MPC860
MPC860
Freescale reserves the right to change the detail specifications as may be required
to permit improvements in the design of its products.
1 Overview
The MPC860 power quad integrated communications controller (PowerQUICC™) is a versatile one-chip
integrated microprocessor and peripheral combination designed for a variety of controller applications. It
particularly excels in communications and networking systems. The PowerQUICC unit is referred to as
the MPC860 in this hardware specification.
The MPC860 implements Power Architecture™ technology and contains a superset of Freescale’s
MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC
communications proccessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power
Architecture technology that incorporates memory management units (MMUs) and instruction and data
caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated
controller (I2C) channel. The memory controller has been enhanced, enabling the MPC860 to support any
type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket
controller supports up to two sockets. A real-time clock has also been integrated.
Table 1 shows the functionality supported by the MPC860 family.
Table 1. MPC860 Family Functionality
MPC860DE 4 4 Up to 2 — — 2 1
MPC860DT 4 4 Up to 2 1 Yes 2 1
MPC860DP 16 8 Up to 2 1 Yes 2 1
MPC860EN 4 4 Up to 4 — — 4 1
MPC860SR 4 4 Up to 4 — Yes 4 1
MPC860T 4 4 Up to 4 1 Yes 4 1
MPC860P 16 8 Up to 4 1 Yes 4 1
MPC855T 4 4 1 1 Yes 1 2
1
Supporting documentation for these devices refers to the following:
1. MPC860 PowerQUICC Family User’s Manual (MPC860UM, Rev. 3)
2. MPC855T User’s Manual (MPC855TUM, Rev. 1)
2 Features
The following list summarizes the key MPC860 features:
• Embedded single-issue, 32-bit core (implementing the Power Architecture technology) with
thirty-two 32-bit general-purpose registers (GPRs)
— The core performs branch prediction with conditional prefetch without conditional execution.
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
– 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction
caches are two-way, set-associative with 128 sets.
– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are
two-way, set-associative with 128 sets.
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)
cache blocks.
– Caches are physically addressed, implement a least recently used (LRU) replacement
algorithm, and are lockable on a cache block basis.
— MMUs with 32-entry TLB, fully-associative instruction, and data TLBs
— MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual
address spaces and 16 protection groups
— Advanced on-chip-emulation debug mode
• Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
• 32 address lines
• Operates at up to 80 MHz
• Memory controller (eight banks)
— Contains complete dynamic RAM (DRAM) controller
— Each bank can be a chip select or RAS to support a DRAM bank.
— Up to 15 wait states programmable per memory bank
— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory
devices
— DRAM controller programmable to support most size and speed memory interfaces
— Four CAS lines, four WE lines, and one OE line
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
— Variable block sizes (32 Kbytes to 256 Mbytes)
— Selectable write protection
— On-chip bus arbitration logic
• General-purpose timers
— Four 16-bit timers or two 32-bit timers
— Gate mode can enable/disable counting
— Interrupt can be masked on reference match and event capture.
Tj(max) 95 °C
Tj(max) 95 °C
Figure 1 shows the undershoot and overshoot voltages at the interface of the MPC860.
VDDH/VDDL + 20%
VDDH/VDDL + 5%
VIH VDDH/VDDL
GND
GND – 0.3 V
VIL
GND – 0.7 V
Not to Exceed 10%
of tinterface1
Note:
1. tinterface refers to the clock period associated with the bus clock interface.
4 Thermal Characteristics
Table 3. Package Description
ZP ZQ / VR
Rating Environment Symbol Unit
MPC860P MPC860P
Junction-to-board 4 RθJB 14 13
5
Junction-to-case RθJC 6 8
5 Power Dissipation
Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal,
and 2:1, where CPU frequency is twice the bus speed.
Table 5. Power Dissipation (PD)
NOTE
Values in Table 5 represent VDDL-based power dissipation and do not
include I/O power dissipation over VDDH. I/O power dissipation varies
widely by application due to buffer current, depending on external circuitry.
6 DC Characteristics
Table 6 provides the DC electrical characteristics for the MPC860.
Table 6. DC Electrical Specifications
Operating voltage greater than 40 MHz VDDH, VDDL, KAPWR, 3.135 3.465 V
VDDSYN
EXTAL, EXTCLK input high voltage VIHC 0.7 × (VDDH) VDDH + 0.3 V
Input leakage current, Vin = 5.5 V (except TMS, TRST, Iin — 100 µA
DSCK, and DSDI pins)
Output high voltage, IOH = –2.0 mA, VDDH = 3.0 V VOH 2.4 — V
(except XTAL, XFC, and open-drain pins)
If the board temperature is known, an estimate of the junction temperature in the environment can be made
using the following equation:
TJ = TB + (RθJB × PD)
where:
RθJB = junction-to-board thermal resistance (ºC/W)
TB = board temperature (ºC)
PD = power dissipation in package
If the board temperature is known and the heat loss from the package case to the air can be ignored,
acceptable predictions of junction temperature can be made. For this method to work, the board and board
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,
namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground
plane.
where:
ΨJT = thermal characterization parameter
TT = thermocouple temperature on top of package
PD = power dissipation in package
The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge
type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is
placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
7.6 References
Semiconductor Equipment and Materials International (415) 964-5111
805 East Middlefield Rd.
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) Specifications 800-854-7179 or
(Available from Global Engineering Documents) 303-397-7956
JEDEC Specifications http://www.jedec.org
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance
and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999,
pp. 212–220.
