Dxmman CR
Dxmman CR
Instruction Manual
DXM SERIES
MODEL : DXM
SERIAL# :
DATE :
SPELLMAN
HIGH VOLTAGE ELECTRONICS
CORPORATION
475 Wireless Blvd.
Hauppauge, New York, 11788
SAFETY
THIS POWER SUPPLY GENERATES VOLTAGES THAT ARE DANGEROUS AND MAY BE FATAL.
OBSERVE EXTREME CAUTION WHEN WORKING WITH THIS EQUIPMENT.
Allow five minutes for discharge of internal capacitance of the power supply.
SERVICING SAFETY
.
Maintenance may require removing the instrument cover with the power on.
WARNING note in the text call attention to hazards in operation of these units
that could lead to possible injury or death.
Copyright © 2000, Spellman High Voltage Electronics Corporation. All Rights Reserved.
This information contained in this publication is derived in part from proprietary and patent data. This information has
been prepared for the express purpose of assisting operating and maintenance personnel in the efficient use of the
model described herein, and publication of this information does not convey any right to reproduce it or to use it for
any purpose other than in connection with installation, operation, and maintenance of the equipment described.
118004-001 REV. B
Table of Contents
PAGE
1. INTRODUCTION
1.1 Description of the DXM Series............................................................................1
1.2 DXM Specifications.............................................................................................1
1.3 Standard Features ................................................................................................2
1.4 System Status and Fault Diagnostic Display .......................................................2
1.5 Interpreting the Model Number ...........................................................................3
1.6 High Voltage Connector Pin out Diagrams .........................................................3
2. INSPECTION & INSTALLATION
2.1 Initial Inspection ..................................................................................................6
2.2 Mechanical Installation ........................................................................................6
3. OPERATING INSTRUCTIONS
3.1 Operation..............................................................................................................8
3.2 Standard Control Features....................................................................................8
4. PRINCIPLES OF OPERATION
4.1 AC to DC Rectifier and Associated Circuits .......................................................21
4.2 High Frequency Inverter ......................................................................................21
4.3 High Voltage Circuits ..........................................................................................21
4.4 Control Circuits....................................................................................................22
4.5 Options .................................................................................................................22
5. OPTIONS
5.7 Custom Designed Models ....................................................................................23
5.8 Filament ..............................................................................................................23
6. MAINTENANCE
6.1 Periodic Servicing ................................................................................................24
6.2 Performance Test .................................................................................................24
6.3 High Voltage Dividers .........................................................................................24
7. FACTORY SERVICE
7.1 Warranty Repairs .................................................................................................25
7.2 Factory Service Procedures ..................................................................................25
7.3 Ordering Options and Modifications ...................................................................25
7.4 Shipping Instructions ...........................................................................................25
APPENDIX
A. Specification Controls (Custom Models Only)
OVERVOLTAGE: Indicates the over voltage X-ray On LED: when the high voltage status is
protection circuitry has caused the high voltage to “On” state it is indicated by X-RAY ON led status on
turn off. This fault will occur if the output voltage the front cover
exceeds 110% of full scale or 110% of program Power On LED: when the input power is applied to
value. This fault is indicated by over voltage led the unit it is indicated by PWR ON led status on the
status on the front cover and via the RS-232, USB or front cover
Ethernet as Over voltage.
ARC FAULT: Indicates that an arc has occurred.
This fault is indicated by illumination of Arc Fault led 1.5 Interpreting the Model Number:
status on front cover and via RS-232, USB or
The model number of the power supply describes its
Ethernet as arc fault. See Arc Fault Control in section
capabilities. After the series name is:
3.2.
UNDER VOLTAGE: Indicates a failure in the (1) The maximum voltage in kilovolts.
voltage regulation circuitry. This fault occurs when (2) The polarity of the output – positive (P), or
there is a lack of output power to maintain regulation negative (N).
and will result in shutdown of the HV. This fault will (3) The maximum output in watts.
occur if the output voltage less than 10% below the (4) Custom “X” number representing details listed in
program value. This fault is indicated by illumination a separate specification control drawing.
of under voltage led status on the front cover and via
RS-232, USB or Ethernet as under voltage.
UNDER CURENT: Indicates failure in the current DXM 70 P 600/X(#)
regulation circuitry. This fault occurs when the
allowable percentage of error between actual and
programmed emission current is exceeded. This fault Series Polarity
will not cause a shutdown of the HV. This fault will Name
Custom
occur if the output current less than 10% below the Maximum Maximum
"X" Number
Voltage Power
program value. This fault is indicated by illumination
of under current led status on front cover and via RS-
232, USB or Ethernet as under current.
1.6 High Voltage Connector Pin out
OVER TEMPERATURE: Indicates either a failure
in the cooling system that would cause the internal
Diagrams
heat sink temperature to exceed it’s operating range
or the ambient temperature to exceed 40degC,
resulting in shutdown of HV. This fault is indicated
by over temperature led status on the front cover and
via RS-232, USB or Ethernet as over temperature.
_____________________________________________________________________________________
J1 AC INPUT
J2 CONTROL I/O
J5
ETHERNET
J4
FRONT PANEL USB
J6 J3
HV OUT RS232
J2 CONTROL I/O
J5
ETHERNET
J4
USB
DANGER
OPERATING INSTRUCTIONS
3.1 Operation E) For initial turn-on, program the voltage and
current for zero output. Connect the enable/disable signal
WARNING to disable.
