0% found this document useful (0 votes)
54 views18 pages

Integration by Parts

Uploaded by

Yousef Hany
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
54 views18 pages

Integration by Parts

Uploaded by

Yousef Hany
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

Integration by

Parts
Example:

� 𝑥𝑥 𝑒𝑒 𝑥𝑥 𝑑𝑑𝑑𝑑
𝒖𝒖 = 𝒙𝒙 𝒅𝒅𝒅𝒅 = 𝒆𝒆𝒙𝒙 𝒅𝒅𝒅𝒅

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑣𝑣 = 𝑒𝑒 𝑥𝑥

𝑥𝑥 𝑥𝑥 𝑥𝑥
∫ 𝑥𝑥 𝑒𝑒 𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑒𝑒 − ∫ 𝑑𝑑𝑑𝑑
𝑒𝑒
= 𝑥𝑥𝑒𝑒 𝑥𝑥 − 𝑒𝑒 𝑥𝑥 + 𝐶𝐶
Steps:
1- Determine the 𝑢𝑢 value by using LIPET rule

• L = Logarithmic function

• I = Inverse trigonometric function

• P =Polynomial function

• E = Exponential function

• T = Trigonometric function

2- Let 𝑑𝑑𝑑𝑑 be other function

3- Find 𝑑𝑑𝑑𝑑 and 𝑣𝑣

4- Plug into formula and integrate


� sin−1 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑢𝑢 = sin−1 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑


1 𝑣𝑣 = 𝑥𝑥
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
1 − 𝑥𝑥 2

𝑥𝑥
∫ sin−1 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑥𝑥 sin−1 𝑥𝑥 − ∫ 1−𝑥𝑥 2
𝑑𝑑𝑑𝑑
−1
1
= 𝑥𝑥 sin−1 𝑥𝑥 − ∫ −2𝑥𝑥 1 − 𝑥𝑥 2 2 𝑑𝑑𝑑𝑑
−2

1
1 2
1−𝑥𝑥 2
= 𝑥𝑥 sin−1 𝑥𝑥 + 1 + 𝐶𝐶
2
2

1
= 𝑥𝑥 sin−1 𝑥𝑥 + 1 − 𝑥𝑥 2 2 + 𝐶𝐶
Tabular Method:
Example: + 𝑥𝑥 3 𝑒𝑒 2𝑥𝑥
− 3𝑥𝑥 2 1 2𝑥𝑥
∫ 𝑥𝑥 3 𝑒𝑒 2𝑥𝑥 𝑑𝑑𝑑𝑑 2
𝑒𝑒

