100%(1)100% found this document useful (1 vote) 501 views122 pagesMaths3 Gold
This is helpful for the engineering students as this pdf includes all the previous year questions
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
FOURIER TRANSFORMS
eee
Qu Express the function
‘Ass Fourier integral fee P is
Fie 21 0.
fro
aes
Jing Fourier integral representa-
fon, show thetQi: Find the Fourler transform of
fy tsl
hea, /)
ay Wekoww tae Piel = [ROEM |
oo I
ri 8
zi > ruta = | Mayers [fede
9 Find the Pour of Blok ficson |
iar tence bacocnscats ren
a)
fa fortes
no) a
|o otherwise 04 fa~x'yae +0UNT-1~B-TE04,
Joon sisive
[> even det] O a aapede
= of-P oer deco
[fesies =2f pasar ip
and 04 f= 09)
ns
= ofa eocte
=v) ate
Qs. Find Fourier transform of she
{llowing functions
{i+2.toro F)
; Senco ener
Smears eaey Soa Pa
een tse
BS eu escent
Titoli is
eS = Levees # Gara
est 140-70 eptia
[oon Pee)
tte - " |
Be, 2 eas a
; QS, Find Laplace Transformof®e%,
no U8 {
anitatorss ae s
Woke Het = ees : i
Shy change of ele poports, ve avei aot
nee a
Beene =} F
ion intel
ee fem
spa Aon bth sitesk
Pusu
ofrfs 1fto
log (6+ 1) — log (6+ 3)
[Putting 5 = 9)
29. Using unit step function, find jh,
Laplace Transform OF) 1)? u(t) Gy
sintn (9),
Ane Lit yt D) = eb (6 +1~ Fj
ogo Ue —all= end Kian]
eta! _ Bet
Fer Let =
OO Hoi ta e— pm eZ Gain 42)
= © Lain t)
=e Lain y)
= os Ans,
2.80. State second shifting theorem for
Laplace transform and hence find the
Laplace
transform of the follow
ing
function:
fe i>e
POSH ee
Ans. Second Shifting theorem:
Form if fofe Fler
then U0-«) wea] = ea my)
Form I: Tf £G()] = Fe)
then L/@)u(~o)] =e Li @4 @)
Form DEHLI @)]= Fe)
ft-a) toa
od B= 1 ee
then Lig @) =e F@)
toa
f= hee
or Ae eu ta)
3 UO) = 0% Leloag
iby
te)
Fal i
following function {(}) =a
Q31. Express the following |
in terms of unit step function and find i? |
Qs2. |
Laplace transform: terme
fet acres ae
= irl execs
Roe 124=H eqn
=H O47 uy
et Bina
=- Dud) Tug
Laplace transform of beth siden a
Ue ue) — Yh ue ay) 4,
{
Ser
Tak * 0
Ans, Ift ioe botweon Gand 1, (2) =
Tec tine between 1 and 2, (A seprasents
mt — 9)) 9 [ce — 3) ..c4) straight line passing throvgh (i, 0) a0
so20nil shifting theorm, we Ts eqjuation te
ull =<" 2 G+ 0] be
© Aepipineabove result in (vege, Bee Bat
DOI= DLE + 0)" 2 rhe + aya) “Line passing through (x,,.,Jand]
et,
[
Thus, Ho)
e-1icred
1 se
In terms of unit step fimetion 1 (¢ ~ a),
HO =O fu 0) — ult — 1+ —1)
fu @-1)—wt—2 +1 fw 25)
—NuG—D-—¢— Due
D6
ute
G-be
=H Blu 4)
yy second shifting theorem, we have
Lf] wea = Lp + @)]
Applying above result-in (1), we at,
Lif @)= 6? Dt~ 3)
€*1[@42)-2]
=e* (Lio) —e** (LO)
lr La"
Q.d8. Define Laplace Transformot Periodic
function.
638 the following function in
Funit step function and find itsper —unre
tne nh Teoy — un —MaTHMaries.n,
aallifVis npc fontpeeih pind 7 1 jerind 2a, elven
eon 8 Tr a
meres nentn
Sayeceafetone |
gxtsa
astaie
Ric: As ee eee a
Riowins nected ee paren eee
Ts hb << Raw tooth wove of ad Pare + Fees bate nk
period 5 (0703011) GoMart wth fei ier ee bono th
; erodes ty rein Ped
lo bapender ae on
a eee ‘ 28 ya righ of eve Bint
co" when Treatment
1 (renee, it : 4
se Af0) fe
; ik 4
x ren sins agora
z + ,
net fonegyeh y fe
ye a
f afo1= j 0p
(were 7 pend ot
Be ttapiand ate
Heanolormofihe sinag tar no
eaten sider nave tush
% THe Stu)
5: Lean the graph and Bac
transform: of the (allows[Ba-t astcoq
When tlies between 0 nnd,
T= twhich is lice y
en ¢ Hes between 9 and =
ce ebetrean a and Ba, 0) =
| Fanction it Periodic with period 2a,
Above BrAPHs Aro repeated at intorvel of
a4
Thus eraph of above function ie a below.