F) The input power cable may now be connected to
THIS EQUIPMENT GENERATES the AC power line.
DANGEROUS VOLTAGES THAT MAY BE
G) Enable the power supply via the enable/disable
FATAL. PROPER GROUNDING OF ALL HIGH
hardware based, dry contact closure.
VOLTAGE EQUIPMENT IS ESSENTIAL.
H) Slowly program the output voltage and current to
desired level. Monitor the output voltage and current via
IMPORTANT: the monitoring test points. Note equipment operation is
Before connecting the power supply to the normal, i.e. Load is behaving as predicted.
AC line, follow this step-by-step procedure. I) To turn high voltage off, use the enable/disable
Do not connect the power supply to the AC signal. If equipment is to be kept off for extended
line until Step F is reached. periods, disconnect power supply from line voltage
source.
Failure to follow these procedures may void
the warranty.
OUTPUT
DANGER
LOAD
OUTPUT RETURN
Maximum Filament
X-Ray Tube Data Sheet Current
http://www.comet-xray.com/Resources/Products/X-Ray-
Comet CXR105 Tubes/Documents/cxr_105_en.pdf 3.2 amps
http://www.comet-xray.com/Resources/Products/X-Ray-
Comet MXR-160-HP/20 Tubes/Documents/mxr_160hp_20_en.pdf 4.1 amps
http://www.comet-xray.com/Resources/Products/X-Ray-
Comet MXR-75-HP/20 Tubes/Documents/mxr_75hp_20_en.pdf 3.4 amps
http://www.comet-xray.com/Resources/Products/X-Ray-
Comet MXR101 Tubes/Documents/mxr_101_en.pdf 4.2 amps
Lohmann 160/3EPN http://www.lohmannx-ray.com/products.htm#xl_stanmen 3.7 amps
Rontgen-Technik MCBM
65B-50 http://www.rtwxray.de/tubes/pdf/mcbm65b50x.pdf 3.2 amps
RTW MCD100H-3 http://www.rtwxray.de/tubes/pdf/mcd100h3x.pdf 4.4 amps
RTW MCT100F
panoramic http://www.rtwxray.de/tubes/pdf/mct100f05x15.pdf 4.5 amps
Disclaimer: The most recent X-ray tube data sheet should always be consulted regarding accurate specifications.
Filament Ramp Time: This setting controls the ramp To setup the DXM Controlled Ramping feature, the unit
time of the Filament output to full-scale value (0- 5A) must be connected to a Host PC using either RS-232,
upon X-ray enable. Filament ramping starts at the USB, or Ethernet using The DXM GUI (SWD0159-007).
completion of the kV ramp. It is programmable from 0.5- Refer to DXM Digital Manual to setup communications.
30 seconds and is defaulted to 30 seconds. All value
changes are stored in non-volatile memory once the Save Once communications have been established between the
settings button is clicked. DXM and the GUI (also see Digital manual for command
list for these features), proceed through the following
mA Ramp Time: This setting control the ramp time of screens as follows: Click on the Control Tab.
the mA to full-scale value upon X-ray enable and during
programming changes when the Set Point Ramping
feature has been enabled. mA ramping starts at the
completion of the KV ramp and steps to 5% of the mA
program value set point. It is held at this value for a
The total enable ramps sequence to full-scale is 14 Preheat set point =1.5A (1V/A)
seconds.
Filament limit set point =3.6A (1V/A)
EXAMPLE #4 – 10sec sequence
KV set point =full scale 10V
No Re-Ramp:
After an arc occurs, the kV output will re-ramp to the
programmed value as per the ramp time settings. If the
Ramp control in Section 1.0 is enable the programmed
ramps will be used. If the Ramp control is disable, the
Standard DXM ramps will be used.
If No Re-ramp is enabled (by clicking the box next to “No
Re Ramp” and clicking “Save Settings”) then there will be
no ramping after an arc.
The standard units are shipped with the Arc Control
disabled.
Figure 3.2 Local Programming Via Internal Front Panel Pot Voltage Source.
PRINCIPLES OF OPERATION
T he DXM Series of high voltage power supplies
utilizes sophisticated power conversion technology.
Advanced analog and power conversion techniques
be present before and after the power supply is
used. Consult IEEE recommended practices for
safety in high voltage testing #510-1983.
are used in the DXM series. The intention of the
Principles of Operation is to introduce the basic function 4.2 High Frequency Inverter
blocks that comprise the DXM power supply. For details
on a specific circuit, consult Spellman’s Engineering The DXM is a resonant converter operating in a zero
Department. current switching, series resonant, parallel loaded
topology. MOSFET transistors switch the 400 VDC
The DXM power supply is basically an AC to DC power
voltage to the resonant tank circuit. Typical operating
converter. Within the power supply, conversions of AC to
frequency is in the range of 35-65kHz depending on
DC then to high frequency AC, then to high voltage DC
model. Control of the resonant circuit output is done by
take place.
the low voltage control circuits, and are isolated by an
Typical DXM power supplies comprise a few basic isolated pulse transformer. The output of the resonant
building blocks. These are: 1) AC to DC rectifier, 2) circuit is applied to the primary of the high voltage
Power Factor correction boost circuitry 3) High frequency transformer.