1 3 2𝑥𝑥 3 2 2𝑥𝑥 + 6𝑥𝑥 1 2𝑥𝑥


= 𝑥𝑥 𝑒𝑒 − 𝑥𝑥 𝑒𝑒 𝑒𝑒
2 4 4
− 6 1 2𝑥𝑥
6 6 𝑒𝑒
+ 𝑥𝑥 𝑒𝑒 − 𝑒𝑒 2𝑥𝑥 +
2𝑥𝑥
𝐶𝐶 8
8 16
0 1 2𝑥𝑥
𝑒𝑒
16
Example: + 𝑥𝑥 2 cos 3𝑥𝑥
− 2𝑥𝑥 1
∫ 𝑥𝑥 2 cos 3𝑥𝑥 𝑑𝑑𝑑𝑑 3
sin 3𝑥𝑥
1 2 2 + 2 −1
= 𝑥𝑥 sin 3𝑥𝑥 + 𝑥𝑥 cos 3𝑥𝑥 9
cos 3𝑥𝑥
3 9
2 − 0 −1
− sin 3𝑥𝑥 + 𝐶𝐶 27
sin 3𝑥𝑥
27
Example: + 𝑥𝑥 3 + 2𝑥𝑥 sin 2𝑥𝑥
− 3𝑥𝑥 2 +2 −1
∫(𝑥𝑥 3 + 2𝑥𝑥) sin 2𝑥𝑥 𝑑𝑑𝑑𝑑 cos 2𝑥𝑥
2
−1 + 6𝑥𝑥 −1
= (𝑥𝑥 3 + 2𝑥𝑥) cos 2𝑥𝑥 sin 2𝑥𝑥
2 4
1 − 6 1
+ (3𝑥𝑥 2 + 2) sin 2𝑥𝑥 cos 2𝑥𝑥
4 8
6 0 1
+ 𝑥𝑥 cos 2𝑥𝑥 16
sin 2𝑥𝑥
8
6
− sin 2𝑥𝑥 + 𝐶𝐶
16
Repeated Integrals:
Example:
Solution:
Another solution: + 𝑒𝑒 𝑥𝑥 cos 𝑥𝑥
∫ 𝑒𝑒 𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑 − 𝑒𝑒 𝑥𝑥 sin 𝑥𝑥
𝑥𝑥 𝑥𝑥 +� 𝑒𝑒 𝑥𝑥 − cos 𝑥𝑥
= 𝑒𝑒 sin 𝑥𝑥 + 𝑒𝑒 cos 𝑥𝑥
− ∫ 𝑒𝑒 𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑
2∫ 𝑒𝑒 𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝑥𝑥 sin 𝑥𝑥 + 𝑒𝑒 𝑥𝑥 cos 𝑥𝑥
𝑥𝑥 1 𝑥𝑥
∫ 𝑒𝑒 cos 𝑥𝑥 𝑑𝑑𝑑𝑑 = [𝑒𝑒 sin 𝑥𝑥 + 𝑒𝑒 𝑥𝑥 cos 𝑥𝑥] + 𝐶𝐶
2
3𝑥𝑥 + 𝑒𝑒 3𝑥𝑥 cos 2𝑥𝑥
Example:∫ 𝑒𝑒 cos 2𝑥𝑥 𝑑𝑑𝑑𝑑 − 3𝑒𝑒 3𝑥𝑥 1
sin 2𝑥𝑥
Solution: 9𝑒𝑒 3𝑥𝑥
2
−1
+� cos 2𝑥𝑥
4

∫ 𝑒𝑒 3𝑥𝑥 cos 2𝑥𝑥 𝑑𝑑𝑑𝑑


1 3𝑥𝑥 3 3𝑥𝑥 9
= 𝑒𝑒 sin 2𝑥𝑥 + 𝑒𝑒 cos 2𝑥𝑥 − ∫ 𝑒𝑒 3𝑥𝑥 cos 2𝑥𝑥 𝑑𝑑𝑑𝑑
2 4 4
13 3𝑥𝑥 1 3𝑥𝑥 3 3𝑥𝑥
4
∫ 𝑒𝑒 cos 2𝑥𝑥 𝑑𝑑𝑑𝑑 = 2 𝑒𝑒 sin 2𝑥𝑥 + 4 𝑒𝑒 cos 2𝑥𝑥
3𝑥𝑥 4 1 3𝑥𝑥 3 3𝑥𝑥
∫ 𝑒𝑒 cos 2𝑥𝑥 𝑑𝑑𝑑𝑑 = 13 [2 𝑒𝑒 sin 2𝑥𝑥 + 4 𝑒𝑒 cos 2𝑥𝑥] + 𝐶𝐶
Example: 𝒖𝒖 = cos ln 𝑥𝑥 𝒅𝒅𝒅𝒅 = 𝒅𝒅𝒅𝒅

Evaluate: ∫ cos ln 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = −sin ln 𝑥𝑥


1
𝑥𝑥
𝑣𝑣 = 𝑥𝑥

Solution:
∫ cos ln 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑥𝑥 cos ln 𝑥𝑥 + ∫ sin ln 𝑥𝑥 𝑑𝑑𝑑𝑑

You might also like