Bi
) a] t 7 we nN
a, rs
2nd Part:
We know that for 2 periodic function f),
UpOl= aa hy oF
[where T riod of the function]
1 F
EMO = q_—e ei
[+ Givon function has period 2a]
ee ee
Res
ee
“Fare
tod * is
Q.97. A periodic function of period“
defined by
Rsinot0=t<"
MON, E A=
Putting =~ 4. we get.~9=-3B>B
2x-1
=
Ge)
Pn x=st
4 eking inverse Leplace Transform of both
sides
208 Ue
Q.48. Find the Inverse Laplace of the
Fanction
#
Q4i Find the Inverse Laplace trans! form
1
Fete) z
1 fh Z
) irerake
of
Te + ¢ as perfect equars, We
me
ae
da andisubteact (3 |]
SFE Fa) oa
asform of both #4
Taking inverse Laplace tr
ake
ada y18
Taking mverse Laplace Transform of both
fara
ides,(30) SUNT —
B.TECH, —Uc.U.—MATHENATICS-
sa) =o 1 FY) t
4
1)
e+ a= e981 ERY
6 i]
\ = cosaz, £1[
3 | Q45. Find the
Inverse Laplace
s+
Transformation of + aaa
‘tontion Of (3 65+ 15
i
= 52 Boost + dn gi Ans, E
5o' tein 3) .
Qi44. Find the luverse Lapiace Transform
we add and subtract | @48. Find the Inverse Laplace
‘Transform
iF
~~ gt t4g+5 (8 +1
Taking Inverse Laplace Trasrtorm of bat a h|
Peet place Trasnform of both laae
we get, HELP) = 70),
De RG) =
L(s#2yP 41.
Bee)&
Putting above value in Gs
gan)
= sinntt| 1-5
—Eain ete)
i
Be
MELT) =/O.then |
Wren Fe) =ft—aut-0)]
@)
[FO =s Pew FS}
= fit-o.ut-a)]
4)
ace
L
shen Le ® FO} =/tt
(Fare =-
(rere)
inet -2y¢-1) [sy
x = ¢-Dut-)-3@-3)ue-3)
From @ and G0)
Q.49. Find the Inverse Laplace’ ‘Transform
of epi e?-
seraa lem di), Oa
writ nd") Fy sad. @ a
‘Ana We vhall fini Gnd 6% Tween
partial acco [sS it)
il 1 AB, cy = e
y ay ere Q.60, Find the Inverse Laptnes 9, '
L i ah ca 60.7 : eLuplace Teinstorg
ne 1 ettog (+2)
Putting #=0, we got, 1 = Ba) > B a
Ans. Hore F(s)= og (1 +4)
Prittingss=—a, we get b= Cats C= | We hav & _
Lara Qs2
Pemgiramniinabdeniece | iy
a) (4) j2'| 2 re) flos
5 2a" A+ 2a] — .
et,
Taking inverse Laplace transform of both
Q5L Find the Tavetse Laplac
¢ Transform
‘orem for Inver
vansform we now that
FA eM) =f ayy.¢
Ww)= fe
AppIving above roante,
econd shifting |Beli ste)|
Pind the Inverse Laplace Transfortn
Cs 2) ure
UTU 2010, 2012, 5 mark
ena, ES =
13) fh
Sec ere
form Ae
{ 1
ra iat
: By convolution thearem
1, ©) FO) = [AC xpdLf sia
= sfsintet—2xycoea de
w
lity
= 7 sinl2e—2aycon de
(Multiplying and diving
i
z 5 [evinces 2x + x)+ sin 2e ay
[. 2sin A.cos B= cin (A + B) + ain (A-gy
F (foin(2t — x)-+ 9in(2e ~ 3x) lee
fins) «ay /202% || os
eh PCs,
= {cost +i%c080— 20086]
2
; (
[+ Joiners bye = 08a)
{ ae
: L
= St emt—1 = 1+ 5005021 —3)]
60. Applying convolution to find
=F, 6), (0)
where F, (s) =
1
= (e031 ~ cos 24)
Q.6L. Using convolution theroem, find
inverse Laplace Transformation of
ete cey ahL"
B : =a y
¥ convolution thorem, we have => IA (R, @) =cost at =f etl
op A : ;
0 : © Fe) = fi fcayp sya coat Gyo 8 = oad
and =
By convolution theorem, we have
Eh, OR O1= [ Ae@ae mae
=3)
m, find
fon of
sinatt —*)
p fener as
Ty'sin(at — ax)co8ax dy
pt
ede f tein tar ax re0n ay ds
[Multiplying and dividing by 3)
1 plsin(at ax eax)
2 gdtssin(at —ax —ax)}dx
Acos B= sin (A+R)
pam sin (A—B))
JL fener snes anos
62. Apply convolution theorem to
eanate E” [= 7
1" IF, (s)
ad 1 (P, (0)
BY convolution theor
11, @) Hye)
facone-oe
wed O44
= t
p
= foontx ona Bit — xd
= 1 fe coosiccon (2k 2290
a
Multipiying and dividing by 21
Lf feon(te + Bt Be) oon 24 2a]
[52 coe-A.cns B= cos (A + B)> cos (8
a 1
= Lfoostade 14 | conan — 2d
Eee EE
|
fi
[i fovstex-o) sin(ax +6)
08 2)» [eincAl 22) —ha(-29)]
= Lreosat + 4[sin2¢+sin2y]
3
[sin @@)=—sine)
3 i
4 peoa2s + tain 2t
re
Q.63. Using conyelation theorem, find
inverse Laplace Transform ofF wmizattn thoes, we HAYS
oleate
-} Fanmgnr= LC
BR OA ; :
2 Baar ra
nina tinal) gy
eae
eee
Olea)
Hainaain(at
on)
aginavsin(at ~ axe
{Auliplying and dividing by 2)
J jeosax us a8) eo(or 4 08 iee
[Bain Asin B= cos (4—2)— cos (A+ B))
2a
1 | fsintax
zal 2a
[: Joostne+pyie=
1 /sin@ai—at)
a
= ss inat—atensai)
Q64.Using convolution theorem, evaluate
Mere sl
[UTU 2010 10 marks.]
