Module 1 Bangu Ngot 1
Module 1 Bangu Ngot 1
Integration Concepts
1 and Formula
Get Started
Power Rule
n+1
x
The power rule says that ∫ x dx=
n
n+1
+C , To apply this rule, we simply
add "1" to the exponent and we divide the result by the same exponent of the
result. Finally, add C to the final result.
Example 1.1.2: Evaluate the indefinite integral ∫ x dx
3
∫ x 3 dx
3 +1
x
= +C Apply the concept of power rule.
3+1
Then simplify.
4
x
= +C
4
= 2 x +C , or = √ +C
2 2 x3
3 3
Sum and Difference Rule
The sum and difference rule tells us how we should integrate functions
that are the sum or difference of several terms. It basically tells us that we must
integrate each term in the sum or difference separately, and then just add the
results together. The order in which the terms appear in the result is not
important. We can state this formally as follows:
∫ f ( x ) ± g ( x ) dx=∫ f ( x ) dx ±∫ g ( x ) dx
You may be wondering at this point why the rule is written in the way that it is. It
is quite important to realize here that, in a function that is the sum or difference of
two (or more) terms, each term can be considered to be a function in its own right
- even a constant term.
Example 1.1.4: Evaluate the indefinite integral ∫ 6 x +8 x−10 dx
2
= ∫ 6 x +8 x−10 dx
2
= ∫ 6 x dx +∫ 8 x dx−∫ 10 dx
2
= 6 ∫ x dx+ 8∫ x dx−10 ∫ dx
2
( ) ( )
2+1 1+1
x x
=6 +8 −10 ( x ) +C
2+1 1+1
= 6 ( )+8 ( )−10 x +C
3 2
x x
3 2
= 6 ( )+8 ( )−10 x +C
3 2
x x
3 2
= 2 x3 + 4 x 2−10 x+ C
In order to evaluate the given integral lets substitute any variable by a new
variable as:
Therefore,
I = ∫ sin (t)(dt )
As ∫ sin x dx=−cos x+C , thus
I =−cos t+C
∫ f[g(x)].g'(x).dx = f(t).dx
Where t = g(x)
Usually, the method of integration by substitution is extremely useful when
we make a substitution for a function whose derivative is also present in the
integrand. By doing so, the function simplifies and then the basic formulas of
integration can be used to integrate the function.
Example 1.4.1:
Solution:
I = ∫ cos3 x dx
I = ∫ (cos x) (cos2x) dx
I = ∫ (cos x) (1 – sin2x) dx
Let, sin x = t
⇒ cos x dx = dt.
Substitute t for sin x and dt for cos x dx in second term of the above integral.
I = sin x – ∫ t2 dt
⇒ I = sin x – t3/3 + C
Example 1.4.2:
If f(x) = sin2 (x) cos3 (x) then determine ∫ sin2(x) cos3(x) dx.
Solution:
I = ∫ sin2(x) cos3(x) dx
⇒ dt = cos x dx
I = ∫ t2 (1 – t2) dt
⇒ I = ∫ t2 – t4 dt
⇒ I = t 3 / 3 – t5 / 5 + C
Solution:
I = ∫ sin4(x) dx
⇒ I = ∫ (sin2(x))2 dx
⇒ I = 3x / 8 + sin 4x / 32 – sin 2x / 4 + C
f(x) = loga x
The base of the logarithm is a. This can be read it as log base a of x. The
most 2 common bases used in logarithmic functions are base 10 and base e.
Common Logarithmic Function
The logarithmic function with base 10 is called the common logarithmic function
and it is denoted by log10 or simply log.
f(x) = log10 x
f(x) = loge x
Product Rule
Multiply two numbers with the same base, then add the exponents.
Quotient Rule
Divide two numbers with the same base, subtract the exponents.