8 Layout Practices
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s supply. Each
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive
distinct groups of logic on the chip. The VDD power supply should be bypassed to ground using at least
four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor
leads and associated printed circuit traces connecting to chip VDD and GND should be kept to less than half
an inch per capacitor lead. A four-layer board employing two inner layers as VCC and GND planes is
recommended.
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection
length should be minimized in order to minimize undershoot and reflections caused by these fast output
switching times. This recommendation particularly applies to the address and data buses. Maximum PC
trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as
well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes
especially critical in systems with higher capacitive loads because these loads create higher transient
currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.
Special care should be taken to minimize the noise levels on the PLL supply pins.
B1 CLKOUT period 30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns
B1a EXTCLK to CLKOUT phase skew –0.90 0.90 –0.90 0.90 –0.90 0.90 –0.90 0.90 ns
(EXTCLK > 15 MHz and MF <= 2)
B1b EXTCLK to CLKOUT phase skew –2.30 2.30 –2.30 2.30 –2.30 2.30 –2.30 2.30 ns
(EXTCLK > 10 MHz and MF < 10)
B1c CLKOUT phase jitter (EXTCLK > 15 MHz –0.60 0.60 –0.60 0.60 –0.60 0.60 –0.60 0.60 ns
and MF <= 2)1
B1d CLKOUT phase jitter1 –2.00 2.00 –2.00 2.00 –2.00 2.00 –2.00 2.00 ns
B1e CLKOUT frequency jitter (MF < 10)1 — 0.50 — 0.50 — 0.50 — 0.50 %
B1f CLKOUT frequency jitter (10 < MF < 500)1 — 2.00 — 2.00 — 2.00 — 2.00 %
B1g CLKOUT frequency jitter (MF > 500)1 — 3.00 — 3.00 — 3.00 — 3.00 %
B7a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), 7.58 — 6.25 — 5.00 — 3.80 — ns
BDIP, PTR invalid
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1), 7.58 — 6.25 — 5.00 — 3.80 — ns
VF(0:2) IWP(0:2), LWP(0:1), STS invalid 4
B8 CLKOUT to A(0:31), BADDR(28:30) 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
RD/WR, BURST, D(0:31), DP(0:3) valid
B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
BDIP, PTR valid
B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2), 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
IWP(0:2), FRZ, LWP(0:1), STS valid 4
B9 CLKOUT to A(0:31), BADDR(28:30), 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
RD/WR, BURST, D(0:31), DP(0:3),
TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z
B11 CLKOUT to TS, BB assertion 7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29 ns
B11a CLKOUT to TA, BI assertion (when driven by 2.50 9.25 2.50 9.25 2.50 9.25 2.50 9.75 ns
the memory controller or PCMCIA interface)
B12 CLKOUT to TS, BB negation 7.58 14.33 6.25 13.00 5.00 11.75 3.80 8.54 ns
B12a CLKOUT to TA, BI negation (when driven by 2.50 11.00 2.50 11.00 2.50 11.00 2.50 9.00 ns
the memory controller or PCMCIA interface)
B13 CLKOUT to TS, BB High-Z 7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04 ns
B13a CLKOUT to TA, BI High-Z (when driven by 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
the memory controller or PCMCIA interface)
B14 CLKOUT to TEA assertion 2.50 10.00 2.50 10.00 2.50 10.00 2.50 9.00 ns
B15 CLKOUT to TEA High-Z 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns
B16 TA, BI valid to CLKOUT (setup time) 9.75 — 9.75 — 9.75 — 6.00 — ns
B16a TEA, KR, RETRY, CR valid to CLKOUT 10.00 — 10.00 — 10.00 — 4.50 — ns
(setup time)
B16b BB, BG, BR, valid to CLKOUT (setup time)5 8.50 — 8.50 — 8.50 — 4.00 — ns
B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid 1.00 — 1.00 — 1.00 — 2.00 — ns
(hold time)
B17a CLKOUT to KR, RETRY, CR valid (hold 2.00 — 2.00 — 2.00 — 2.00 — ns
time)
B18 D(0:31), DP(0:3) valid to CLKOUT rising 6.00 — 6.00 — 6.00 — 6.00 — ns
edge (setup time)6
B19 CLKOUT rising edge to D(0:31), DP(0:3) 1.00 — 1.00 — 1.00 — 2.00 — ns
valid (hold time)6
B20 D(0:31), DP(0:3) valid to CLKOUT falling 4.00 — 4.00 — 4.00 — 4.00 — ns
edge (setup time)7
B21 CLKOUT falling edge to D(0:31), DP(0:3) 2.00 — 2.00 — 2.00 — 2.00 — ns
valid (hold time)7
B22 CLKOUT rising edge to CS asserted GPCM 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
ACS = 00
B22a CLKOUT falling edge to CS asserted GPCM — 8.00 — 8.00 — 8.00 — 8.00 ns
ACS = 10, TRLX = 0
B22b CLKOUT falling edge to CS asserted GPCM 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