Cre
Anis, =
© Piva + i)
where F; ()
F,0= Fe
+E (F, (9)] = 008 at =/, (#) [Let]
and L7 (2, (6)] = e08 bt=f, ( [Let)
By convolution theorem, we have, |
ELF, (6) P, @) = f KGa —ayar Qe
ae
=f
Faye +B
1s axccos bt — zx)ckx An
Zeoaaxccoe(bt — bxde
[Multiplying and dividing by)
[castor +-ht — br) +cos(axr—
+ ble
+B) + cos (AB)
cotta Ds Lbthd +t [costa tbs —a
Hf sin oD r0a)]= b=
vorf te]
14F GH
. fen ainee
y= Bed 21
‘|
AD =i by Laplace
vin
transform,
Ans. Replacing by x
Given equation ie
ae
Making Leplace transform and ucing
‘convolution theorem, we havo,
a
=i 5 {=} = rn
aig _ Tel
Hien NY rt) =
al fe
rt
11
Taking Laplave invorss, wo got
Perec
Byyat ps
Ge;
*0= 2 | a(t) i]
MATHEMATICS
1
y=
Qe, Solve the ¥() the equation 5 4
1 + foeneose ~x\dx
‘Ans. Given equation is
1@O= 1+ [reyes — aay
Taking 1.7. of both: aides,
Hy @ ]= Hi +1) f sadease— i)
= 2 Hxobteosto}
8
By Convolution theorem
ade | = EF OELA
7 where F =Liy(
ain) se‘Taking the Inverse Laplace Transform of
both sides, we get
>
pe eo |
73 [eave Gaya |
ein2t|
[eves
“3
Bees,
Ges oe! int +
requitedsolution.
Qt. Using Laplace Transform, find the
Solittion of the initial value problem
é
Get bcos 3.189 0-2, @)-0
sin 24) which is the
Ans, Given differential equation is
¥"*9y=6 cos 3 ©
Conditions are y (0) @=0
Taking Laplace transform of both sides
FG), we get
TON+9'% by) = 67. Joos 34]
Q.72. Solve the followin,
different equation b:
transformation,
Ds-3 =e, Dy tx
Ans.
‘Taking Laplace Transforms of (1
a
and Fr |
2008 2¢+ tain 3¢
>
ig simultaneous
y using Laplace
sin 6, x)= 1,5,
(UTU-2011)
an 0=¢ @
D pce ai @
ae taint ~@
we get
_ ied
HOS Sap
ae = dx
Taking Laplace transform of (2), we get dy
[3-9]
Solving (8) and @) for = and 7, we have
x
1
Sel> HEA 7=0 Fa) «09 00)=0)
=> aes Dy a0 sn tél)
Again, taking Laplaca Transform of Gi) we
Bae emt shins Loin tons) vane
Ube) 4 2 Ly] = Let]
9 a
Sige cost+ 2sint i cas
dle beast) ~@ = ax —x(0) vay =
on
Neo)
8 Inverse Laplace of (6),
Place | ‘oking aplace of 6), we get i wae
“Thay = |
a a
‘=O
1-207 x i
2) a: +2y = eal (ivy
a Equation (i) equations (i) gives,
s-1-2),
+ dy
Wwe get sy= eae)
{
4
Qi Solve the following simultaneous
Giirential equations by Laplace
Transform
@
- get
W)=y (0) =0.
Bis: Givon equations are
0
ave
=3
P -0.70-0 - Fromequation @O
J Given system of equations can tere" itten a
s ; +2y eet
Ft4yy= 0 Be
ee «
Rt oy=
ing Laplace Tranef?
rm of (), we get
={U. — MATHEMATICS
Ans. Convolution Theorem:
Lf, O1=F,
and Eff, (0) = Fy (0)
then olf icone x)dx
Proof: We know that
LYON = fe" fede
ia] AGI was] ;
fe [Aeris ae B
30= dee") = fol 5? “hCG ade
BE erties axa or = LL enCOne —xdeds a
expontntial order a as.¢ >», then prov {By Changing the order of intagratio
that the Laplace Transform of f (t) exists ‘ng the order of integration]
for >a, fuTv-2011) Ue ° es |
£4 —2at |
J
dt = fe" Pidat + fem Rar
" Tg ya
nally 2
Z, okists since Fi) is sect
sontinuous in every finite mterval 0
ra ytuh= a
> 8+ u(t) [eB
=> u=x-3
Putting above values and consemed values from table in (), we get
= Se
29 EO 9) Eee) mDe
RL
~ x 4 6)4 G3 — G3 + bx + 63-6)
®
+48 Beto) Gas ete ae 6)
2 i
Fon (4) ME PUES Ain above rol
308 fay = 44
Ra) = 39
3
fhe interpolati:
d Uibokasans ing polynomial
fale Reeoroen She /eiven tab which satisfies the following data and hi
= 1 hoe TUTU 2016, 17, 5 Marke
| — aieae i 17, 6 Marks)
toe » [10 :
aL. - 1
ios sip Wa teas AU
oh =a we Newton's backword int
ynomiy ie Neston becorord tnvrpolation formals, For
a Ee.