Power Rule
Logb Mp = P logb M
Example 1.5.1:
Use the properties of logarithms to write as a single logarithm for the given
equation: 5 log9 x + 7 log9 y – 3 log9 z
Solution:
By using the power rule , Logb Mp = P logb M, we can write the given equation as
5 log9 x + 7 log9 y – 3 log9 z = log9 x5 + log9 y7 – log9 z3
From product rule, logb MN = logb M + logb N
5 log9 x + 7 log9 y – 3 log9 z = log9 x5y7 – log9 z3
From Quotient rule, logb M/N = logb M – logb N
5 log9 x + 7 log9 y – 3 log9 z = log9 (x5y7 / z3 )
Therefore, the single logarithm is 5 log9 x + 7 log9 y – 3 log9 z = log9 (x5y7 / z3 )
Example 1.5.2:
Use the properties of logarithms to write as a single logarithm for the given
equation: 1/2 log2 x – 8 log2 y – 5 log2 z
Solution:
By using the power rule , Logb Mp = P logb M, we can write the given equation as
1/2 log2 x – 8 log2 y – 5 log2 z = log2 x1/2 – log2 y8 – log2 z5
From product rule, logb MN = logb M + logb N
Take minus ‘- ‘ as common
1/2 log2 x – 8 log2 y – 5 log2 z = log2 x1/2 – log2 y8z5
From Quotient rule, logb M/N = logb M – logb N
1/2 log2 x – 8 log2 y – 5 log2 z = log2 (x1/2 / y8z5 )
lo g2 x – 8 lo g2 y – 5 lo g2 z =log 2 ( √8 5 )
1 x
The solution is
2 y z
1.6 Exponential Function
Exponential Growth
In Exponential Growth, the quantity increases very slowly at first, and then
rapidly. The rate of change increases over time. The rate of growth becomes
faster as time passes. The rapid growth is meant to be an “exponential increase”.
The formula to define the exponential growth is:
x
y=a(1+r )
Where r is the growth percentage.
Exponential Decay
In Exponential Decay, the quantity decreases very rapidly at first, and then
slowly. The rate of change decreases over time. The rate of change becomes
slower as time passes. The rapid growth meant to be an “exponential decrease”.
The formula to define the exponential growth is:
x
y=a(1−r)
Where r is the decay percentage.
It must be noted that the exponential function is increasing and the point
(0, 1) always lies on the graph of an exponential function. Also, it is very close to
zero if the value of x is mostly negative.
Example 1.6.2:
g(x) = (1/2)x.
Solution:
Having a direct look at the denominator, we have √ 12−(5 x )2, so the best formula
du −1 u
to use for our function is ∫ 2 2 =sin a +C , where a=1 and u=5 x .
√ a −u
For us to apply the formula, we’ll need to use the substitution method and rewrite
the integrand as follows;
u=5 x
du=5 dx
1
du=dx
5
1
du
dx 5
∫ =∫
√ 1−25 x 2 √ 12−u2
1 du
¿ ∫
5 √ 1−u2
Apply the appropriate formula that will return a sine inverse function.
du u
∫ −1
=sin +C
√ a −u
2 2 a
1 du 1 −1 u
∫
5 √ 1−u 5
2
= sin
1
+C
1 −1
¿ sin u+C
5
dx 1 −1
∫ = sin 5 x +C
√ 1−25 x 5
2
Example 1.7.2:
dx
Evaluate the indefinite integral ∫ 2
4 x +9
Solution:
When you see a denominator that is the sum of two perfect squares, this is a
great indicator that we’re expecting an inverse tangent function as its
antiderivative.
du
Since the function we’re working with has a form of 2 2 , use the formula that
a +u
du 1 −1 u
results to an inverse tangent function: ∫ 2 2 = tan +C , where a=3 and
a +u a a
u=2 x .
Let’s apply the substitution method to rewrite the integrand.
u=2 x
du=2 dx
1
du=dx
2
1
du
dx 2
∫ 4 x2 +9 =∫ u2 +9
1 du
¿ ∫ 2
2 u +9
Apply the appropriate integral properties and formulas to evaluate our new
expression.
