Dynamics Problems and Solutions
Dynamics Problems and Solutions
For 0 StSt,
A, = X Vmax X t, = 4
8
For t, S 1s 10.4
Vmax
0 ti
A = (10.4 - 10.4 -tË 104
Put value of t, from t)vmax =96 ....ii)
equation (i) in Fig. Ex.39
equation (ii) to get
104 8
Vmax XVmaX = 96
(10.4Vmax - 8) = 96
Vmax = 10 m/s.
Hence t, = =
= 0.8 s
Initial acceleration = Slope of v-t Vmax
diagram from 0 to 0.8 s
dv V.
max Vo
a =
di t - 0
10-0 = 12.5 m/s
0.8
.:. (i) Initial acceleration a = 12.5 mn/s
...Ans.
(ii) Maximum velocity vmax = 10 m/s Ans.
Example 40 :
100 km/hr from InAtotraveling a
car uniform B for t distance
sec.
of 3
If brakes are km between points A and D, car
D with deceleration from 100 km/hr applied for 4 seconds 1s driven
to
uniform speed of 60 km/hr. Find the km/hr and it takes t
60 between B and C to
value seconds to move fromgivea
Solution :
Representing
v-t diagram, weuse the given data by
of time t. C0
tv (m/s)
Distance travelled = Area under y-t 100 x5 A
[Refer figure Ex.40] diagram 18
60 x
18
3000 = 100
x+0o0x418
+ 60 x 5
18
t =65.5 s Ans,
Fig. Ex 40
Rectilinear Mötion 313
af Particle
Chp 1 Kinematics
10 20 30 40 50 t (s)
Fig. Ex. 42 (b) : -t 10 20
diagram 30 40 50 t(8
Fig. Ex.42(c) : a-t
JExample 43 : A car travels along a diagram
road with the speed shown by the straight v(m/s)
Determine the total v-t graph.
distance
until it stops when t= 48 8. the car travels 6
I-t iagram and a-tdiagram are plotted as shown in figure Ex.43(b) and fc).
a(m/s
0.2 0.2
x (m)
144 0.1
150
48
t (s)
100 90 10 20 30 40 50
-0.1
50
t(s) -0.2
10 20 30 40 48
-0.3
-0.33
Fig. Ex. 43 (b) : x-t diagram
-0.4 Fig. Ex. 43(c) : a-t diagram
v (m/s)
Example 44 : Thev-t diagram for a particle
moving along straight line is shown in figure
Ex. 44 (a). Knowing thatx=-10 m at t =0 4
(a) Plot X-t and a-t diagram for 0<|< 50 s.
(b) Determine the maximum value of 2
position coordinate and the value of r for
which the particle is at a distance of 55 m
from the origin. 5 10 15 20 25 30 35 40 45 50 ts)
-2
Solution : Given initial condition, at t =0,
Xo =-10 m, vo = 2 m/s 4
Area under v-t diagram = Change in position (Ar) Fig. Ex, 44(a) v-t diagram
[Refer figure Ex. 44 (a)]
316 Engineeriag Mechanicg DYNAMICS
0 -0.4
5 10 15 20 25 30 35 40 45\ 50 t (s)
-10
-20
-0.6.
-30
-20
-0.8
Fig. Ex. 44(b) : x-t diagram
-1
For 6 S tS 10 s a=
dv V10- V6-8-8-4 m/s
dt 10 -6 4
’t(s)
For x-t diagram 2 4
0 t (s) At s
4 6 10 20
16
-2 10 At s
0
2 4 6 8 10 t(
am
Fig. Ex. 45 (c) : a-t diagram Fig. Ex. 45(d) : *-t diagram is th
partic
speed
AV(m/s)
Example 46 : The v-s graph of a rectilinear the p
moving particle is shown in figure Ex.46(a). 6
Find the acceleration of the particle at s = 20 m. Solut
80 m and 200 m.