i 7 3
8 | 1
10 wo
Br Newton's Gregory backword interpolation formula,
flor, tah) = £&) +2 Vie) — Dorp)
®
Here ‘
nierval of diffexencing = 1
yalue of which fis to be calculated
u
oncened values from table
-9
— Mes 1048-9)
il
+8 (¢—10))* 4
n (1), we get,
2 — 19x +90) + (2-8) (2 — 19x + 90)
_ 19+ 90) + Ge — 1922+ 908)
get + 1522 - 720)
2+ 242 x— 720)
zi
a=
a 9+8(x—10) + 42-1
9x + 90) + G
~ 431|EMATICS-I
Putting concerned values from table
ull 5 6 i
iid ate ee
sehy ene Nort divided diferenc G8) + 9 Ge
For thi we HAO, whore divided = 48 + 52x—208 + 15 (9,
using 8A) = “pa pando. 20) + Ge— 7) (9 — O44)
anderen and a =~ 160+ 52x +15 (2
arena An a ee
ml are] Aue) | S72) [4°79 4 24 3p |
paved] 8% de RO * 63x]
|
ae |
(Putting + = 2]
= 72) = @)-@y
> 72,
Also, (8) = 83 — 8?
= AS) = 48
Again, (15) = 153
[Putting «= 8 in fy
[Putting x = 15 inf
ae _ = f15) = 3150 (Putting « = 15 in ff
ty Newton's divided difference: es y
toe J Avia) # G25) Hence, f(2)= 4, F(8) = 448, 15) = 3150
7) + @— 3) x) @~ x.) 0° fi
Q.22. Construct the divided difference
table for the data.
T
[= 05 5.0 |
181.0 28:
12 |
polynomial and an approximation to
16 [30
|
im) 162 bar | so
Hetice find tho interpolating
8
the value of fix}
Ans. Weconsteuct the fivited difforonce table by using A/a) =
2 divided difference
Pealetlated between and b. table
follows.
131.0
100.75
282.12
| 159.25
80 521.0
By Newton's divided difference formula wae
AA = [0%5) + (x — 19) Aflay) + = 80 —%
Z BE fle) “+ (x — 9) (pe — ay) (ty). 4? Pity) Pave
Paitisgconcorned values fiom table, weget
aA
T
h|= UNIT Bren — ya
a 24 K-05) 2112
A) 18) 8) Spee
: a 1OLsGie-2) wee
a0 GMP Mase 2129) Uh Iterations
a fix) = 2° +x+ 0,995, which a Slee
= -0,051514(-ve)
2
: aoanial
sesso vel
sy = 1875 fl) =0:224608 ( v0)
i :
Beard cont root ots" “== between
Berg by bisection method. Compe Root Hes beuween x amt ty
Pere
‘Thue, after five iterations, roovor the given
eqquution is 1.04878:
Q.24, Pind a positive real root of - c08>
@ by bisection method, correct upto 4
decimat
‘Ans. Gwen equation 19
Jeep = 8 v9)
jana, ens x= ©
Let fe) = 3-8
Now, ((0,73) =— 0.01514
@-001937,
fT)
Hirst iteration:
fe OEE
Second iteration a
Roat lies bersreent Sy ano,
alue off)
ed differ en
=i second iteration:
[2 1, = 0.795 fied
=< * = _ p.ooget1 Gv)
y= 0.7 Had = DEINE GN
nx, a8 %y
Tos betavce
Root
fe)
Phird terakion:
@ } n= 0991S
Fourth iteration’ seats) 5 ira > fx) 0.001081. 8
D5 1608 Root Hes between BPs
9.294609 9*)
= 131
between %
and %y “= fi) = — 0.000602 (- ve)
Fourth iteration:
¥, = 0.738750
fix) =~0,000561 (-
= 0,14 => fix,) = 0.001
Root ios Botwoon.s, nnd x,
o7aa976
flay) = 0.00048
ion:
1 = 0.798750
M&,) = — 0.000561 (- ve
% = 0
He) = 0.000486
Root lies between x, and
Pith ite,
%, = 0.739068
i) =— 0.00038 ve)
Sixth iteration:
%y = 0.73908
=> fe)= — 0.000038 va)
Root and,
Seventh iteration:
= 0.7390663
= 9.000038 (ve)
= fis) =—0.000224 (+-ye)
Root lies between x, and
> fx)
== 0,75
> % = 0.79141
SG) = 0.000094 (tve)
Eighth iteration:
my) = 0.7 390008
0.000038 (vi
o.7agia)
= fr)
1 (hve)
2 ys a
x, = 0.739102
=x, and 4, are same i
Root of the equ
3 0.7991
iteration method.
Ans, Given equation
cos £-3r+1=0
Let f(x) = coe x - 3x4 1
Now, /0)
AA) =~ 1.459698
0) and /0) ae
Root lies betwe
Let us tak
> 19° @9) =
W@ p<,
1
; [sina
by iteration
ion method
‘ ation method
= foe) = 0.000004 6 ve)
Root ltes between x, and,
d 4 real root of the
ect to. 8 decimal
t
POA places of
tion conrect to 4 gaan
eta
ecuation ¢
1 placer wai
ritten ay
of opposite signs
1 Oand 1
isin x} sl]
a
deg
ee
£0:eae
= y= B.7eRaKH
‘Third iteration:
Putting n = 2in (i), we get
‘89221
ourth iteration;
Putting n
[Putting x,
in (i), wo got
= Ttlog 2,
(Putting,
Fifth iteration:
Putting n=4 (), wwe got
789221]
Sus
2
3.789273
[Putting =, = 3.789275)
© And A, are same upto 4 places of
decimal.