1 du 1 du
∫ = ∫
2 u 2+ 9 2 32 +u2
¿
2 3[
1 1 −1 u
tan
3
+C
]
1 −1 u
¿ tan +C
6 3
Make sure to replace u with 2 x back to return an integral in terms of x .
dx 1 u
∫ 4 x2 +9 =¿ 6 tan−1 3 + C ¿
dx
Example 1.7.3: Evaluate the indefinite integral ∫
x √ 16 x 2−25
Solution:
du
The integrand has the form, , so apply the formula that returns an inverse
u √u2 −a2
secant function:
du 1 u
∫ 2 2 = a sec−1 a + c , where a=5 and u=4 x . What makes this form unique is
u √ u −a
that aside from the radical expression, we see a second factor in the
denominator. If the second factor remains after simplifying the integrand, then
expect an inverse secant function for its antiderivative.
Since we still have a coefficient before the variable inside the radical, use the
substitution method and use u=4 x∧u 2=16 x 2.
u=4 x
1
u=x
4
du=4 dx
1
du=dx
4
1
du
dx 4
∫ =∫
x √16 x −25 1
2
u √u2 −25
4
1
4 du
¿ ∫
1 u √ u2−25
4
1 4 du
¿ ∙ ∫
4 1 u √ u 2−25
du
¿∫
u √ u2−25
Now that we’ve rewritten the integrand into a form where the inverse secant
function formula applies, let’s now integrate the expression as shown below.
du du
∫ =∫
u √ u −25
2
u √ u2 −52
1 −1 u
¿ sec +C
5 5
We can use either the derivative rules or the exponential form of the rest
of the hyperbolic functions. But no worries, here are the summary of all six
hyperbolic functions’ integration rules as shown below.
d
sinh x=cosh x ∫ cosh x dx=sinh x +C
dx
d
cosh x=sinh x ∫ sinh x dx=cosh x +C
dx
d 2
tanh x=sech x ∫ sech2 x dx=tanh x +C
dx
d
coth x=−csch x ∫ csch2 x dx=−coth+C
dx
d
sech x=−sech x tanh x ∫−sech x tanh x dx=¿−sech x +C ¿
dx
d
csch x=−csch x coth x ∫−csch x coth x dx=−csch +C
dx
Identify the hyperbolic expressions found in the function and take note of
their corresponding antiderivative formula.
If the hyperbolic function contains an algebraic expression within it, apply
the substitution method first.
If the function that needs to be integrated is a product of two simpler
functions, use integration by parts only when the substitution method does
not apply.
When you’re ready, go ahead and study some the examples provided. Learn
how to integrate different types of functions that contain hyperbolic expressions.
Example 1.8.1
cosh x
Evaluate the indefinite integral ∫ dx .
3+ 4 sinh x
Solution:
If we take a look at the derivative of the denominator, we have
d
3+ 4 sinh x=4 cosh x , so we use the substitution method to cancel the
dx
numerator out.
u=3+4 sinh x
du=4 cosh x dx
1
du=dx
4 cosh x
If we let u=3+4 sinh x we can cancel out cosh x once we replace dx with
1
du .
4 cosh x
cosh x cosh x 1
∫ 3+ 4 sinh x dx=∫ u
∙
4 cosh x
du
cosh x 1 1 1
¿∫ ∙ du¿ ∫ ∙ du
u 4 cosh x u 4
1 1
¿ ∫ du
4 u
1
Use the antiderivative formula, ∫ x dx=ln|x|+ C , Rewrite the antiderivative back
in terms of x by substituting u=3+4 sinh x back.
1 1 1
∫ du= 4 ln|u|+C
4 u
1
¿ ln ¿ 3+ 4 sinh x∨+C
4
cosh x 1
This means that ∫ dx= ln ¿ 3+ 4 sinh x∨+C .
3+ 4 sinh x 4
Example 1.8.2
Evaluate the integral, ∫ e cosh x dx
x
Solution:
We’re integrating the expression, e x cosh x , which is the product of two
expressions: e x and cosh x . We can’t apply the substitution method for this
expression. Instead, what we’ll do is rewrite cosh x using its exponential form
x −x
e +e
cosh x= .
