Scholar]
186. Lee J., Churchil H., Choi W.B., Lynch J.E., Roberts F.E., Volante R.P., et al.
A chemical synthesis of nicotinamide adenine dinucleotide (NAD+) Chem.
Commun. 1999;(8):729–730. doi: 10.1039/a809930h. 1999. [CrossRef] [Google
Scholar]
187. Tanimori S., Ohta T., Kirihata M. An efficient chemical synthesis of nicotinamide
riboside (NAR) and analogues. Bioorg. Med. Chem. Lett. 2002;12(8):1135–1137.
doi: 10.1016/s0960-894x(02)00125-7. [PubMed] [CrossRef] [Google Scholar]
188. Franchetti P., Pasqualini M., Petrelli R., Ricciutelli M., Vita P., Cappellacci L.
Stereoselective synthesis of nicotinamide beta-riboside and nucleoside
analogs. Bioorg. Med. Chem. Lett. 2004;14(18):4655–4658.
doi: 10.1016/j.bmcl.2004.06.093. [PubMed] [CrossRef] [Google Scholar]
189. Liu W.J., Wu S.G., Hou S.H., Zhao Z.B. Synthesis of phosphodiester-type
nicotinamide adenine dinucleotide analogs. Tetrahedron. 2009;65(40):8378–8383.
doi: 10.1016/j.tet.2009.08.007. [CrossRef] [Google Scholar]
190. Shen Q., Zhang S.J., Xue Y.Z., Peng F., Cheng D.Y., Xue Y.P., et al. Biological
synthesis of nicotinamide mononucleotide. Biotechnol. Lett. 2021;43(12):2199–
2208. doi: 10.1007/s10529-021-03191-1. [PubMed] [CrossRef] [Google Scholar]
192. Maharjan A., Singhvi M., Kim B.S. Biosynthesis of a therapeutically important
nicotinamide mononucleotide through a phosphoribosyl pyrophosphate synthetase
1 and 2 engineered strain of Escherichia coli. ACS Synth. Biol. 2021;10(11):3055–
3065. doi: 10.1021/acssynbio.1c00333. [PubMed] [CrossRef] [Google Scholar]
193. Di Stefano M., Loreto A., Orsomando G., Mori V., Zamporlini F., Hulse R.P., et al.
NMN deamidase delays wallerian degeneration and rescues axonal defects caused
by NMNAT2 deficiency in vivo. Curr. Biol. 2017;27(6):784–794.
doi: 10.1016/j.cub.2017.01.070. [PubMed] [CrossRef] [Google Scholar]
194. Di Stefano M., Nascimento-Ferreira I., Orsomando G., Mori V., Gilley J., Brown R.,
et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury
promotes axon degeneration. Cell Death Differ. 2015;22(5):731–742.
doi: 10.1038/cdd.2014.164. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
195. Nacarelli T., Lau L., Fukumoto T., Zundell J., Fatkhutdinov N., Wu S., et al.
NAD+ metabolism governs the proinflammatory senescence-associated
secretome. Nat. Cell Biol. 2019;21(3):397–407. doi: 10.1038/s41556-019-0287-
4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
196. Zhao Z.Y., Xie X.J., Li W.H., Liu J., Chen Z., Zhang B., et al. A cell-permeant
mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-
apoptotic cell death. iScience. 2019;15:452–466.
doi: 10.1016/j.isci.2019.05.001. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
197. Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P. Circadian
control of the NAD+ salvage pathway by CLOCK-
SIRT1. Science. 2009;324(5927):654–657. doi: 10.1126/science.1170803. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
198. Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y., Marcheva B., et
al. Circadian clock feedback cycle through NAMPT-mediated
NAD+ biosynthesis. Science. 2009;324(5927):651–654.
doi: 10.1126/science.1171641. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
199. Hackney A.C. In: Concurrent Aerobic and Strength Training. Schumann M.,
Rønnestad B., editors. Springer; Cham: 2018. Molecular and physiological
adaptations to endurance training; pp. 19–34. [CrossRef] [Google Scholar]
200. Brown K.D., Maqsood S., Huang J.Y., Pan Y., Harkcom W., Li W., et al. Activation
of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced
hearing loss. Cell Metab. 2014;20(6):1059–1068.
doi: 10.1016/j.cmet.2014.11.003. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
201. Han S.G., Du Z.D., Liu K., Gong S.S. Nicotinamide riboside protects noise-induced
hearing loss by recovering the hair cell ribbon synapses. Neurosci.
Lett. 2020;725:134910. doi: 10.1016/j.neulet.2020.134910. [PubMed]
[CrossRef] [Google Scholar]
202. Rauch B.H., Weber A., Braun M., Zimmerman N., Schrör K. PDGF-induced Akt
phosphorylation does not activate NF-κB in human vascular smooth muscle cells
and fibroblasts. FEBS Lett. 2000;48(1):3–7. doi: 10.1016/s0014-5793(00)01957-
8. [PubMed] [CrossRef] [Google Scholar]
203. Hoehn K.L., Hohnen-Behrens C., Cederberg A., Wu L.E., Turner N., Yuasa T., et al.
IRS1-independent defects define major nodes of insulin resistance. Cell
Metab. 2008;7(5):421–433. doi: 10.1016/j.cmet.2008.04.005. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
204. von Zglinicki T., Martin-Ruiz C. Telomeres as biomarkers for ageing and age-
related diseases. Curr. Mol. Med. 2005;5(2):197–203.
doi: 10.2174/1566524053586545. [PubMed] [CrossRef] [Google Scholar]
205. Amano H., Chaudhury A., Rodriguez-Aguayo C., Lu L., Akhanov V., Catic A., et al.
Telomere dysfunction induces sirtuin repression that drives telomere-dependent
disease. Cell Metab. 2019;29(6):1274–1290.e9.
doi: 10.1016/j.cmet.2019.03.001. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
206. Brito S., Baek J.M., Cha B., Heo H., Lee S.H., Lei L., et al. Nicotinamide
mononucleotide reduces melanin production in aged melanocytes by inhibiting
cAMP/Wnt signaling. J. Dermatol. Sci. 2022;106:159–169.
doi: 10.1016/j.jdermsci.2022.05.002. [PubMed] [CrossRef] [Google Scholar]
OTHER FORMATS