ACS = 11, TRLX = 0, EBDF = 0
B22c CLKOUT falling edge to CS asserted GPCM 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns
ACS = 11, TRLX = 0, EBDF = 1
B23 CLKOUT rising edge to CS negated GPCM 2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00 ns
read access, GPCM write access ACS = 00,
TRLX = 0, and CSNT = 0
B25 CLKOUT rising edge to OE, WE(0:3) — 9.00 — 9.00 — 9.00 — 9.00 ns
asserted
B26 CLKOUT rising edge to OE negated 2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00 ns
B28 CLKOUT rising edge to WE(0:3) negated — 9.00 — 9.00 — 9.00 — 9.00 ns
GPCM write access CSNT = 0
B28a CLKOUT falling edge to WE(0:3) negated 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
GPCM write access TRLX = 0, 1, CSNT = 1,
EBDF = 0
B28b CLKOUT falling edge to CS negated GPCM — 14.33 — 13.00 — 11.75 — 10.54 ns
write access TRLX = 0, 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 0
B28c CLKOUT falling edge to WE(0:3) negated 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns
GPCM write access TRLX = 0, 1, CSNT = 1
write access TRLX = 0, CSNT = 1,
EBDF = 1
B28d CLKOUT falling edge to CS negated GPCM — 17.99 — 16.00 — 14.13 — 12.31 ns
write access TRLX = 0, 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
B29 WE(0:3) negated to D(0:31), DP(0:3) High-Z 5.58 — 4.25 — 3.00 — 1.79 — ns
GPCM write access CSNT = 0, EBDF = 0
B29a WE(0:3) negated to D(0:31), DP(0:3) High-Z 13.15 — 10.5 — 8.00 — 5.58 — ns
GPCM write access, TRLX = 0, CSNT = 1,
EBDF = 0
B29d WE(0:3) negated to D(0:31), DP(0:3) High-Z 43.45 — 35.5 — 28.00 — 20.73 — ns
GPCM write access, TRLX = 1, CSNT = 1,
EBDF = 0
B29f WE(0:3) negated to D(0:31), DP(0:3) High-Z 8.86 — 6.88 — 5.00 — 3.18 — ns
GPCM write access, TRLX = 0, CSNT = 1,
EBDF = 1
B29h WE(0:3) negated to D(0:31), DP(0:3) High-Z 38.67 — 31.38 — 24.50 — 17.83 — ns
GPCM write access, TRLX = 1, CSNT = 1,
EBDF = 1
B30b WE(0:3) negated to A(0:31), invalid GPCM 43.45 — 35.50 — 28.00 — 20.73 — ns
BADDR(28:30) invalid GPCM write access,
TRLX = 1, CSNT = 1. CS negated to
A(0:31), Invalid GPCM, write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
B31 CLKOUT falling edge to CS valid—as 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
requested by control bit CST4 in the
corresponding word in UPM
B31a CLKOUT falling edge to CS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
requested by control bit CST1 in the
corresponding word in UPM
B31b CLKOUT rising edge to CS valid—as 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
requested by control bit CST2 in the
corresponding word in UPM
B31c CLKOUT rising edge to CS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns
requested by control bit CST3 in the
corresponding word in UPM
B31d CLKOUT falling edge to CS valid—as 13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns
requested by control bit CST1 in the
corresponding word in UPM, EBDF = 1
B32 CLKOUT falling edge to BS valid—as 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
requested by control bit BST4 in the
corresponding word in UPM
B32a CLKOUT falling edge to BS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
requested by control bit BST1 in the
corresponding word in UPM, EBDF = 0
B32b CLKOUT rising edge to BS valid—as 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00 ns
requested by control bit BST2 in the
corresponding word in UPM
B32c CLKOUT rising edge to BS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
requested by control bit BST3 in the
corresponding word in UPM
B32d CLKOUT falling edge to BS valid—as 13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns
requested by control bit BST1 in the
corresponding word in UPM, EBDF = 1
B33 CLKOUT falling edge to GPL valid—as 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00 ns
requested by control bit GxT4 in the
corresponding word in UPM
B33a CLKOUT rising edge to GPL valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns
requested by control bit GxT3 in the
corresponding word in UPM
B37 UPWAIT valid to CLKOUT falling edge9 6.00 — 6.00 — 6.00 — 6.00 — ns
B38 CLKOUT falling edge to UPWAIT valid9 1.00 — 1.00 — 1.00 — 1.00 — ns
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, valid to 7.00 — 7.00 — 7.00 — 7.00 — ns
CLKOUT rising edge
B41 TS valid to CLKOUT rising edge (setup time) 7.00 — 7.00 — 7.00 — 7.00 — ns
B42 CLKOUT rising edge to TS valid (hold time) 2.00 — 2.00 — 2.00 — 2.00 — ns
is relevant when the MPC860 is selected to work with internal bus arbiter.