2
( )
x −x
∫ e x cosh x dx =∫ e x e +2e dx
x x −x x
e ∙ e +e ∙ e
¿∫ dx
2
2x 0
e +e
¿∫ dx
2
1 x
¿ ∫ e +1 dx
2
We can then let ube 2 x and apply the substitution method as shown below.
u=2 x
du=2 dx
1
du=dx
2
1 1 1
∫ 2 ( e x +1 ) dx = 2 ∫ (e u +1 ¿ )∙ 2 du ¿
1 1
¿ ∙ ∫ e +1 du
u
2 2
1
¿ ∫ e + 1du
u
4
Evaluate the new integral expression by applying the sum rule and exponential
rule;
1 1
∫ e + 1du= (∫ e du+∫ 1 du )
u u
4 4
1 u
¿ ( e +u ) +C
4
Substitute u=2 x back into the expression so that we have our antiderivative in
terms of x .
1 u
( e +u ) +C= 1 ( e 2 x +2 x )+ C
4 4
2x 2x
e 2x e +2 x
¿ + + C∨¿ +C
4 4 4
2x
e +2 x
This means that ∫ e x cosh x dx =¿ +C ¿ .
4
Example 1.8.3
Evaluate the indefinite integral ∫ sinh x dx
2
Solution:
Rewrite sinh2 x using the hyperbolic identities, 2 2
cosh x−sinh x=1 and
2 2
cosh 2 x=sinh x +cosh x
2 2
−sinh x=1−cosh x
2 2
sinh x=cosh x−1
2 2 2
2 sinh x=sinh x+ cosh x−1
2
2 sinh x=cosh 2 x−1
2
2sinh x cosh 2 x−1
=
2 2
2 cosh 2 x−1
sinh x=
2
cosh 2 x−1
∫ sinh 2 x dx=∫ 2 dx
1
¿ ∫ cosh 2 x−1 dx
2
1
Apply the substitution method and use, u=2 x → du=2 dx → du=dx . Integrate
2
cosh u using the integral rule cosh u, ∫ cosh u dx=sinh x +C .
1 1 1
2
∫ cosh 2 x−1 dx= ∫ (cosh u−1¿) du¿
2 2
1 1
¿ ∙ ∫ cosh u−1 du
2 2
1
¿ ∫ cosh u du−∫ 1 du
4
1
¿ ( sinh u−u )+ C
4
1 1
¿ sinh u− u+C
4 4
1 1
Hence, we have ∫ sinh x dx=¿ sinh 2 x− x+C ¿
2
4 2
Example 1.9.1
1
∫ dx
x √ x2
25
1 1
∫ 2
dx=∫ 12
2 5 5
x ∙x x
−12
¿∫ x 5
dx
−12
+1
5
x
¿ +C
−12
+1
5
−7
x5
¿ +C
−7
5
−7
5
5x
¿−+C
7
5 −5
¿− 7 + C∨ 5 7 +C
7√x
7 x5
Try this!
2.
7
3. ∫ x dx
1
4. ∫ x+ 5 dx
1
5. ∫ e x dx
2 sinh x
2. ∫ 5+6 cosh x dx
3. ∫ cosh 2 x dx
4. ∫ 4 e x sinh x dx
x
5. ∫ coth 6 dx
Do this!
3. ∫ ( 2 x +1 )4 dx
3
4. ∫ 5 √ y− √ y dy
4 7
5. ∫ 3 t3 + 2t dt
B. Integrate the following:
2
1. ∫ 7−6 sin θ
x
sin θ
dθ
2. ∫ 4 x cos ( x 2 ) dx
3. ∫ 4 x 3−9+2 sinx+7 e x dx
23 y 9
4. ∫ (¿ y 2+1 +6 csc y + y )dy ¿
5. ∫ 12+ cscθ [ sinθ+ cscθ ] dθ
C. Evaluate the following indefinite integral yielding exponential and
logarithmic functions.
1. ∫ 2 x e dx
4
3 x
2. ∫ log 2 x dx
∫ x e−x dx
2
3.
dx
4. ∫ eln x x
D. Evaluate the following indefinite integral yielding inverse trigonometric
functions.
x−3
1. ∫ 2 dx
x +1
t +5
2. ∫ dt
√ 9− ( t−3 )
2
2
x −2
3. ∫ dx
x √ x 2−4
x +3
4. ∫ dx
( x +2 )2+ 4
3 dy
5. ∫
2 √ y ( 1+ y )
Integrals of inverse trig functions - definition, formulas, and examples. (2023). Retrieved
from https://www.storyofmathematics.com/integrals-of-inverse-trig-functions/
Answer Key:
Try this!!!