Root of the equ:
Blaces in 3.7692.
Q.27. Find a root ofthe equation x? — 5x
+3=0 by Rogula-Palsi methor corroct to
four decimal places
eorrectto 4 decimal
and 1)= -1
(i)
First iteration:
Ay= 0 = (4) =3 (+ ve)
% =4 > fiz,) == 1 (v9)
“ Root lies between s, and 2,
Hof Gy) = f(s)
i il ta)
Ha) f(x,)
= 0.75
oti)
[Putting x, = 8.772034)
1.788288]
0,75 = fx)
+; Root lies between x and,
replacing; by x im RLS. off) we
‘y yf iep) “
1G)— 1G)
0.676056
0.071289 (— ve)
‘Whird iteration:
0 > ft) =3 ve)
is = 0.676065 => fix.)
= 0.71289 (ve)
+ Root lies between x, and 2,
Replacing a by x,in RALS. of Gil), woe
~ BEG) =a)
1 eae i
=> x= O6eog04
=. fla) = —0.013847-ve)
Fourth iteration:
%= O= fiz) =
= 0.600864 = fix) —
+ Root lies between x, an:
Repleciag x, by x, in RHLS. of @0), weet
i= 24M)
FG) Fx)
*, = 0.657330
= fs)=-01002629 (va)
Fifth itoration;
% = 0 /G,) =3 ve)
%5 = 0:697380=> f(r.) =—0.04
+: Root lies between x, and x,
Replacing x, by «, in RES. of @), wate
20 (ve)
0.656754
0.000497 (ye)= 1 fix) =2.177980 6+ ve) First iteration:
* Root lies hewteon x aind xy
y= 0=3 /tz,)=—"T Eve) .
+4 Replacing x by ay i RAS of (8), we get, = 1-3 fC, 123189 (tye!
ss te in (x) " Roctlies between xy and
y= We) = Vika) » (9)
= x= 0617660
= _ fix) = —0.000269 vo)
Ninth iteration:
soflay) nfl)
© 1e)= fl)
0.470990
265169 (+ve)
517660 Second iteration:
4p = => fle) =-1 Eve)
i = 0.470990 => /(,) = 0.265159 (+ ve)
177980 (+-ve) Root lies between «, and x,
dix, Replacing x, by x in RLS. of (i), we got
id ty in HS of ©), wo get
Sof Cen) aah Cx) Z
fe) He) “4
0.372277
> fq) = 0.028534 (+ ve)
‘Third iteration
(10)
fx
).029534 (+ve)
Rope lies between and «,.
Replocing x, ond xin ALS. of Gi), we gee
Beh) =f)
f( FG) )
%= 13/6,
* Root lies between x,
+ Replacing, by
andy,
RES of (10), we get,
= 0.861597
> _ Hy) = 0.002940 Gye)
> 450511743 Fourth iteration: : -
> %ig O04 Hy are saine upto 4 p| of 29 = 0 fl) =—1 Kye)
decimal” a as * 7= fe) = 0.002940 (4 ve)
= Root of the equation correct to 44 tween xq and x,
Placesia 0.5177
by xjin RLS. of Gv), we get
= Sfe)—n/e,)
@29, Perform five iterations of false
Position method to complete the smallest
Positive root of the equation gx + sin x — =
e=0,
Ans. Given equation is
Ox + sin x e=0
Let fi) = 9x4 sin x
Now, (0) = — 1
and /(1) = 1.129169
By method of talk position,
Suaflte,)~x, foe...)
= et ea)
Fret F=f, a)os soathd, ay es
TOOL to Xy anid, ee pie ALG :
{One 20113 Markay enna. fy ee ame. f
+ Ro i
slacen ie a5g ts re a
= G1)
fat GYM = 2969.
solve above equation by Newton's tah By Newton-Rs a
Besnethod. ion by Newton's valli ot agyim, mon mmnnea indie
Ue anf) = 2-31 =—15
ff) = 3'-S1= 50 Ana, Lot
{UTU 2611-12)
) (4ay®
= f@) and (3) ave of opposite sign
+ Root of f (2) lies between 2 and a,
43
; BS = 25 be tie on Wo shall solve above equation by Newton
=) ae 2 Mal’ Repheon metho
approximation. me
ify Newton Raphosn method,
£(%,)
+ (8) and fil) are of opposite sign
Reot of fle) lies hetween Band 4
4
Let xy = “S> = 2:5 he the initial
approximation:
By Newton Raplison Method
See
xe) ni
First iteration:
9, weet Putting n= Oin (), we set
+48
639456
zi i any,
. (Potting) = 35]
= x, = 2871000 (4) = 24) gecond iteration:
Second iteration: in (i), we get,
Puiting n = 1 in (i), we veh
ane 3x
9.634240 [Putting x= 650488)
: a7 Third iteration:
ae (Pateing = 28710001 TH ing = ain we ee
iteration:
Paiting n= 1 in @, we ee"
2ovale
‘Ant. We know that ot
<
= lee eee.