4
Area
Solution: We have (Refe
dv 2
Acceleration, a = v
ds For 0
dv V210 - V180
For 180 Sss 210 m Slope ds 210 - 180 2
0-6 V200 For
= -0.2 V20
30
180 210 sD
0
20 60 80 120 200
By comparison of triangles (Refer figure Ex. 46(b)] Fig. Ex.46(b) Maxi
V20 V60 V20 6
20 60
.. V20 = 2m/s when s = 20 m Maxi
20 60
Vgn = 6 m/s when s = 80 m
Ch 1 Kinsmatics of Particie Rectillne at Motion 319
Ats = 20m. V=2 m/s and dv -0.1 . a= v 2 x0.1 - 0.2 m/s Ans.
ds ds
dv dv
At s = 80 m, V=6m/s and =0 Ans.
ds ds
Ats = 200 m, v=2m/s and dv =-0,2 .. a= v =2x (-0.2) = -0.4 m/s Ans.
ds ds
For 20 sts 40 s A, = 20 x 12 = 240 = V40 - V20 = V40 - 120 .V40 = 360 m/s
m)
For 0 s ts 50s, Xs0 = X40 t V40 Xs0 - 40) Fig. Ex. 47(b)
= 5600+ 360 x 10 +60x 3
x10 = 9600m
Maximum speed of the particle occurs at t= 50 s and vmax = 420 m's Ans.
and (d)
Plot v-t and x-f diagram as shown in figure Ex.47(c)
v (m/s) x (m)
Parabolic 10000
500
gnd degree 420
8000
9200
400
360
2nd 120,
100 2000
degree 800
10 20 30 40 50 t (s) 10 20 30 40
50
Fig. Ex.47(c) : v-t diagram Fig. Ex.47(d) : x-t diagram
Alternative solution for x-t diagram. (using v-tdiagram)
Area under v-tdiagram = Change in position (Ar)
[Refer figure Ex.47(c)]
a xb
For 0S ts20 s. A, = Here a = 20, b =120 and n =2 (Degree)
20 x 120
= 800 = X0-Xo = X0 -0 X20 = 800 m
2+1
(120 + 360) x20 = 4800 = X40 - X20= X40
For 20 <tS 40s, A, = 800 xA0 = 5600
2
nab
For 40<tS 50 s, A, = 10 x 360 + n+1 Here n = 2, a = 10, b= 60
+2 x 10x 60
A = 3600 2+ 1
= 4000= Xs0 -40 = Xs0 - 5600
.. Xs0 = 9600 m
Plot x-t diagram as shown in figure Ex.47(d)
a (m/s)
i,=x 1=t,
Fig. Ex. 48 (b)
1.5
0.5 1.0+
0.5
0.166
A A4
1 2 3 4 t(s) 1 2 3 4 t (s)
Fig. Ex.48(c) : v-t diagram Fig. Ex. 48(d) : *-t diagram
axh
For 0 stSls, Area 4, Here n2, u I , b=0.5
Ix0.5 -0.166 X- Xo -0
A
2+1
nab
For l stS 2s, Area A, Ix 0.5 + Here n= 2, a = 1, h= ).5
n+1
2 x Ix 0.5 =0.834 = X) -X = X, - 0.166
. A, = 0.5 + 2+1
nab
For 2sS3s. Area 4, = Ix 0.5 + n+1 Here n =2, a = 1, b= 0.5
.: A4 = 1x 0.5 = Ax = X4 - X X-1.833
2+1 .X4 = 2m
Now, plot x-t diagram as shown in figure Ex. 48(d)
a(m/s)
2
Example 49 : The acceleration - time diagram
for the linear notion iS shown in figure
Ex.49(a). Construct velocity - time diagram
and displacement - time diagram for the motion
assuming that the motion starts with initial
velocity of 5 m's from the starting point.