A.
1. ∫ x dx
5
5 +1
x
= +c
5+1
6
x
= +c
6
1
2. ∫ 4 dx
x
=∫ x dx
−4
− 4+1
x
= +c
−4 +1
−3
x
= +c
−3
−1
= 3 +c
3x
3.∫ √3 x 2 dx
2
= ∫ x 3 dx
2
+1
3
x
= 2 +c
+1
3
5
3
x
= 5 +c
3
5
3 3
= x +c
5
4. ∫ −6 x dx
5
= −6 ∫ x dx
5
5+1
x
= −6 +c
5+1
6
x
= −6 +c
6
6
= −x +c
1
5. ∫ 3 x 4 dx
1 1
= ∫ dx
3 x4
1
=
3
∫ x−4 dx
− 4+1
1 x
= +c
3 −4 +1
−3
1x
= +c
3 −3
−1 −3
= x +c
9
−1
= 3
+c
9x
6. ∫ (3 x −6 x +12)dx
4 2
=3∫ x −6 ∫ x +12∫ dx
4 2
4+1 2+1
x x
=3 −6 + 12 x +c
4+1 2+1
5 3
x x
= 3 −6 +12 x+ c
5 3
5
x
= 3 −2 x 3+12 x +c
5
3
4 x −5
7. ∫ 2
dx
x
3
4x 5
= ∫ 2 −∫ 2 dx
x x
2
= 2x − ( −5x )+ c
2 5
= 2 x + +c
x
1
8. ∫ ¿¿ ¿
Let u= x +2
du= dx
1
= ∫ 2 du
u
= ∫ u du
−2
−2+1
u
= +c
−2+1
−1
u
= +c
−1
−1
= +c
u
−1
= +c
x+2
6 2
6−5 x −2 x
9. ∫ 3
dx
x
6 3
6 5x 2x
= ∫ 3 − 3 − 3 dx
x x x
6
= ∫ 3 −∫ 5 x −∫ 2 dx
3
x
−3 +1 3+ 1
x x
=6 −5 −2 x +c
−3+1 3+1
−2 4
x x
=6 −5 −2 x+ c
−2 4
4
−3 x
= 2 −5 −2 x +c
x 4
B.
1. ∫ cos 5 x dx
let u=5 x
du 5 dx
=
5 5
du
=dx
5
du
= ∫ cos u
5
1
=
5
∫ cos u du
1
= sin u+c
5
1
= sin(5 x )+ c
5
2.∫ sin 2 x dx
1
= ∫ [ 1−cos(2 x) ] dx
2
1
=
2
∫ [ 1−cos (2 x)] dx
=
1
2 [
x−
sin(2 x)
2 ]
+c
1 1
= x− sin(2 x)+ c
2 4
3.∫ csc2 x dx
1
= ∫ 2 dx
sin x
1
2
cos x
=∫ dx
2
sin x
2
( 1
2
cos x )
sec x
=∫ 2
dx
tan x
let u=tanx
2
du=sec x dx
1
=∫ 2 du
u
= ∫ u du
−2
= −u−1+ c
= −cot x +c
4. x tan x 2 dx
2
let u=x
du 2 x dx
=
2 2
du
=x dx
2
du
=∫ tan(u)
2
1
=
2
∫ tan (u)du
1 sin(u)
= ∫ du
2 cos(u)
let u=cos u
du=−sin( u) du
−du=sin(u)du
1 1
= ∫ (−du)
2 u
−1 1
=
2 u
∫ du
−1
= ln |u|+ c
2
−1
= ln |cos (u)|+c
2
−1
ln |cos (x )|+ c
2
=
2
5. ∫ sec2 θ dθ
= tanθ+ c
C.
