0% found this document useful (0 votes)
11 views5 pages

Comm Ass

Uploaded by

mariam haleem
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views5 pages

Comm Ass

Uploaded by

mariam haleem
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Solved Problems on Chapter (1)

[1] Consider waveform shown in figure-1: 𝒈(𝒕)


a) Classify g(t).
𝟓
b) Find signal size (power or energy).
c) Find 𝑮(𝒇) 20 𝒕
d) Convert g(t) into periodic signal then sketch 0 10

amplitude and phase of its spectrum


−𝟓
Solution: 𝑭𝒊𝒈. 𝟏

𝑎) 𝑔(𝑡) is continuous – deterministic – digital – Aperiodic

10 20

𝑏) 𝐸𝑔 = ∫ (5)2 𝑑𝑡 + ∫ (−5)2 𝑑𝑡 = 2 × (25 × 10) = 500 𝐽𝑜𝑢𝑙𝑒


0 10

𝑡−5 𝑡 − 15
𝑐) 𝑔(𝑡) = 5𝑟𝑒𝑐𝑡 ( ) − 5𝑟𝑒𝑐𝑡 ( )
10 10

𝐺(𝑓) = 50𝑠𝑖𝑛𝑐(10𝑓)𝑒 −10𝜋𝑓 − 50𝑠𝑖𝑛𝑐(10𝑓)𝑒 −30𝜋𝑓

𝒈(𝒕)
𝟓

10 20 30 40 50 60
0 𝒕

−𝟓

𝑇𝑜 = 20

2𝜋 𝜋
𝜔𝑜 = =
20 10

Since g(t) is symmetric about x- axis, ∴ 𝑎𝑜 = 0


And since g(t) is symmetric about the origin (odd function), ∴ 𝑎𝑛 = 0

10 20
2
𝑏𝑛 = [∫ 5 sin(𝑛𝜔𝑜 𝑡) 𝑑𝑡 − ∫ 5 sin(𝑛𝜔𝑜 𝑡) 𝑑𝑡]
20
0 10

1 cos(𝑛𝜔𝑜 𝑡) 0 1 cos(𝑛𝜔𝑜 𝑡) 20
= ( | )+ ( | )
2𝑛𝜋 10 2𝑛𝜋 10

2
1 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛
= (1 − cos(𝑛𝜋) + 1 − cos(𝑛𝜋)) = { 𝑛𝜋
2𝑛𝜋
0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛

𝑎𝑜 = 0 𝑓𝑜𝑟 𝑛 = 0
2
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑢𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦: 𝐶𝑛 = { 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛
𝑛𝜋
0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛

−𝜋 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛


−1
𝑏𝑛
𝑃ℎ𝑎𝑠𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦: 𝜃𝑛 = −𝑡𝑎𝑛 ( )={
𝑎𝑛
0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑛

𝑪𝒏 𝜽𝒏

1 2 3 4 5
𝒏

0 1 4 5 𝒏
2 3
[2] Sketch waveform and spectrum of following signals:
𝒂) 𝒙(𝒕) = 𝟒 𝒔𝒊𝒏𝒄𝟐 (𝟐𝟎𝟎𝒕) 𝒄𝒐𝒔(𝟓𝟎𝟎𝟎𝝅𝒕)
𝒃) 𝒈(𝒕) = 𝟐𝟎 𝒓𝒆𝒄𝒕(𝟎. 𝟏𝒕 − 𝟓𝟎) + 𝟐𝟎 𝒓𝒆𝒄𝒕(𝟎. 𝟏𝒕 + 𝟓𝟎)
𝒄) 𝒚(𝒕) = 𝟖 + 𝟏𝟎 𝒄𝒐𝒔(𝟏𝟎𝟎𝟎𝟎𝝅𝒕)
Solution:

𝒙(𝒕)
4
1 a) 𝒄𝒐𝒔(𝟓𝟎𝟎𝟎𝝅𝒕)

0.5

0 𝒕 (ms)
−𝟏𝟎𝟎 −𝟓𝟎 𝟓𝟎 𝟏𝟎0

-0.5

-1 -4
-20 -15 -10 -5 0 5 10 15 20

X(f)

0.02

−2700 −2500 −2300 2300 2500 2700


0 𝒇 (Hz)

b)

g(t)

20

𝒕
−505 −500 −495 495 500 505
0
𝑮(𝒇)
4
1 𝒄𝒐𝒔(𝟏𝟎𝟎𝟎𝝅𝒇)

0.5

0 𝒇 (Hz)
−𝟎. 𝟐 −𝟎. 𝟏 𝟎. 𝟏 𝟎. 𝟐

-0.5

-1
-20 -15 -10 -5 0 5 10 15 20

𝒚(𝒕)
c)
1
18
0.8

0.6

0.4

0.2

-0.2

-0.4 𝒕
-0.6

-0.8

-1
0 10 20
−2 30 40 50 60

𝒀(𝒇)

𝒇 (Hz)
−𝟓𝟎𝟎𝟎 0 𝟓𝟎𝟎𝟎
[3] Calculate power of following signals:
𝝅
𝒂) 𝟓 𝐜𝐨𝐬(𝟓𝟎𝟎𝟎𝝅𝒕 + 𝟑 )
𝟓𝝅
𝒃) 𝟔 𝐜𝐨𝐬(𝟒𝟎𝟎𝝅𝒕) + 𝟏𝟎 𝐜𝐨𝐬(𝟓𝟎𝟎𝟎𝝅𝒕 + )
𝟔
𝝅 𝟓𝝅
c) 𝟏𝟎 𝐬𝐢𝐧 (𝟐𝟎𝟎𝟎𝝅𝒕 + 𝟐 ) + 𝟕 𝐜𝐨𝐬(𝟐𝟎𝟎𝟎𝝅𝒕 + )
𝟔

Solution:
(5)2
𝑎) 𝑃𝑥 = = 12.5 V 2 / sec
2
(6)2 (10)2
𝑏) 𝑃𝑥 = + = 68 V 2 / sec
2 2
𝜋 5𝜋 𝜋
𝑐) 𝑥(𝑡) = 10 𝑠𝑖𝑛 (2000𝜋𝑡 + ) + 7 𝑠𝑖𝑛(2000𝜋𝑡 + + )
2 6 2
𝜋 4𝜋
= 10 𝑠𝑖𝑛 (2000𝜋𝑡 + ) + 7 𝑠𝑖𝑛(2000𝜋𝑡 + )
2 3
(10)2 (7)2 4𝜋 𝜋
𝑃𝑥 = + + (10) × (7) × cos ( − ) = 13.8782 V 2 / sec
2 2 3 2

You might also like