5 The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for BG
input is relevant when the MPC860 is selected to work with external bus arbiter.
6 The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is
asserted.
7
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read
accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the
UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
8 The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
9 The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and
B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.
10
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified
in Figure 21.
CLKOUT
A
B
Outputs
A
B
Outputs
D
C
Inputs
D
C
Inputs
CLKOUT
B1 B3
B1 B2
B4 B5
CLKOUT
B8
B7 B9
Output
Signals
B8a
B7a B9
Output
Signals
B8b
B7b
Output
Signals
Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.
CLKOUT
B13
B11 B12
TS, BB
B13a
B11a B12a
TA, BI
B14
B15
TEA
Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing
CLKOUT
B16
B17
TA, BI
B16a
B17a
TEA, KR,
RETRY, CR
B16b
B17
BB, BG, BR
Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the
control of the UPM in the memory controller.
CLKOUT
B16
B17
TA
B18
B19
D[0:31],
DP[0:3]
Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in
the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
CLKOUT
TA
B20
B21
D[0:31],
DP[0:3]
Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1
Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM
factors.
CLKOUT
B11 B12
TS
B8
A[0:31]
B22 B23
CSx
B25 B26
OE
B28
WE[0:3] B19
B18
D[0:31],
DP[0:3]
CLKOUT
B11 B12
TS
B8
A[0:31]
B22a B23
CSx
OE
B18 B19
D[0:31],
DP[0:3]
Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)
CLKOUT
B11 B12
TS
B8 B22b
A[0:31]
B22c B23
CSx
OE
B18 B19
D[0:31],
DP[0:3]
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)
CLKOUT
B11 B12
TS
B8
A[0:31]
B22a B23
CSx
B27 B26
OE B27a
D[0:31],
DP[0:3]
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)
Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM
factors.
CLKOUT
B11 B12
TS
B8 B30
A[j0:31]
B22 B23
CSx
B25 B28
WE[0:3]
B26 B29b
OE B29
B8 B9
D[0:31],
DP[0:3]
CLKOUT
B11 B12
TS
B8 B30a B30c
A[0:31]
CSx
WE[0:3]
OE B28a B28c
B8 B9
D[0:31],
DP[0:3]
CLKOUT
B11 B12
TS
B8 B30b B30d
A[0:31]
CSx
WE[0:3]
OE B29b
B8 B28a B28c B9
D[0:31],
DP[0:3]
Figure 17 provides the timing for the external bus controlled by the UPM.
CLKOUT
B8
A[0:31]
B31a
B31d B31c
B31 B31b
CSx
B34
B34a
B34b
B32a B32d B32c
B32 B32b
BS_A[0:3],
BS_B[0:3]
B35 B36
B35a B33a
B35b
B33
GPL_A[0:5],
GPL_B[0:5]
Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
CLKOUT
B37
UPWAIT
B38
CSx
BS_A[0:3],
BS_B[0:3]
GPL_A[0:5],
GPL_B[0:5]
Figure 18. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing
Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.
CLKOUT
B37
UPWAIT
B38
CSx
BS_A[0:3],
BS_B[0:3]
GPL_A[0:5],
GPL_B[0:5]
Figure 19. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing
Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.
CLKOUT
B41 B42
TS
B40
A[0:31],
TSIZ[0:1],
R/W, BURST
B22
CSx
Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)
Figure 21 provides the timing for the asynchronous external master memory access controlled by the
GPCM.
CLKOUT
B39
AS
B40
A[0:31],
TSIZ[0:1],
R/W
B22
CSx
Figure 21. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)
Figure 22 provides the timing for the asynchronous external master control signals negation.
AS
B43
CSx, WE[0:3],
OE, GPLx,
BS[0:3]
All Frequencies
Num Characteristic1 Unit
Min Max
Figure 23 provides the interrupt detection timing for the external level-sensitive lines.
CLKOUT
I39
I40
IRQx
Figure 23. Interrupt Detection Timing for External Level Sensitive Lines
Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.