1. ∫ e
2 x−1
dx
let u=2 x−1
du 2 dx
=
2 2
du
=dx
2
u du
= ∫e
2
1
= ∫ e du
u
2
1 u
= e +c
2
1 2 x−1
= e +c
2
2. ∫ 2 x e x dx
2
Use U-substitution
u du
¿∫ 2 x e
2x
¿ ∫ e du
u
u
¿ e +C
2
¿ e x +C
7
3. ∫ x dx
1
= 7 ∫ dx
x
= 7 ln |x|+ c
1
4. ∫ x+ 5 dx
let u=x +5
du=dx
1
= ∫ du
u
= ln |u|+c
= ln |x +5|+ c
1
5.∫ e x dx
= ∫ e dx
−x
let u=−x
du=−1 dx
−du=dx
= ∫ e (−du)
u
= −∫ e du
u
= −e u +c
= −e− x + c
D.
dx
1. ∫
√ 81−x 2
1
= ∫ dx
√ 81−x 2
∫ du
√ a −u
2 2
=arcsin ( ua )+c
2 2 2
a =81 u =x
a=9 u=x
= arcsin
x
9
+c ()
dx
2. ∫ x 2+16
1
=∫ 2
dx
x +16
∫ 2du 2 = 1a arctan ua +c
a +u ()
2 2 2
a =16 u =x
a=4 u=x
1
= arctan
4
x
4 ()
+c
1
3. ∫ x 2−6 x +8 dx
=∫ 1 ¿
¿¿
1
∗1
9
=∫ 2
dx
(x−3)
+1
9
1
∗1
= 9
∫ ¿¿ ¿
2 x−6
let u=
6
2
du= dx
6
dx=3 du
1
∗3∗1
= 9
∫ u 2+1 du
1 1
= ∫ ∗¿ 2 du ¿
3 u +1
1
= arctan u
3
1
= arctan
3
2 x−6
6 ( +c )
E.
du
1. ∫ x sinh x dx=∫ x sinh u
2 3 2
2
3x
du
¿ ∫ sinh u
3
1
¿
3
∫ sinh u du
1
¿ cosh u+C
3
1 3
¿ cosh x +C
3
2 sinh x 2 sinh x du
2. ∫ dx=¿ ∫ (use u−substitution∈the denominator)¿
5+6 cosh x u 6 sinh x
1 1
¿ ∫ ∙ du
u 3
1 1
¿ ∫ du
3 u
1
¿ ln u+C
3
1
¿ ln 5+6 cosh x +C
3
1
3. ∫ cosh x dx=∫ cosh 2 x +1 dx
2
2
1
¿ ∫ cosh 2 x +1 dx
2
1
¿ ∫ cosh 2 x dx+ ¿∫ 1dx ¿
2
1 du
¿ ∫ cosh u +¿ ∫ 1 dx ¿
2 2
1 1
¿ ∙ sinh u+ x +C
2 2
1
= sinh 2 x+ x +C
4
4. ∫ 4 e sinh x dx =¿ 4 ∫ e sinh x dx ¿
x x
( )
x −x
e −e
¿ 4∫ e
x
dx
2
2x 0
e −e
¿ 4∫ dx
2
4
¿ ∫ e −1 dx
2x
2
¿ 2∫ e dx −¿∫ 1 dx ¿
2x
( )
2x
e
¿2 −x +C
2
2x
¿ e −2 x+ C
x
5.∫ coth dx=∫ coth u 6 du
6
¿ 6 ∫ coth u du
¿ 6 ln sinh u+C
x
¿ 6 ln sinh +C
6
Do this!
A.