quasi-resonant inverter, 4) High voltage transformer and
rectifier circuits, and 5) Control and monitoring circuits. 4.3 High Voltage Circuits
The following is a brief description of each building The high voltage transformer is a step-up type. The
block. secondary of the high voltage transformer is connected to
the high voltage rectifier circuit. The rectifier circuit will
4.1 Power Factor and Associated vary depending upon the rated output voltage. For lower
Circuits power a half wave Cockroft-Walton multiplier is used, for
higher power a full wave Cockroft-Walton multiplier is
The DXM series can operate from 90 - 265VAC, for the
used. A feedback signal is generated by the high voltage
300Watt Model and 180 –264VAC for the 600 and 1200
resistor divider. This feedback signal is sent to control
Watt Models. The input voltage is connected via a typical
circuits to provide voltage regulation and monitoring. A
IEC 320 type input connector. An internal EMI filter and
current sense resistor is connected at the low voltage end
fuse housing is an integral part of the DXM module. The
of the rectifier circuit. The circuit sense signal is sent to
input circuits actively correct the power factor.
the control circuits to provide current regulation and
The input line voltage is applied to a current limit device monitoring.
to reduce the initial inrush current. The input line voltage
The high voltage rectifier output is connected to the
is converted to a 400VDC voltage via an active PFC
output limiting resistors. These resistors limit the peak
Converter.
surge current in the event an arc or discharge occurs. The
limiting resistor output is connected to the output
WARNING connector provided.
The energy levels used and generated by the
power supply can be lethal! Do not attempt to
operate the power supply unless the user has a
sufficient knowledge of the dangers and hazards
of working with high voltage. Do not attempt to
approach or touch any internal or external
circuits or components that are connected or
have been connected to the power supply. Be
certain to discharge any stored energy that may
WARNING
LINE VOLTAGE IS PRESENT
WHENEVER THE POWER SUPPLY IS
CONNECTED TO EXTERNAL LINE
VOLTAGES. BE SURE TO DISCONNECT
THE LINE CORD BEFORE OPENING THE
UNIT. ALLOW 5 MINUTES FOR
INTERNAL CAPACITANCE TO
DISCHARGE BEFORE REMOVING ANY
COVER.
OPTIONS
T He options available for this power supply
described in this section. Interface diagrams
shown where required. Options are specified
are
are
by
5.2 Filament
Filament outputs with an emission control loop are
including the option code in the model number as available for use with X-ray tubes. Generally, filament
described in Section 1.4. outputs are in the range of 3V – 10V, at currents up to 5A.
Both floating AC and grounded DC filaments are
available. The filament on a standard DXM Module is
5.1 Custom Designed Models X (#) calibrated to 5A@10V using either a 10ft High Voltage
Units built to customer specifications are assigned an X cable for floating filament or 10ft of 18awg wire for
number be the factory. If this unit is an X model, grounded filament
specification control sheet is added at the end of this
instruction manual. Spellman welcomes the opportunity to tailor units to fit
your requirements or to develop new products for your
applications. Contact Spellman Sales Department.
MAINTENANCE
T his section describes periodic
performance testing procedures.
servicing and High voltage test procedures are described in Bulletin
STP-783, Standard Test Procedures for High Voltage
Power Supplies. Copies can be obtained from the
Spellman Customer Service Department. Test equipment,
including an oscilloscope, a high impedance voltmeter,
WARNING and a high voltage divider such as the Spellman HVD-100
or HVD-200, is needed for performance tests. All test
THIS POWER SUPPLY GENERATES VOLTAGES components must be rated for operating voltage.
THAT ARE DANGEROUS AND MAY BE FATAL.
6.3 High Voltage Dividers
OBSERVE EXTREME CAUTION WHEN WORKING High voltage dividers for precise measurements of output
WITH HIGH VOLTAGE. voltage with an accuracy up to 0.1% are available from
Spellman. The HVD-100 is used for voltages up to
6.1 Periodic Servicing 100KV. The HVD-200 measures up to 200KV. The
Spellman divider is designed for use with differential
Approximately once a year (more often in high dust
voltmeters or high impedance digital voltmeters. The high
environments), disconnect the power to the unit.. Use
input impedance is ideal for measuring high voltage low
compressed air to blow dust out of the inside of the unit.
current sources, which would be overloaded by traditional
Avoid touching or handling the high voltage assembly.
lower impedance dividers.
WARNING
FACTORY SERVICE
7.1 Warranty Repairs A preliminary estimate for repairs will be given by phone
During the Warranty period, Spellman will repair all units by Customer Service. A purchase order for this amount is
free of charge. The Warranty is void if the unit is worked requested upon issuance of the RMA Number. A more
on by other than Spellman personnel. See the Warranty in detailed estimate will be made when the power supply is
the rear of this manual for more information. Follow the received at the Spellman Repair Center. In the event that
return procedures described in Section 7.2. The customer repair work is extensive, Spellman will call to seek
shall pay for shipping to and from Spellman. additional authorization from your company before
completing the repairs.
7.2 Factory Service Procedures
7.3 Ordering Options and
Spellman has a well-equipped factory repair department.