by w= a0 64)
Gv} ai aT ea ROD
Where 8, () =< e0cb2%
Absolute erar=
Be
“Percentage error in u=|-—| x 100%
Fo] < 200% Maximum absolute error
odig,
the Ja | = 0.25 x 100% = 25%
| g88, Prove that the relative error of a . Maximum relati eg
panluct of three non zero ae OSE
Firexceed the sum of the relative Ces a
< intho numbers. a
inet s am [UTU 2009-10] = lit a
Ise Let x, and < be the threo non zen Forn decimal ae
Tuskers and P he their product 4 nnaneinal Dae ae
i as 3.4, | = ee Gg) Maximum relative errar< 310"
Se eo show that cae 2 |
ce + For 6 decimal place accuracy ;
Maxinnura relative emot< 5x10° |
log P= log (xy2)
Slog P= log x + log y + log = erate
2 (mn) = log m+ log a ant 72x 108
Peat c oe oe gmt le] going above relation, we got, n=10
12857 aking differential, we 2°% Hence we reed 10 tormsof the exponential
series 90 that the sum is cornect to 6 decimal
; places.
02854 Q.38. Find the number of terms of the
7498041 series
(te)
log,| = such that
is in)
ane = |: the value of log 1.2 is correct to seven.
eS ine ymnal places. Also compute the value
depicna J correct to seven decimal Places:
peter ol stal | 1d
ie, relative error of product docanotexceed
Frelative errors in the number
Ans. We haveMaximum relative error at
male
For ndecimal places accuracy,
@neni
Maximum relative error <> 10
For 7 decimal places accuracy,
syst : pe?
Beauleeror= 5 Maximum relative error <> 10 F
Maximum abscluteesoe= 5, = t D
[Replai
Maximum Yelative error
10
> @n pn
Oy (ake alle
i a ns = n+ 1125 4x 10% =
Solving above relation, we get =
Hence we need 3 term
series so that tho
to'7 decimal places
he
alue of log 12 is e
low, We shall calculate yetue cf,
We have to compute log (1.2). boom log
We write the given
(asx) To calculate log 1:2
qa} series to 3 terma,i INTEGRATION. DIFFERENTIATION,
S10. N & SOLUTION OF ODE
exo gut 1) and” (1.1) from the following table
1.0 table:
16
3
Sissi) | = a
We Enow that
FM + wl)
Puttingabor re wausansn ered values
ow)
(0.298)
(0.018)
e (0.080)
of aiff
hich dl
Kh =Interval
+ uh =Value
Teeloilsted.table
eT
ble:
‘We lenow that
Qu
1 Butt y> f(s.)
wh) = Aposis.)> a
fe PUA = EOL) *
HEROES 74 f(,) + | a)
at
Here, k=interyal of ifferencing = 1
x, =Lagt valuo of'x=5
x, Huh at whieh dovivative i to
" vilated
3 abun
+ 5tuti)
Putting above value and suitable values irom
in (I), we get
he distance covered by an athlete for
60 metre race is given in the following
|, —U-.U.— MATHEMATICS I
1oj-—uniriy— B.TECH :
= “Time tees) | Distance (metray
l
Det
ec. correct to two deci
[UTU 2010-21
ns. Representing time by x and
A
(a, given table can be written as
[x [o
[0 |
We know that speed = 3
sieo and fic time.
Distance is tzken ae f(s) and
+. Desired speed
As 6 is near ¢
f@) at
la
value of
alo
ate 76), we con:
table and then caleulate 716) by
=8=f"(
+ 5 Marks)
ita
where
table
uct hackward difibeence
using
florigonparing éiven integral with
a. fie wat
5 Lage
Now, we make the following table.
0.266667
0.250000
Also, Exact value = 0.287682
{Bron = | Exact value — Caleulated value!
= [0.287682 — 0.287683| = 0.000001
Evaluation with 8 strips:
Pa sy
‘Given integral = f aa dx
faub-intervals 2 =6 ee
ing the giveP integral wil
ped 125,
Ney, omals the folowing yakenm
| 2
2.195
2.250
275
o285714
‘onisee2
o25g0E8
9.250000
Lt, +34) + 204* 904%
Fou) 40, Fg ag +
M
te
n integral= 510, +35) #203 +9
+9@ + 4G Fypt Ie F YD
[0.583388 + 2(0,860073)
+4(1.150223)]
(6.904971) = 0.287682
‘Also Bxact value = 0.287682
Error = [Exact value ~ calculated value!
=|0,287682— 0.2876821 =0
Q.11. Using Simpson's 3/8th rul
integration,
le on.
— dx
*
cag
evaluate Tysubintervals,
Now, fw
N
Ans, Given intoyn
We shal! divide thy givon interval into 6 Q.
1
I
fds
0
[74]—-UNITIV—B.TECH. — UT:
Number of eub intervals =6
Upper limit
1 integral
5)
t dx
fow we make the following
Simson's = rule,
1102
560
intervals.
Ans,
MATHEMATICS-I
ee 3
2 Jey = 1.966071
, Find the value of the integral
(ot u |
Tea? by Simpson's rule, taking yp
tegral 7= [0 :
integral 7= [/—#%
Hore, No, of aubintervale n = 12
Comparing given integral with
"" Fn\de, we get fay=
i" Ha), weiget fad =
= Lower limit = 0
1 33
1.000000
0.993103
0000 |g
0.746114
0.692308
0.640000
0.590164
0.543396
©.50¢000,Yt Mn) #20n + Joby,
Anas Ht
Ot nt yt
Per 2 HY FH) t6 oF
= he
__Now, we make the following table
Now, f@) =o sin 10x
x0 = lower limit = 0
f= Number of subinservals =
s+ wh = upper limit = 2x a
»
0 1" 1
i 1.85041
2 7.403019.