1
1 +1
xπ
1. ∫
π
x dx= C
1
+1
π
1
+1
π
x
= 1+ π C
π
1
+1
π
=π x +C
1+ π
1 1
3 3
2. ∫ 2 x 2 + 2
+1 dx = ∫ 2 x 2 dx +¿ ∫ 2 dx+ ¿∫ 1dx ¿ ¿
x x
1
1
¿ 2∫ x 2 dx +¿ 3∫ 2 dx +1∫ dx ¿
x
3
x 2
x−1
¿2 +3 + x +C
3 −1
2
3
2∙ 2 x 3 x−1 2
¿ + + x +C
3 −1
3
4 x2 3
¿ − + x+C
3 x
3. ∫ ( 2 x +1 ) dx=∫ 16 x +32 x + 24 x + 8 x +1 dx
4 4 3 2
¿ ∫ 16 x dx + ∫ 32 x dx + ∫ 24 x dx + ∫ 8 xdx + ∫ 1 dx
4 3 2
¿ 16 ∫ x +32 ∫ x + 24 ∫ x +8 ∫ x +1 ∫ dx
4 3 2
4 7 4 7
5.∫ + dt=∫ 2 dt +¿ ∫ dt ¿
3 t 2t 2t
2
3t
4 1 7 1
¿ ∫ 2 dt +¿ ∫ dt ¿
3 t 2 t
−2 +1
4 t 7
¿ + ln t +C
3 −2+ 1 2
−1
4t 7
¿ + ln t+C
−3 2
4 7
¿− + ln t+C
3t 2
B.
2
7−6 sin θ
1.∫ x
dθ
sin θ
2
7 dθ 6 sin θ
=∫ 2 −∫ 2
dθ
sin θ sin θ
2
dθ sin θ
= 7 ∫ 2 −6∫ 2 d θ
sin θ sin θ
2
dθ sin θ
= 7 ∫ 2 −6∫ 2 d θ
sin θ sin θ
=7 ∫ csc θ−6∫ dθ
2
2.∫ 4 x cos ( x 2 ) dx
du
Let u=x2 =4∫ x cos u( )
du 2 x dx 2x
= 4
2x 2x =
2
∫ cos u du
du
dx= =2 sin u+c
2x
=2 sin x2 + c
=4¿)−9 x +2 (−cosx ) +7 e x +c
( )
4
x x
=4 −9 x−2 cosx +7 e +c
4
= x −9 x−2 cosx +7 e x +c
4
23 y 9
4. ∫ (¿ +6 csc y + )dy ¿
2
y +1 y
23 ( 2 ) y dy
Let u= y + 1
2
=
2
∫ 2
y +1
dy +6 ∫ cscy coty dy +9∫
y
du
=2 y 23 du dy
dy = ∫ +6∫ cscy coty dy+∫
du=2 ydy 2 u y
23
= ln|u|−6 cscy+9 ln | y|+C
2
23
= ln| y +1|−6 cscy+ 9 ln | y|+C
2
2
=12θ+∫ sinθ
1
sinθ ( )
dθ+ (−cotθ ) +C
=12θ+θ−cotθ +C
=13θ−cotθ+C
C.
du
∫ 2 x 3 e x dx=∫ 2 x 3 eu 4 x 3
4
1.
2
¿
4
∫ u
e du
1 u
¿ e +C
2
1 x 4
¿ e +C
2
2. ∫ log 2 x dx
u=log 2 x v =x
1
du= dx dv =dx
ln 2 x
1
¿ log 2 x ∙ x−∫ x dx
ln 2 x
1
¿ x ∙ log 2 x−∫ dx
ln 2
1
¿ x ∙ log 2 x− ∙ x+C
ln 2
x
¿ x ∙ log 2 x− +C
ln 2
du
∫ x e−x dx=∫ x eu −2 x
2
3.
1
¿
2
∫ e u du
1 u
¿ e +C
2
1 −x 2
¿ e +C
2
dx
4. ∫ eln x x
=∫ e x du
u
u
¿ x e +C
ln x
¿ x e +C
D.