If a unit is returned to the factory for calibration or repair, Modifications
a detailed description of the specific problem should be Many of the options listed in Chapter 5 can be retrofitted
attached. into Spellman power supplies by our factory. For prices
For all units returned for repair, please obtain an and arrangements, contact our Sales Department.
authorization to ship from the Customer Service
Department, either by phone or mail prior to shipping. 7.4 Shipping Instructions
When you call, please state the model and serial numbers, All power supplies returned to Spellman must be sent
which are on the plate on the rear of the power supply, shipping prepaid. Pack the units carefully and securely in
and the purchase order number for the repair. A Return a suitable container, preferably in the original container, if
Material Authorization Code Number (RMA Number) is available. The power supply should be surrounded by at
needed for all returns. This RMA Number should be least four inches of shock absorbing material. Please
marked clearly on the outside of the shipping container. return all associated materials, i.e. high voltage output
Packages received without an RMA Number will be cables, interconnection cables, etc., so that we can
returned to the customer. The Customer shall pay for examine and test the entire system.
shipping to and from Spellman.
All correspondence and phone calls should be directed to:
Spellman High Voltage Electronics Corp.
475 Wireless Boulevard
Hauppauge, New York 11788
TEL: (631) 630-3000 FAX: (631) 435-1620
E-Mail: sales@Spellmanhv.com
http://www.spellmanhv.com
SICHERHEIT
DIESES HOCHSPANNUNGSNETZTEIL ERZEUGT LEBENSGEFÄHRLICHE HOCHSPANNUNG.
SEIN SIE SEHR VORSICHTIG BEI DER ARBEIT MIT DIESEM GERÄT.
Berühren Sie die Stecker des Netzteiles nur, wenn das Gerät ausgeschaltet ist und die elektrischen
Kapazitäten des Netzteiles und der angeschlossenen Last entladen sind.
Die internen Kapazitäten des Hochspannungsnetzteiles benötigen ca. 5 Minuten, um sich zu entladen.
Erden Sie sich nicht, und arbeiten Sie nicht in feuchter oder nasser Umgebung.
SERVICESICHERHEIT
Notwendige Reparaturen können es erforderlich machen, den Gehäusedeckel während des Betriebes zu
entfernen.
“WARNING” im folgenden Text weist auf gefährliche Operationen hin, die zu Verletzungen oder zum Tod
führen können.
“CAUTION” im folgenden Text weist auf Prozeduren hin, die genauestens befolgt werden müssen, um
eventuelle Beschädigungen des Gerätes zu vermeiden.
118004-001 REV. B
PRECAUTIONS IMPORTANTES POUR VOTRE SECURITE
CONSIGNES DE SÉCURITÉ
CETTE ALIMENTATION GÉNÈRE DES TENSIONS QUI SONT DANGEUREUSES ET PEUVENT ÊTRE FATALES.
SOYEZ EXTRÊMENT VIGILANTS LORSQUE VOUS UTILISEZ CET ÉQUIPEMENT.
Ne touchez pas les connectiques sans que l’équipement soit éteint et que la capacité à la fois de la charge et de
l’alimentation soient déchargées.
Ne vous mettez pas à la masse, ou ne travaillez pas sous conditions mouillées ou humides.
Les réparations doivent être effectuées par une personne qualifiée et connaissant les risques électriques.
Dans le manuel, les notes marquées « WARNING » attire l’attention sur les risques lors de la manipulation de ces
équipements, qui peuvent entrainer de possibles blessures voire la mort.
Dans le manuel, les notes marquées « CAUTION » indiquent les procédures qui doivent être suivies afin d’éviter
d’éventuels dommages sur l’équipement.
118004-001 REV. B
IMPORTANTI PRECAUZIONI DI SICUREZZA
SICUREZZA
QUESTO ALIMENTATORE GENERA TENSIONI CHE SONO PERICOLOSE E
POTREBBERO ESSERE MORTALI.
PONI ESTREMA CAUTELA QUANDO OPERI CON QUESO APPARECCHIO.
Gli alimentatori ad alta tensione devono sempre essere collegati ad un impianto di terra.
Non toccare le connessioni a meno che l’apparecchio sia stato spento e la capacità interna
del carico e dell’alimentatore stesso siano scariche.
Attendere cinque minuti per permettere la scarica della capacità interna dell’alimentatore
ad alta tensione.
Non mettere a terra il proprio corpo oppure operare in ambienti bagnati o saturi d’umidità.
Le note di CAUTELA contenute nel manuale, indicano le procedure da seguire per evitare
possibili danni all’apparecchio.
118004-001 REV. B
To obtain information on Spellman’s product warranty please visit our website at:
http://www.spellmanhv.com/en/About/Warranty.aspx
ENS
Copyright 2021, Spellman High Voltage Electronics Corporation. All Rights Reserved.
This information contained in this publication is derived in part from proprietary and patent data. This information has
been prepared for the express purpose of assisting operating and maintenance personnel in the efficient use of the
model described herein, and publication of this information does not convey any right to reproduce it or to use it for
any purpose other than in connection with installation, operation, and maintenance of the equipment described.