CLKOUT
I41 I42
IRQx
I43
I43
Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines
P44 A(0:31), REG valid to PCMCIA Strobe 20.73 — 16.75 — 13.00 — 9.36 — ns
asserted1
P45 A(0:31), REG valid to ALE negation1 28.30 — 23.00 — 18.00 — 13.15 — ns
P46 CLKOUT to REG valid 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns
P48 CLKOUT to CE1, CE2 asserted 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns
P49 CLKOUT to CE1, CE2 negated 7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84 ns
P50 CLKOUT to PCOE, IORD, PCWE, IOWR — 11.00 11.00 — 11.00 — 11.00 ns
assert time
P51 CLKOUT to PCOE, IORD, PCWE, IOWR 2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00 ns
negate time
P52 CLKOUT to ALE assert time 7.58 15.58 6.25 14.25 5.00 13.00 3.79 10.04 ns
P54 PCWE, IOWR negated to D(0:31) invalid1 5.58 — 4.25 — 3.00 — 1.79 — ns
P55 WAITA and WAITB valid to CLKOUT rising 8.00 — 8.00 — 8.00 — 8.00 — ns
edge1
P56 CLKOUT rising edge to WAITA and WAITB 2.00 — 2.00 — 2.00 — 2.00 — ns
invalid1
1
PSST = 1. Otherwise add PSST times cycle time.
PSHT = 0. Otherwise add PSHT times cycle time.
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the
PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the
PSL timer expiration. See Chapter 16, “PCMCIA Interface,” in the MPC860 PowerQUICC™ Family
User’s Manual.
Figure 25 provides the PCMCIA access cycle timing for the external bus read.
CLKOUT
TS
P44
A[0:31]
REG
P48 P49
CE1/CE2
P50 P51
PCOE, IORD
ALE
B18 B19
D[0:31]
Figure 26 provides the PCMCIA access cycle timing for the external bus write.
CLKOUT
TS
P44
A[0:31]
REG
P48 P49
CE1/CE2
PCWE, IOWR
ALE
B8 B9
D[0:31]
CLKOUT
P55
P56
WAITx
P59 IP_Xx valid to CLKOUT rising edge 5.00 — 5.00 — 5.00 — 5.00 — ns
P60 CLKOUT rising edge to IP_Xx invalid 1.00 — 1.00 — 1.00 — 1.00 — ns
1
OP2 and OP3 only.
Figure 28 provides the PCMCIA output port timing for the MPC860.
CLKOUT
P57
Output
Signals
HRESET
P58
OP2, OP3
Figure 29 provides the PCMCIA output port timing for the MPC860.
CLKOUT
P59
P60
Input
Signals
All Frequencies
Num Characteristic Unit
Min Max
Figure 30 provides the input timing for the debug port clock.
DSCK
D61 D62
D61 D62
D63 D63
DSCK
D64
D65
DSDI
D66
D67
DSDO
R72 — — — — — — — — —
R73 Configuration data to HRESET rising edge 504.55 — 425.00 — 350.00 — 277.27 — ns
setup time
R75 Configuration data hold time after 0.00 — 0.00 — 0.00 — 0.00 — ns
RSTCONF negation
R76 Configuration data hold time after 0.00 — 0.00 — 0.00 — 0.00 — ns
HRESET negation
R77 HRESET and RSTCONF asserted to data — 25.00 25.00 — 25.00 — 25.00 ns
out drive
R78 RSTCONF negated to data out high — 25.00 — 25.00 — 25.00 — 25.00 ns
impedance
R79 CLKOUT of last rising edge before chip — 25.00 — 25.00 — 25.00 — 25.00 ns
three-state HRESET to data out high
impedance
R82 SRESET negated to CLKOUT rising edge 242.42 — 200.00 — 160.00 — 121.21 — ns
for DSDI and DSCK sample
Figure 32 shows the reset timing for the data bus configuration.
HRESET
R71
R76
RSTCONF
R73
R74 R75
D[0:31] (IN)
Figure 33 provides the reset timing for the data bus weak drive during configuration.
CLKOUT
R69
HRESET
R79
RSTCONF
R77 R78
D[0:31] (OUT)
(Weak)
Figure 34 provides the reset timing for the debug port configuration.