x−3 x 3
1. ∫ x 2+1 dx=∫ x 2+1 − x 2+1 dx
x 3
¿∫ 2
dx−¿∫ 2 dx ¿
x +1 x +1
¿¿
1 2 −1
¿ ln x + 1−3 tan x +C
2
1 u
2. ∫ dt =sin
−1
+C
√ 9− (t−3 ) 2 a
−1 t−3
¿ sin +C
3
2 2
x −2 x 2
3. ∫ dx=∫ dx−∫ dx
x √ x −4
2
x √ x −4
2
x √ x 2−4
x 2
¿∫ 2 dx−∫ dx
√ x −4 x √ x2 −4
−1
1
¿ ∫ x ∙ ( x −4 ) dx−2 ∫
2 2
dx
x √ x −4
2
=u−substitution−ITF :(arctan)
−1 x
¿ √ x −4−sec
2
+C
2
1
( 2 x + 4 ) +1
4. x +2 2
∫ ( x +2 )2+ 4 dx=∫ ( 2 dx
x + 4 x +4 ) + 4
1
( 2 x +4 )
2 1
¿∫ 2 dx +¿ ∫ 2 dx ¿
x + 4 x+ 8 x + 4 x +8
1 ( 2 x + 4) 1
¿ ∫ 2 dx +¿ ∫ 2 dx ¿
2 x +4 x+ 8 x + 4 x+ 8
¿ u −for the denominator+ ITF :( arctan)
1 1 −1 x+2
¿ ln |x +4 x +8|+ tan
2
+C
2 2 2
3 dy 3 dy
5. ∫ 2 √ y ( 1+ y ) = 2 ∫ √ y ( 1+ y )
3 dy
¿ ∫
2 √ y+√ y ∙ y
3 dy
¿ ∫ 1 3
2
y 2+ y 2
3 2
¿ ∫ du
2 1+u 2
1
¿ 3∫ 2
du
1+u
¿ 3 arctan u+C
¿ 3 arctan √ y +C
E.
1. ∫ cosh 3 x sinh 3 x dx=u−: u=sinh 3 x
du
¿ ∫ cosh 3 x ∙u
3 cosh 3 x
du
¿∫ u
3
1
¿
3
∫ u du
1+1
1u
¿ +C
3 1+ 1
2
1u
¿ +C
3 2
2
u
¿ +C
6
2
sinh(3 x ¿)
¿ ¿
6
1
2. ∫ cosh 2 x dx=∫ 2 cosh 2 x +1 dx
1
¿
2
∫ cosh 2 x +1 dx
1
¿ ∫ cosh 2 x dx+ ¿∫ 1dx ¿
2
1 du
¿ ∫ cosh u +¿ ∫ 1 dx ¿
2 2
1 1
¿ ∙ sinh u+ x +C
2 2
1
= sinh 2 x+ x +C
4
sinh x sinh x du
3. ∫ ( 1+2 cosh x )5 dx =∫ ( u )5 2 sinh x
1 1
¿∫ ∙ du
u 2
5
1
¿
2
∫ −5
u du
( )
−4
1 u
¿ +C
2 −4
1
¿− 4 +C
8u
1
¿− 4
+C
8 ( 1+2 cosh x )
4. ∫ sinh x dx
2
2 2
−sinh x=1−cosh x
2 2
sinh x=cosh x−1
2 2 2
2 sinh x=sinh x+ cosh x−1
2
2 sinh x=cosh 2 x−1
2
2sinh x cosh 2 x−1
=
2 2
2 cosh 2 x−1
sinh x=
2
cosh 2 x−1
∫ sinh 2 x dx=∫ 2
dx
1
¿
2
∫ cosh 2 x−1 dx
1 1 1
2
∫ cosh 2 x−1 dx= ∫ (cosh u−1¿) du¿
2 2
1 1
¿ ∙ ∫ cosh u−1 du
2 2
1
¿ ∫ cosh u du−∫ 1 du
4
1
¿ ( sinh u−u )+ C
4
1 1
¿ sinh u− u+C
4 4
1 1 1 1
sinh u− u+C= sinh 2 x− 2 x+C
4 4 4 4
1 1
¿ sinh 2 x − x +C
4 2
5.
cosh x
∫ 3+ 4 sinh x dx
d
3+ 4 sinh x=4 cosh x
dx
u=3+4 sinh x
du=4 cosh x dx
1
du=dx
4 cosh x
cosh x cosh x 1
∫ 3+ 4 sinh x dx=∫ u
∙
4 cosh x
du
cosh x 1 1 1
¿∫ ∙ du¿ ∫ ∙ du
u 4 cosh x u 4
1 1
¿ ∫ du
4 u
1 1 1
∫
4 u
du= ln |u|+C
4
1
¿ ln ¿ 3+ 4 sinh x∨+C
4