118079-001 Rev G
475 Wireless Boulevard • Hauppauge, New York 11788, USA • www.spellmanhv.com • T:+1 631.630.3000 • F:+1 631.435.1620
Table Of Contents
1.0 Scope ....................................................................................................................... 3
2.0 Functional Description ........................................................................................... 3
3.0 Getting Started - Interface Wiring and Pin-outs.................................................... 3
3.1 RS232 Interface .................................................................................................................... 3
3.2 Ethernet Interface .................................................................................................................. 5
3.3 Universal Serial Bus Interface .............................................................................................. 6
3.4 RS-232 Cabling..................................................................................................................... 6
3.5 Ethernet Cabling ................................................................................................................... 6
3.6 USB Cabling ......................................................................................................................... 8
4.0 Getting Started - Software .................................................................................... 10
4.1 RS-232 ................................................................................................................................ 10
4.2 Ethernet ............................................................................................................................... 12
4.3 USB ..................................................................................................................................... 26
5.0 Ethernet Commands ............................................................................................... 34
5.1 TCP/IP Format .................................................................................................................... 34
5.2 Command Arguments ......................................................................................................... 35
5.3 Command Overview ........................................................................................................... 35
5.4 Response Overview ............................................................................................................ 37
5.5 Command Structure ............................................................................................................ 38
6.0 Serial Commands – RS-232 / USB ....................................................................... 67
6.1 Serial Interface Protocol ..................................................................................................... 67
6.2 Command Arguments ......................................................................................................... 67
6.3 Checksums .......................................................................................................................... 67
6.4 Command Overview ........................................................................................................... 69
6.5 Response Overview ............................................................................................................ 70
6.6 Command Structure ............................................................................................................ 72
6.7 Spellman Test Commands ................................................................................................ 100
6.8 Serial Command Handling ................................................................................................ 100
1.0 SCOPE
This document applies to the communications interfaces on the DXM , assembly
460067.
LED 1 LED 2
87654321
PIN DESCRIPTION
1 TX+
2 TX-
3 RX+
4 -
5 -
6 RX-
7 -
8 -
The Ethernet RJ-45 has two LED indicators, as shown in Figure 2. The left
LED, LED1 indicates that the network processor has a valid network link.
The right LED, LED2 indicates network activity.
PIN DESCRIPTION
1 Vbus +5V
2 D-
3 D+
4 Ground
1 1
POW ER SUPPLY F E R R IT E F E R R IT E
W IT H BEAD CORE
USB ( c a b le ) ( c a b le )
F E R R IT E
CORE
( c a b le )
24 V DC
PC
F E R R IT E F E R R IT E W IT H
CORE BEAD USB
( c a b le ) ( c a b le )
USB CABLE
Please refer to the USB Interface Setup section, for an explanation of how
USB works and why EMI may present a problem for this communications
interface.
4.1 RS-232
The RS-232 interface makes use of a standard ‘command/response’
communications protocol. See section 6.0 for the syntax of the serial
interface protocol. The programmer should also review section 4.3 for
programming considerations for the USB interface as the code is nearly
identical for the RS-232 interface.
All software that addresses the RS-232 interface must adhere to the
following parameters:
Then in the list make sure that Microsoft Comm Control 6.0 has a
check next to it. The Comm Control Object should then appear in your
toolbox. It will have an icon of a telephone and will be named:
MSComm. This can be dragged and dropped into your application.
You will then need to set the object’s properties.
Settings 115200,n,8,1
Handshaking 0 – comNone
MSComm1.CommPort = portNumber
MSComm1.PortOpen = True
http://192.168.1.4
Username: root
Password: shv
TCP/IP
HTTP
TFTP
FTP
Lastly you must disable any firewall software you have running. If
you are running a proxy server for Internet access, you must also
disable the proxy client. Disabling this also requires a reboot.
Once selected in your toolbox you will have an icon of two computers
linked together and it will be named: Winsock.This can be dragged and
dropped into your application. Then set the object’s properties.
Protocol 0 – sckTCPProtocol
tcpClient.RemoteHost = host
tcpClient.RemotePort = portNumber
tcpClient.Connect
For further information regarding the use of the above commands, please
refer to your Visual Studio Help File.
Then select Device Manager and expand the Human Interface Devices.
View the properties of the USB Human Interface Device icon and verify
that Spellman USB HID appears in the Location section.
The DXM when used in combination with the HID Windows driver makes it
possible for the host to renumerate the client connection and reestablish
communications. This is providing the control application implements a
method of timeout and retry.