CLKOUT
R70
R82
SRESET
R80 R80
R81 R81
DSCK, DSDI
All Frequencies
Num Characteristic Unit
Min Max
J93 TCK falling edge to output valid out of high impedance — 50.00 ns
TCK
J82 J83
J82 J83
J84 J84
TCK
J85
J86
TMS, TDI
J87
J88 J89
TDO
TCK
J91
J90
TRST
TCK
J92 J94
Output
Signals
J93
Output
Signals
J95 J96
Output
Signals
All Frequencies
Num Characteristic Unit
Min Max
DATA-IN
21 22
23
STBI
27
24
STBO
DATA-OUT
25 26
24
STBO
(Output)
28
23
STBI
(Input)
DATA-IN
21 22
23
STBI
(Input)
24
STBO
(Output)
DATA-OUT
25 26
24
STBO
(Output)
23
STBI
(Input)
CLKO
29
30
DATA-IN
31
DATA-OUT
≥ 33.34 MHz1
Num Characteristic Unit
Min Max
36
Port C
(Input)
35
All Frequencies
Num Characteristic Unit
Min Max
All Frequencies
Num Characteristic Unit
Min Max
46 TA assertion to rising edge of the clock setup time (applies to external TA) 7 — ns
CLKO
(Output)
41
40
DREQ
(Input)
CLKO
(Output)
TS
(Output)
R/W
(Output)
42 43
DATA
46
TA
(Input)
SDACK
CLKO
(Output)
TS
(Output)
R/W
(Output)
42 44
DATA
TA
(Output)
SDACK
CLKO
(Output)
TS
(Output)
R/W
(Output)
42 45
DATA
TA
(Output)
SDACK
All Frequencies
Num Characteristic Unit
Min Max
52 BRGO cycle 40 — ns
50 50
BRGOX
51 51
52
All Frequencies
Num Characteristic Unit
Min Max
CLKO
60
61 63 62
TIN/TGATE
(Input)
61 64
65
TOUT
(Output)
All Frequencies
Num Characteristic Unit
Min Max
All Frequencies
Num Characteristic Unit
Min Max
88 L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0) — 0.00 ns
1
The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.
2
These specs are valid for IDL mode only.
3
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.
L1RCLK
(FE = 0, CE = 0)
(Input)
71 70 71a
72
L1RCLK
(FE = 1, CE = 1)
(Input)
RFSD=1
75
L1RSYNC
(Input)
73
74 77
L1RXD
(Input) BIT0
76
78 79
L1ST(4–1)
(Output)
L1RCLK
(FE = 1, CE = 1)
(Input)
72 83a
82
L1RCLK
(FE = 0, CE = 0)
(Input)
RFSD=1
75
L1RSYNC
(Input)
73
74 77
L1RXD
(Input) BIT0
76
78 79
L1ST(4–1)
(Output)
84
L1CLKO
(Output)
L1TCLK
(FE = 0, CE = 0)
(Input)
71 70
72
L1TCLK
(FE = 1, CE = 1)
(Input)
73
TFSD=0
75
L1TSYNC
(Input)
74
80a 81
L1TXD
(Output) BIT0
80
78 79
L1ST(4–1)
(Output)
L1RCLK
(FE = 0, CE = 0)
(Input)
72 83a
82
L1RCLK
(FE = 1, CE = 1)
(Input)
TFSD=0
75
L1RSYNC
(Input)
73
74 81
L1TXD
(Output) BIT0
80
78a 79
L1ST(4–1)
(Output)
78
84
L1CLKO
(Output)
71
L1RSYNC
(Input)
80 71
74
L1TXD
(Output) B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
72 81
77
L1RXD
(Input) B17 B16 B15 B14 B13 B12 B11 B10 D1 A B27 B26 B25 B24 B23 B22 B21 B20 D2 M
76
78
85
L1RQ
(Output)
Freescale Semiconductor
CPM Electrical Characteristics
All Frequencies
Num Characteristic Unit
Min Max
103 TXD1 active delay (from TCLK1 falling edge) 0.00 50.00 ns
104 RTS1 active/inactive delay (from TCLK1 falling edge) 0.00 50.00 ns
All Frequencies
Num Characteristic Unit
Min Max
103 TXD1 active delay (from TCLK1 falling edge) 0.00 30.00 ns
104 RTS1 active/inactive delay (from TCLK1 falling edge) 0.00 30.00 ns
RCLK1
RxD1
(Input)
107
108
CD1
(Input)
107
CD1
(SYNC Input)
TCLK1
TxD1
(Output)
103
105
RTS1
(Output)
104 104
CTS1
(Input)
107
CTS1
(SYNC Input)
TCLK1
TxD1
(Output)
103
RTS1
(Output)
CTS1
(Echo Input)
All Frequencies
Num Characteristic Unit
Min Max
126 RENA active delay (from RCLK1 rising edge of the last data bit) 10 — ns
All Frequencies
Num Characteristic Unit
Min Max
CLSN(CTS1)
(Input)
120
RCLK1
121 121
124 123
RxD1
Last Bit
(Input)
125 126
127
RENA(CD1)
(Input)
TCLK1
TxD1
(Output)
132
133 134
TENA(RTS1)
(Input)
RENA(CD1)
(Input)
(Note 2)
Notes:
1. Transmit clock invert (TCI) bit in GSMR is set.
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in
the buffer descriptor at the end of the frame transmission.