Solution: Initial condition : At t= 0, Xo =0,
Vo = 5 m/s 12 t(s
Fig. Ex. 49(a) :a-t diagram
Area under a-t diagram = Change in velocity (Av)
[Refer figure Ex.49(a)]
For 0<tS6s, Area A, =x6x l =3 = V% - Vo = V6- 5 .. V = 8 ms
2
75
Degree 3
cubic
50
5 42
25
6 12 t (s) 6 12 t (s)
Fig. Ex.49(c) : v-t diagram Fig. Ex. 49 (d) : x-t diagram
Alternative solution for x-t diagram. (Using v-t diagram)
Area under v-t diagram = Change in position (Ar) (Refer figure Ex.49(c))
nab
For 0 <tS6s, Area A, = A + A = 5x6+ Here n = 2. a = 6, b = 3
n +1
.A, = 30 + O = 42 = X -Xo = X6 - 0 .. X = 42 m
2+1
ab
For 6 St s12 s, Area A, = A} + A = 6x 8 + n+1 Here n= 2, a= 6, b = 6
6x6
.. A, = 48 + = 102 n
2+ 1 = 60 = X2-X6 = X12 - 42
Now, plot x-tdiagram as shown in figure Ex. 49(d).
Example 50 : An airplane lands on the straight a (m/s)
runway, originally traveling at 20.5 m/s. If it is 5 10 15 20
subjected to the decelerations as shown in t (s)
figure Ex. 50(a), determine the time needed to
-0.5
stop the airplane. Construct v-t and s-t graph.
Solution :Given initial condition :
Att= 0, X =0., Vo =20.5 m/s, a=0
.4
For drawing v-tgraph from a-t diagram, we use Fig. Ex.50 (a) : a-t diagram
Area under a-t diagram = Change in velocity (Av)
0Sts s. Area A = 0= Vs - Vo = V; - 20.5 .. V = 20.5 m/s
Area 4, = 5x-0.5 = -2.5 = v0 -Vs = Vi0- 20.5 .. Vo = 18 m/s
5Sts10 s.
10sts 20 s, Area A = 10 x -1.4 = -14 = V20 - Vo = V20 - 18 . V20 4 m/s
25 350
20.5
20 300 308 75
250
15
10 200 198.75/
5 150
100 102.5)
5 10 15 20 25 2830 t (s) 50
Fig. Ex.50(b) : v-t diagram
5 10 15
20 25 2830
For 0 <tS5 s, Fig. Ex. 50(c) : x-t
Area A, = 5 x20.5 = x, - Xo = Xs diagram
-0
For 5sts 10 s, Area A, =20.5 +18)
2 x 5=X10 - Xs =X10 -
02.5
For 10 <IS 20 s, Area A; =
x 10 = X20 - X10 =
X0 -
198.75 X20 = 308. 7
For 20 <tS 28 s, Area A =
x 8x 4= Xg- X0 =
Now, construct x-t diagram as X2g - 308.75 Ig = 324. 7%
shown in figure Ex. 50(c)
Example 51: The acceleration for the
plane traveling along a straight small a (m/s)
in figure Ex.51 (a). runway is shown
50 m/s when Knowing that x=0 and y=
the plane at t=0, determine (a)
= 15 s, 25 s and 30 s the velocity of
(b) its
velocity during the interval 5 <t<25 s. average
Solution:Given initial
At t=0, X= 0, VÍ = condition : 10
A5 25 30
50 m/s 20
(a) Area under a-t
diagram = Change in velocity
(Refer figure Ex.51 (a)] (Av)
-1
0sts5 s, Area A=0 = Vs - Fig. Ex. 51 (a) : a-t diagran
Vo = Vs- 50
5StsI5 s, Area A, = x 10 x 1 =Vs
.. V7 50 ms
- Vs = Vs - 50
15StS 25 s, Area A, = x10 x 1 =
. Vs = 45 ms
2 Vs - Vis = Vs - 45 ..Vs= 50 ms
Chp 1 Ginemacies of Patiele Rectslinear Moton 325