5.021384
sf 4 10,919630
{ 5 | 24.736527
fr 5
: @ By a ae
;
i i i asa pytagratntanne
2 ya7.690082)ee
pean tM ¥s boy to,
ah me)
Loy) + 20,4 Diatnnes qe
Soren
Mtr Hayy — Merv,
y= Lower fimit = 0.
aust 25) nl = upper limit = =e
ios estonee moved by train = 624.875 nanoele me
ine velocities of « car which starts = x tah = 35 20+ Oh= &
from rest (running on a straight 1 a
intervals of 2 minutes aa a 2 ee
‘are'given, eo % 6 2 "= 30
3
By sinpéon’s rl
feet (ermine)
F(x) 23 sh,
(=)a 4 30 |. [PM acte= "Sy tp) +2 tte Pa)
+ 36, +55 ta bI>* Yet Pio? Iu M
6 aT
Ee fer va a
‘4 Float 90) *
iy) + 30, +32 7% FY
1
yeror2en® 221 30+18+7))
x 285 = 3.562500
Distanice coveredl =
80 m wide. The depth ‘y
’ from one bank
562500 kms.
ee ao cinvers tim os anv divide i. QUT Aaives is
— oe sotthe river at'a distance‘
Bax tate becomes {fs given by the following table:
\ given table be s : blown
—— = To {10 }20 80) 40/50 [s0\70|5°|
jy
ual 83
Tine Velocity be z
@ Ges) | &) (kovbx) | __— \y 0 )4 (ene 12(15 | 14]
0 0 do Vind the approximate area ‘of crosssection
1
vy | of river using Simpson's ane rule.
oy
‘Ans. The required area= foe
Comparing the above mtegralwith
(= F(xjdx, we get y=)Lower lint
4} nl =uppor Limit
o-rncde) = 80
[eh width of 10
n=
We can write the given table as follows:
y=)
0 7m
‘ Hi
9 '
i ;
w | 3
ul .:
(By Seapsens <4 cule,
5
Te =F Un +3) +20. uty,
2 de Hog ho toll
= Roguired area = 5 10) +54)
txt +4 ty ¥, typ)
_10
> (2+ 2188) +4086) = 710
Thine, required avees= 710m?
Q.18. State and prove Trapezdidal rule for
numerical Integration.
Ans, Trapesoidal Rule: According w thisrale,
Proof: Ifyis apoly
hy Newton Cove's quadratu
+5)t 20, yy tat DT
fal of degree n, then
fovea
Putting n=1 in above expression we get,
1
= nf Jo + AN,
(7a) —UNIT-V— B.TECH, ~ UU. — MATHEMATICS HL
(>. higher differences arg.
Now we shall ealaulate Ay), ef
ayy= (B= teas wee
> N=) fmyey 4 ke
Putting above valuein @),we get ll
a 1
fi vde = M90 a ge)
sell h
similay
‘Adding all above welation, we get
(0? sdx= "toy
1
19, State and prove Simpson's std rule
1
Ans, Simpson's +d rule; According to thisrak:
+3) +2
Q20.Ste
y+ 4G, +94
Proofiliy polynomial of degree n, ther
by Newion Cole's quadrature formula ans Six
os ca
ae i
n(2n—3)
ZO url | Pro
Newt
Putting n= 2in aboye expression, we t
[Psa 27 [5,22 \
[. Higher difference arent
2h | Ys ES) ae
wallcalewlate wh a is am
Ay = (E—Dyy ie
= ye 21% f:
Also, E— yy
=e 2E+ Wybors vation n(), woe t= eMA)
Be BHC Ny aj
Ildingall above relations, we get
by Hy, toy
ae
sgt,
Prook:lfyisa polynomi
Powton Cote's quadratu
in above expression, we get
Now we
Als
[is @4 byte gp
Ay, Bait + tab? bry
1B By 95
By = ya
Putting above valuas in(p, wo get
Je yas
a
= By, + 120) -9) 4180, —
Oq- Sy, +3
2
Diy tay, age
Sinilanty, ("Sots = 34 yg + 3), 35,
+yd
d
508 3h
[ite = Moy oay omy ery
‘Adding all above relations, we get
Oo $y) FBO,
1
Qi, Use the Runge Kutta fourth order
Rethod to find the value ofy when x= 1.
ion that y = | when x = 0 and that
[UTU 2011-12, 6 Marks}[x¥%904)=' sadipesteae dl
ene equation with h=0.2, {OTU 2018-14
‘Ans, Given differential equation is
fe i yay) 39, He Bot Ai
ae Nee
yaw
FED Fag, NI5= 1 condition is 90-4) = 0.41
Also, ne d: a
Se) comparing (with GY =fery).wege, | 2
a
DAvp 99) = 0.5/10,1) = 0.5 fey)= ery
Also,
2 [Given]
First Step:
J=050.20, bf Cy 99)
0.2, (0.4, 0.41) = 0.18
fee = Bf (ug +h
19 * hg) = D505,
225806
1
gM 2h 2h, +)
339922
= =H
Second Step: = 6.20.5, 0.51)= 0.200998
450.59 =06 eB G+ hs 9g +
= lef, 4) =0.5/(0.5, 1.889922) = 0.27 (0.6, 0.610998)
0.228249
a ‘Thus
y= hfe + Sy oy a
(0.75, 1.46047) = 0.159717 ho Gk 4 2ky + 2hy + hy
ane = 0.200848
: 58 => 9, =¥,+k= 0610348
= 0.5/(0,75,1.419780) =0.1543,
= ffl, +h, 9 + hy) = 0.57 1,1.494 bee ee Z
0.099080 ae! = ¥y = 0.610348, h
i= hf Gey 94)
0.2/ (0.6, 0.610348)
Second Step:
‘Thus, (hy + 2k, + 2h, + He,)
= 0.220032
ms 169242
= +h 1499164 k wad,
as 490164 i :
THeriee valio cfel for e=1 in 1.499164 Ane. £02 (071, O7aCaeS
= 0.238358
Q.22. Use Runge-Kutta formula of fourth
h
ky ws +hts} 4 hy)
8, 084944).