RCLK1
RxD1
(Input) 0 1 1 BIT1 BIT2
RSTRT
(Output)
REJECT
137
All Frequencies
Num Characteristic Unit
Min Max
SMCLK
150
SMTXD
(Output)
Note 1
154 153
155
SMSYNC
154
155
SMRXD
(Input)
Note:
1. This delay is equal to an integer number of character-length clocks.
Figure 64. SMC Transparent Timing Diagram
All Frequencies
Num Characteristic Unit
Min Max
SPICLK
(CI = 0)
(Output)
161 167 166
161 160
SPICLK
(CI = 1)
(Output)
163 167
162 166
SPIMISO
(Input) msb Data lsb msb
165 164
167 166
SPIMOSI
(Output) msb Data lsb msb
SPICLK
(CI = 0)
(Output)
161 167 166
161 160
SPICLK
(CI = 1)
(Output)
163 167
162 166
SPIMISO
(Input) msb Data lsb msb
165 164
167 166
SPIMOSI
(Output) msb Data lsb msb
All Frequencies
Num Characteristic Unit
Min Max
174 Slave sequential transfer delay (does not require deselect) 1 — tcyc
SPISEL
(Input)
172 171
174
SPICLK
(CI = 0)
(Input)
173 182 181
173 170
SPICLK
(CI = 1)
(Input)
177 181 182
180 178
SPIMISO
(Output) msb Data lsb Undef msb
175 179
176 181 182
SPIMOSI
(Input) msb Data lsb msb
SPISEL
(Input)
172
171 170 174
SPICLK
(CI = 0)
(Input)
173 182 181
173 181
SPICLK
(CI = 1)
(Input)
177 182
180 178
SPIMISO msb
(Output) Undef msb Data lsb
175 179
176 181 182
SPIMOSI msb
(Input) msb Data lsb
All Frequencies
Num Characteristic Unit
Min Max
All Frequencies
Num Characteristic Expression Unit
Min Max
SDA
SCL
Duty cycle 50 50 %
Frequency — 50 MHz
Duty cycle 40 60 %
Frequency — 50 MHz
U5 UTPB, SOC active delay (and PHREQ and PHSEL active delay in Output 2 16 ns
MPHY mode)
U1 U1
UtpClk
U5
PHREQn
3
U3 U4
4
RxClav
U2
2
RxEnb
U3
3 U4
UTPB
SOC
1
U1 U1
UtpClk
5
U5
PHSELn
3
U3 U4
4
TxClav
U2
2
TxEnb
U5
5
UTPB
SOC
MII_RX_CLK (Input)
M4
MII_RXD[3:0] (Inputs)
MII_RX_DV
MII_RX_ER
M1
M2
MII_TX_CLK (Input)
RMII_REFCLK
M5
M8
MII_TXD[3:0] (Outputs)
MII_TX_EN
MII_TX_ER
M6
Figure 73. MII Transmit Signal Timing Diagram
MII_CRS, MII_COL
M9
Figure 74. MII Async Inputs Timing Diagram
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay) — 25 ns
MM15
MII_MDC (Output)
M10
MII_MDIO (Output)
M11
MII_MDIO (Input)
M12
M13
Figure 75. MII Serial Management Channel Timing Diagram
Table 34 identifies the packages and operating frequencies available for the MPC860.
Table 34. MPC860 Family Package/Frequency Availability
Freq. (MHz) /
Package Type Package Order Number
Temp. (Tj)
Freq. (MHz) /
Package Type Package Order Number
Temp. (Tj)
Ball grid array (continued) 80 ZP/ZQ1 MPC855TZQ80D4
ZP suffix—leaded 0° to 95°C MPC860DEZQ80D4
ZQ suffix—leaded MPC860DTZQ80D4
VR suffix—lead-free MPC860ENZQ80D4
MPC860SRZQ80D4
MPC860TZQ80D4
MPC860DPZQ80D4
MPC860PZQ80D4
Tape and Reel MPC860PZQ80D4R2
MPC860PVR80D4R2
VR MPC855TVR80D4
MPC860DEVR80D4
MPC860DPVR80D4
MPC860ENVR80D4
MPC860PVR80D4
MPC860SRVR80D4
MPC860TVR80D4
Ball grid array (CZP suffix) 50 ZP/ZQ1 MPC855TCZQ50D4
CZP suffix—leaded –40° to 95°C MPC855TCVR50D4
CZQ suffix—leaded MPC860DECZQ50D4
CVR suffix—lead-free MPC860DTCZQ50D4
MPC860ENCZQ50D4
MPC860SRCZQ50D4
MPC860TCZQ50D4
MPC860DPCZQ50D4
MPC860PCZQ50D4
Tape and Reel MPC855TCZQ50D4R2
MC860ENCVR50D4R2
CVR MPC860DECVR50D4
MPC860DTCVR50D4
MPC860ENCVR50D4
MPC860PCVR50D4
MPC860SRCVR50D4
MPC860TCVR50D4
66 ZP/ZQ1 MPC855TCZQ66D4
–40° to 95°C MPC855TCVR66D4
MPC860ENCZQ66D4
MPC860SRCZQ66D4
MPC860TCZQ66D4
MPC860DPCZQ66D4
MPC860PCZQ66D4
CVR MPC860DTCVR66D4
MPC860ENCVR66D4
MPC860PCVR66D4
MPC860SRCVR66D4
MPC860TCVR66D4
1
The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.