MyDeviceDetected = usb.FindTheHid
7: t1 = Timer
8:
9: If (portType = "ethernet") Then
10: Do
11: DoEvents
12: tcpClient.GetData temp$
13: str = str + temp$
14: Loop Until InStr(str, Chr(3)) Or Timer - t1 > 1
15: On Error Resume Next
23: Else
24: Do
25: DoEvents
26: If MSComm1.InBufferCount > 0 Then
27: str = str & MSComm1.Input
28: End If
29: Loop Until InStr(str, Chr(3)) Or Timer - t1 > 1
30:
31: If InStr(str, Chr(3)) > 0 Then
32: tmrOpenClose.Enabled = False
33: End If
34:
35: frm_EXTRAS.txt_MSCOMMBUFF.Text = str
36: tmr_COMMWDT.Enabled = True
37: On Error Resume Next
Byte
0 Protocol Header Type Of Total Length
Version Service
Length
4 Packet ID Flags Fragmentation Offset
12 Source Address
16 Destination Address
24 Sequence Number
28 Acknowledgement Number
<STX><CMD><,>ARG><,><ETX>
Where:
<STX> = 1 ASCII 0x02 Start of Text character
<CMD> = 2 ASCII characters representing the command ID
<,> = 1 ASCII 0x2C character
<ARG> = Command Argument
<,> = 1 ASCII 0x2C character
<ETX> = 1 ASCII 0x03 End of Text character
Program 99 1 ASCII 0 or 1
Local/Remote
Mode
Direction:
Host to supply
Syntax:
<STX><10><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>10,4095,<ETX>
Response:
<STX><10><,><$><,><ETX>
<STX><10><,><ARG><,><ETX>
Direction:
Host to supply
Syntax:
<STX><11><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>11,4095,<ETX>
Response:
<STX><11><,><$><,><ETX>
<STX><11><,><ARG><,><ETX>
Direction:
Host to supply
Syntax:
<STX><12><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>12,4095,<ETX>
Response:
<STX><12><,><$><,><ETX>
<STX><12><,><ARG><,><ETX>
Direction:
Host to supply
Syntax:
<STX><13><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>13,4095,<ETX>
Response:
<STX><13><,><$><,><ETX>
<STX><13><,><ARG><,><ETX>
Direction:
Host to supply
Syntax:
<STX><14><,><ETX>
Response:
<STX><14><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>14,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><15><,><ETX>
Response:
<STX><15><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>15,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><16><,><ETX>
Response:
<STX><16><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>16,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><17><,><ETX>
Response:
<STX><17><,><ARG><,><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>17,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><19><,><ETX>
Example:
<STX><19>,<ETX>
Response:
<STX><19><,><ARG1><,><ARG2><,><ARG3><,><ETX>
Where:
ARG1 = kV monitor = 0 – 4095
ARG2 = mA monitor = 0 – 4095
ARG3 = Filament monitor = 0– 4095
Example:
<STX><19>,4095,4095,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><21><,><ETX>
Example:
<STX>21,<ETX>
Response:
<STX><21><,><ARG1>< ARG2>< ARG3><ARG4><ARG5>
<.><ARG6><,><ETX>
Where:
<.> = ASCII 0x2E
ARGx =0-9 in ASCII format
Example:
<STX>21,99999.9,<ETX>
Direction:
Host to supply
Syntax:
<STX><22><,><ETX>
Example:
<STX>22,<ETX>
Response:
<STX><22><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,><,><ETX>
Where:
<ARG1> 1 = HvOn, 0 = HvOff
<ARG2> 1 = Interlock 1 Open, 0 = Interlock 1 Closed
<ARG3> 1 = Fault Condition, 0 = No Fault
<ARG4> 1 = Remote Mode, 0 = Local Mode
Example:
<STX>22,1,1,0,0,<ETX>
Direction:
Host to supply
Syntax:
<STX><23><,><ETX>
Example:
<STX>23,<STX>
Response:
<STX><23><,>< ARG><,><ETX>
Where:
<ARG> consists of eleven ASCII characters representing the current
firmware part number/version. The format is SWM9999-999
Example:
<STX>23,SWM9999-999,<ETX>
Direction:
Host to supply
Syntax:
<STX><24><,><ETX>
Example:
<STX>24,<ETX>
Response:
<STX><24><,>< ARG><,><ETX>
Where:
<ARG> consists of 3 ASCII characters representing the hardware version.
The format is ANN, where A is an alpha character and N is a numeric
character
Example:
<STX>24,A01,<ETX>
Direction:
Host to supply
Syntax:
<STX><30><,><ETX>
Example:
<STX>30,<ETX>
Response:
<STX><30><,><$><,><ETX>
Direction:
Host to supply
Syntax:
<STX><31><,><ETX>
Example:
<STX>31,<ETX>
Response:
<STX><31><,><$><,><ETX>
Direction:
Host to supply
Syntax:
<STX><55><,><ETX>
Response:
<STX><55><,><ARG1><,><ETX>
Where ARG1 is Interlocks 1. A 1 indicates that the Interlock is energized
Example:
<STX>55,1,<ETX>
Description:
The host requests that the firmware report kV monitor.
Direction:
Host to supply
Syntax:
<STX><60><,><ETX>
Response:
<STX><60><,><ARG><,><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>60,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><61><,><ETX>
Response:
<STX><61><,><ARG><,><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>61,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><62><,><ETX>
Response:
<STX><62><,><ARG><,><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>62,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><65><,><ETX>
Response:
<STX><65><,><ARG><,><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>65,4095,<ETX>
Direction:
Host to supply
Syntax:
<STX><68><,><ETX>
Response:
<STX><68><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,><ARG5><,
><ARG6><,><ETX>
Where:
<ARGx> 1 = Fault, 0 = No Fault in ASCII format
ARG1 = ARC
ARG2 = Over Temperature
ARG3 = Over Voltage
ARG4 = Under Voltage
ARG5 = Over Current
ARG6 = Under Current
Example:
<STX>67,0,0,0,0,1,0,<ETX>
Description:
The host requests that the firmware turn high voltage on or high voltage
off.