2800.3, 1.290
Shy = O.N Haas wl
fe +h, 9,
2/00.4, 1.976848)
168805
2?
Runge-Kutta fourth orde
As ene ive the following differential
we tees
= Ge +N, + Dh, hy)
= k= 0.179208
Jy + e= 1.875268
1,196 and y=
=> 0.2) = 1196 and 40.4) = 1.875268
é
24. Given the initial value problem G-
=1+y',10)=0, Find y(0.6) by Runge Kutta,
method taking b=
ones [UTU 2010-11,5 Marks}
(a O.%y= 1 Ans. Given equation is
DWevant tocaloulare y ai-y=O0.2and0., S Aa
Comparing the given equation with
? = fle yO) = Yo We eet,
0,y)=0
=02 = flay Yo) =0:2 (0, = 02
ho KY
Flite geo
2f(0.1, 0.1) =
i ‘a7 12)= 0.18931 ee
| = 0.3/00.2, 1.196712) habit go
».2/(0.1, 0.101)
202040
Fh Bly + Bs + ha) = 9:198 i20 With h = 0.2 on interval [0,64]
i fourth order Runge-Kutta meine’
Thun, aE (hy + 2h 2h thy) Compare with the exact solution a
gosze2 ‘Ans. Given differential equation je
= yy-yp-bh = 0.202707 ae ;
en ae 0)
Socondd step: cbs - |
0.202707. A\= 0. Condition is (0
chain 02707)
Comparing (1), with 5° = 655) wo go
fee) = ay",
Also, %)=0,99=1,h=0.2
SOARS O88) =0.218827 by Range Kuffe fourth order formu,
SN te Mya)
ifs ez) = 0.2 C 2a 442)
0.2f0.5, 0.812121) =0.219484 bie,» 2
Bile, +h, 9, +%,)
0.2/0.4.0.422191) =0.235649
20 +0.1, 1+ 0)=0.940.1,1)
~ 0.040000
> ye=3, += 0120789
Third stop:
422789,
2710.4, 0,
= 0.2/0.1, 0.08
Hf (ig + Ba y+ hy)
20.2, 0.981584)
[+99 + hy = 0.96584)
=~0.073972
iz
0.235750
iam
eye),
= 02/05,
IR 9) ==
1
AY 5 (hb, + 2k,
20.8, 0.552021) = 9 et 2
260945 .
Mie +h, 36+ by) = 0.2506, Thi aoe
01683734) = 0 203499 ae
1 Ae
Ths, hae 4 2h, ae ey
*= 0.261345 = Pike.y,) |
299s * k= 0.684134 = 0270.2, 0.961533)
OS) = 0.684134 Ang, = 0.073964
Solve the following intitial valuewatg Pigvatyttd
1.524 4(1.92) 2.50
=125+ 5
oe, 9 (4) = 1.64
the set oftabulated values and
=0.
equation 5xy’+y°
-» (45) using Milne’s method.
a
05
1.004914 0483
1.009663 46694
1.014256 045176
1.018701 043739.
dom: Using the prediccor formula,
4h
ay, + Offa + 2h)
ax
= 1.004914 + [2¢.046694)
~ 045176 + 2(.043739)]
= 1.023006
Using the corrector formula, we obtain
h
I= It EUet Mee
= 1.014256 + a [045
(043739) + 042376] = 1.023006
Since the corrector has given the same result
as the predictor, we can accept the value, Ha
the corrector y, been different, 7, would have b:
recomputed and corrector formula reapplied
OG_ rastraightlineto the following data:
; 66] 73[ 60 | 67 [65 [65] 67] Qo viva straight line of the formy=ax+
70 | 68 | 67 | 68 | @1 | bt the following data: t
dpe atthe straight line to be fitted is x ||
yratbe @ me
Normalequations are 5
By =ma t bE 3
ed Shy ~ eet bis? “4 )
where ms the number of points given | 6 |
pot. Now, we make th 5
pee Ea +
6 4889 sin ee)
3B 72, 4806 | Ans. Given straight line is
4 7 70 suo | ax+b
7 fa 4850 Normal equations are
is Sy =arxtmb
67 ey SExy = als + bre
6 67 ee Here, m= No. of points given =8.
aS a | 18 Now, wemake the following table
67 64 fe Ses a |
io 1 d |
12 4 a4 |
18 el) ta |
Ao 16 10.0
Putting above values and 7 | se a
equations given, 40 = |
Ba +5460 86 9
bea + 373146 91 64 28
Solving above 9 30.5 204 [aaa
Putting the values from table, normal
i a8 = 39.545455 equationshecomes,
ae 30.5
2040+ 36> = 194
desired Solving above equations,
we get,
4.118095, =—1 199499