W
PD10 PD8 PD3 IRQ7 D0 D4 D1 D2 D3 D5 VDDL D6 D7 D29 DP2 CLKOUT IPA3
V
PD14 PD13 PD9 PD6 M_Tx_EN IRQ0 D13 D27 D10 D14 D18 D20 D24 D28 DP1 DP3 DP0 N/C VSSSYN1
U
PA0 PB14 PD15 PD4 PD5 IRQ1 D8 D23 D11 D16 D19 D21 D26 D30 IPA5 IPA4 IPA2 N/C VSSSYN
T
PA1 PC5 PC4 PD11 PD7 VDDH D12 D17 D9 D15 D22 D25 D31 IPA6 IPA0 IPA1 IPA7 XFC VDDSYN
R
PC6 PA2 PB15 PD12 VDDH VDDH WAIT_B WAIT_A PORESET KAPWR
P
PA4 PB17 PA3 VDDL GND GND VDDL RSTCONF SRESET XTAL
N
PB19 PA5 PB18 PB16 HRESET TEXP EXTCLK EXTAL
M
PA7 PC8 PA6 PC7 MODCK2 BADDR28 BADDR29 VDDL
L
PB22 PC9 PA8 PB20 OP0 AS OP1 MODCK1
K
PC10 PA9 PB23 PB21 GND BADDR30 IPB6 ALEA IRQ4
J
PC11 PB24 PA10 PB25 IPB5 IPB1 IPB2 ALEB
H
VDDL M_MDIO TDI TCK M_COL IRQ2 IPB0 IPB7
G
TRST TMS TDO PA11 BR IRQ6 IPB4 IPB3
GND GND
F
PB26 PC12 PA12 VDDL VDDH VDDH VDDL TS IRQ3 BURST
E
PB27 PC13 PA13 PB29 CS3 BI BG BB
D
PB28 PC14 PA14 PC15 A8 N/C N/C A15 A19 A25 A18 BSA0 GPLA0 N/C CS6 CS2 GPLA5 BDIP TEA
C
PB30 PA15 PB31 A3 A9 A12 A16 A20 A24 A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7 CS0 TA GPLA4
B
A0 A1 A4 A6 A10 A13 A17 A21 A23 A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4
A
A2 A5 A7 A11 A14 A27 A29 A30 A28 A31 VDDL BSA2 WE1 WE3 CS4 CE2A CS1
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0.35 C
E2 E
D2
B
TOP VIEW
A2
A3
A1
A
D1
SIDE VIEW
18X e
W
V
U
T
R
P
N
M
L
K E1
J
H
G
F MILLIMETERS
E
D DIM MIN MAX
C
B A --- 2.05
A
1 3 5 7 9 11 13 15 17 19 A1 0.50 0.70
2 4 6 8 10 12 14 16 18 A2 0.95 1.35
357X b
A3 0.70 0.90
BOTTOM VIEW 0.3 M C A B b 0.60 0.90
D 25.00 BSC
0.15 M C
D1 22.86 BSC
D2 22.40 22.60
e 1.27 BSC
E 25.00 BSC
NOTE
E1 22.86 BSC
1. Dimensions and tolerance per ASME Y14.5M, 1994.
E2 22.40 22.60
2. Dimensions in millimeters.
3. Dimension b is the maximum solder ball diameter
measured parallel to data C.
Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the ZP PBGA Package
NOTE
1. All Dimensions in millimeters.
2. Dimensions and tolerance per ASME Y14.5M, 1994.
3. Maximum Solder Ball Diameter measured parallel to Datum A.
4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the ZQ PBGA Package
10 09/2015 In Table 34, moved MPC855TCVR50D4 and MPC855TCVR66D4 under the extended
temperature (–40° to 95°C) and removed MC860ENCVR50D4R2 from the normal
temperature Tape and Reel.
9 10/2011 Updated orderable part numbers in Table 34, “MPC860 Family Package/Frequency
Availability.”
7.0 9/2004 • Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL
Max of the I2C Standard
• Replaced the thermal characteristics in Table 4 by the ZQ package
• Add the new parts to the Ordering and Availablity Chart in Table 34
• Added the mechanical spec of the ZQ package in Figure 78
• Removed all of the old revisions from Table 5
6.2 8/2003 • Changed B28a through B28d and B29d to show that TRLX can be 0 or 1
• Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family
Users Manual
• Nontechnical reformatting
5.1 11/2001 • Revised template format, removed references to MAC functionality, changed Table 7
B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.