Direction:
Host to supply
Syntax:
<STX><98><,><ARG><,><ETX>
Where:
<ARG> 1 = HV on, 0 = HV off in ASCII format
Example:
<STX>98,1,<ETX>
Response:
<STX><98><,><$><,><ETX>
<STX><98><,><ARG><,><ETX>
Direction:
Host to supply
Syntax:
<STX><99><,><ARG><,><ETX>
Where:
<ARG> 1 = Remote, 0 = Local in ASCII format
Example:
<STX>99,1,<ETX>
Response:
<STX><99><,><$><,><ETX>
<STX><99><,><ARG><,><ETX>
Direction:
Host to supply
Syntax:
<STX><07><,><ARG><,><ETX>
Where:
<ARG> 1 = 9.6k in ASCII format
<ARG> 2 = 19.2k in ASCII format
<ARG> 3 = 38.4k in ASCII format
<ARG> 4 = 57.6k in ASCII format
<ARG> 5 = 115.2k in ASCII format
Example:
<STX>07,1,><ETX>
Response:
<STX><07><,><$><,><CSUM><ETX>
<STX><07><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><0><9><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,>
<ARG5><,><ARG6><,><ARG7><,><ARG8><,><ARG9><,><ARG10><,>
<ARG11><,><ARG12><,><ARG13><,><ARG14><,><ARG15><,><ARG1
6><,><ETX>
Example:
Sending this command will set the user configurable items as follows:
<STX>09,50,1,44,50,30,4,10,0,150,0,1,1,0,0,50,1, ><ETX>
Response:
<STX><0><9><,><$><,><ETX>
syntax
<STX><2><7><,><$><,><ETX>
Response:
<STX><2><7><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,>
<ARG5><,><ARG6><,><ARG7><,><ARG8><,><ARG9><,><ARG10><,>
<ARG11><,><ARG12><,><ARG13><,><ARG14><,><ARG15><,><ARG1
6><,><ETX>
Where:
ARG2 Filament Ramp time (MSB). Units are tenths of second. Most
significant byte
ARG3 Filament ramp time (LSB). Least significant byte
ARG4 mA Ramp Time. Units are tenths of seconds.
ARG5 Minimum filament emission. Adjustable from5% to 50% of full
scale kV output
ARG6 Arc count.
ARG14 mA Ramp hold time (MSB). Units are tenths of seconds. Most
significant byte
ARG15 mA Ramp hold time (LSB). Least significant byte
ARG16 Remote programming enable.
1: Remote mode enable
0: Remote mode disable
<STX><CMD><,>ARG><,><CSUM><ETX>
Where:
<STX> = 1 ASCII 0x02 Start of Text character
<CMD> = 2 ASCII characters representing the command ID
<,> = 1 ASCII 0x2C character
<ARG> = Command Argument
<,> = 1 ASCII 0x2C character
<CSUM> = Checksum (see section 6.3 for details)
<ETX> = 1 ASCII 0x03 End of Text character
6.3 CHECKSUMS
The checksum is computed as follows:
Add the <CMD>, <,>, and <ARG> bytes into a 16 bit (or larger) word.
The bytes are added as unsigned integers.
Take the 2’s compliment (negate it).
Truncate the result down to the eight least significant bits.
Clear the most significant bit (bit 7) of the resultant byte, (bitwise AND with
0x7F).
Set the next most significant bit (bit 6) of the resultant byte (bitwise OR
with 0x40).
Using this method, the checksum is always a number between 0x40 and 0x7F.
The checksum can never be confused with the <STX> or <ETX> control
characters, since these have non-overlapping ASCII values.
The following is sample code, written in Visual Basic, for the generation of
checksums:
Dim i As Integer
Dim CSb1 As Integer
Dim CSb2 As Integer
Dim CSb3 As Integer
Dim CSb$
Dim X
X=0
For i = 1 To (Len(outputString)) 'Starting with the CMD character
X = X + Asc(Mid(outputString, i, 1)) 'adds ascii values together
Next i
CSb1 = 256 - X
CSb2 = 127 And (CSb1) 'Twos Complement
CSb3 = 64 Or (CSb2) 'OR 0x40
CSb$ = Chr(Val("&H" & (Hex(CSb3))))
ProcessOutputString = Chr(2) & outputString & CSb$ & Chr(3)
End Function
Program 99 1 ASCII 0 or 1
Local/Remote
Mode
Direction:
Host to supply
Syntax:
<STX><10><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>10,4095,<CSUM><ETX>
Response:
<STX><10><,><$><,><CSUM><ETX>
<STX><10><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><11><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>11,4095,<CSUM><ETX>
Response:
<STX><11><,><$><,><CSUM><ETX>
<STX><11><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><12><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>12,4095,<CSUM><ETX>
Response:
<STX><12><,><$><,><CSUM><ETX>
<STX><12><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><13><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>13,4095,<CSUM><ETX>
Response:
<STX><13><,><$><,><CSUM><ETX>
<STX><13><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><14><,><CSUM><ETX>
Response:
<STX><14><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>14,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><15><,><CSUM><ETX>
Response:
<STX><15><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>15,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><16><,><CSUM><ETX>
Response:
<STX><16><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>16,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><17><,><CSUM><ETX>
Response:
<STX><17><,><ARG><,><CSUM><ETX>
Where:
<ARG> = 0 - 4095 in ASCII format
Example:
<STX>17,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><21><,><CSUM><ETX>
Example:
<STX>21,<CSUM><ETX>
Response:
<STX><21><,><ARG1>< ARG2>< ARG3><ARG4><ARG5>
<.><ARG6><,><CSUM><ETX>
Where:
<.> = ASCII 0x2E
ARGx = 0 - 9 in ASCII format
Example:
<STX>21,99999.9,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><22><,><CSUM><ETX>
Example:
<STX>22,<CSUM><ETX>
Response:
<STX><22><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,><CSUM><
ETX>
Where:
<ARG1> 1 = HvOn, 0 = HvOff
<ARG2> 1 = Interlock 1 Open, 0 = Interlock 1 Closed
<ARG3> 1 = Fault Condition, 0 = No Fault
<ARG4> 1 = Remote Mode, 0 = Local Mode
Example:
<STX>22,1,1,0,0,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><23><,><CSUM><ETX>
Example:
<STX>23,<CSUM><STX>
Response:
<STX><23><,>< ARG><,><CSUM><ETX>
Where:
<ARG> consists of eleven ASCII characters representing the current
firmware part number/version. The format is SWM9999-999
Example:
<STX>23,SWM9999-999,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><24><,><CSUM><ETX>
Example:
<STX>24,<CSUM><ETX>
Response:
<STX><24><,>< ARG><,><CSUM><ETX>
Where:
<ARG> consists of 3 ASCII characters representing the hardware version.
The format is ANN, where A is an alpha character and N is a numeric
character
Example:
<STX>24,A01,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><26><,><CSUM><ETX>
Example:
<STX>26,<CSUM><ETX>
Response:
<STX><26><,><ARG><,><CSUM><ETX>
Where:
<ARG> consists of five ASCII characters representing the model number.
The format is XNNNN or DXMNN, where N is a numeric character. See
section 7.0 for model number codes.
Example:
<STX>25,X9999,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><30><,><CSUM><ETX>
Example:
<STX>30,<CSUM><ETX>
Response:
<STX><30><,><$><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><31><,><CSUM><ETX>
Example:
<STX>31,<CSUM><ETX>
Response:
<STX><31><,><$><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><55><,><CSUM><ETX>
Response:
<STX><55><,><ARG1><,><CSUM><ETX>
Where ARG1 is Interlocks 1. A 1 indicates that the Interlock is energized
Example:
<STX>55,1,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><60><,><CSUM><ETX>
Response:
<STX><60><,><ARG><,><CSUM><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>60,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><61><,><CSUM><ETX>
Response:
<STX><61><,><ARG><,><CSUM><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>61,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><62><,><CSUM><ETX>
Response:
<STX><62><,><ARG><,><CSUM><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>62,4095, <CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><65><,><CSUM><ETX>
Response:
<STX><65><,><ARG><,><CSUM><ETX>
Where:
<ARG>=0-4095 in ASCII format representing unscaled value.
Example:
<STX>65,4095,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><68><,><CSUM><ETX>
Response:
<STX><68><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,><ARG5><,
><ARG6><,><CSUM><ETX>
Where:
<ARGx> 1 = Fault, 0 = No Fault in ASCII format
ARG1 = ARC
ARG2 = Over Temperature
ARG3 = Over Voltage
ARG4 = Under Voltage
ARG5 = Over Current
ARG6 = Under Current
Example:
<STX>67,0,0,0,0,1,0,<CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><99><,><ARG><,><CSUM><ETX>
Where:
<ARG> 1 = Remote, 0 = Local in ASCII format
Example:
<STX>99,1,<CSUM><ETX>
Response:
<STX><99><,><$><,><CSUM><ETX>
<STX><99><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><07><,><ARG><,><CSUM><ETX>
Where:
<ARG> 1 = 9.6k in ASCII format
<ARG> 2 = 19.2k in ASCII format
<ARG> 3 = 38.4k in ASCII format
<ARG> 4 = 57.6k in ASCII format
<ARG> 5 = 115.2k in ASCII format
Example:
<STX>07,1,<CSUM><ETX>
Response:
<STX><07><,><$><,><CSUM><ETX>
<STX><07><,><ARG><,><CSUM><ETX>
Direction:
Host to supply
Syntax:
<STX><0><9><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,>
<ARG5><,><ARG6><,><ARG7><,><ARG8><,><ARG9><,><ARG10><,>
<ARG11><,><ARG12><,><ARG13><,><ARG14><,><ARG15><,><ARG1
6><,><CSUM><ETX>
Where:
Argument Description
Number
ARG1 kV Ramp Time. Adjustable between 1 to
20 seconds. Units are tenths of second.
Example:
Sending this command will set the user configurable items as follows:
<STX>09,50,1,44,50,30,4,10,0,150,0,1,1,0,0,50,1,<CSUM><ETX>
Response:
<STX><0><9><,><$><,><CSUM><ETX>
syntax
<STX><2><7><,><$><,><CSUM><ETX>
Response:
<STX><2><7><,><ARG1><,><ARG2><,><ARG3><,><ARG4><,>
<ARG5><,><ARG6><,><ARG7><,><ARG8><,><ARG9><,><ARG10><,>
<ARG11><,><ARG12><,><ARG13><,><ARG14><,><ARG15><,><ARG1
6><,><CSUM><ETX>
Where:
ARG2 Filament Ramp time (MSB). Units are tenths of second. Most
significant byte
ARG3 Filament ramp time (LSB). Least significant byte
ARG4 mA Ramp Time. Units are tenths of seconds.
ARG5 Minimum filament emission. Adjustable from5% to 50% of full
scale kV output
ARG6 Arc count.
ARG14 mA Ramp hold time (MSB). Units are tenths of seconds. Most
significant byte
ARG15 mA Ramp hold time (LSB). Least significant byte
ARG16 Remote programming enable.
1: Remote mode enable
0: Remote mode disable
Contact Spellman High Voltage for details and the syntax of these
commands.
6.8.3 Handshaking
The only handshaking implemented on the host interface, is built in to the
implementation of this protocol. That is, the host must initiate all
communications. If the supply receives a program command, an
acknowledge message is sent back to the host via the “$” message. If the
host does not receive an acknowledge within the time out window, the
host should consider the message lost or the device off-line.