Simmons - Odd Solutions
Simmons - Odd Solutions
O D D - N U M B E R E D
P R O B L E M S
856
ANSWERS TO ODD-NUMBERED PROBLEMS 857
35. A = 277/-2 + — .
r
37. (a) Largest area = 625 ft2, both
sides - 25 ft; (b) A - 10(k — 2x2 -
1250 —
2(x - 25)2, largest area=
1250 ft2, sides = 25 and 50 ft.
Section 1.6, p. 37
L (a) i
2 4
5. (a)
3. (a)
S e c t io n 1.7, p . 4 5
2_5tt
'■ « > ; (b)7~ (c ) ~
3
(d)
858 ANSWERS TO ODD-NUMBERED PROBLEMS
V 3 ( jc - l ) ( j c - 3 ) + y ( j c - 2 ) ( j c - 3 ) .
(d) - s in y ; (e) cos 0 ; (f) cos y ;
59. (a)
(g) -cos y ; (h) sin y ; (i) cos y .
~V 2. 67. \h2.
2
277 V3 5 TT (b)
15. (a) sin — = (b) cos — = CHA PTER 2
1 , / r , . . YI TT 1
, / / /M /i
- 2 -1 1 2 Section 2.2, p. 57
~2 sm — = r 1. (a) 4jc + y + 4 = 0 ; (b) 8jc - y =
19. |V 2 ( V 3 + 1). 16; (c) 8 x - y = 16.
(c) 5. (a) 2jco - 4 ; (b) 2jc0 — 2; (c) 4jc0 ;
Additional Problems, p. 47 (d) 2x0.
9. No, to both questions. I. 8jc + y + 7 = 0.
15. (ji - yi)x + (jc2 “ *i)y = *iy\ ~ I I . y = 4x + 1, y = — 4x + 2 5 .
x\yz.
Section 2.3, p. 62
19. (a) [ b , a b ~ b i ' 3. — 1 6 jc. 5. -72.
7. — 1 0 + 3 0 jc. 9. 6y + 7.
/un 1 a b2 + c2 — ab 1 1. 3500 - 1 4 *. 13. IOjc + 25.
( b ) | r --------& — 15. — 3 2 jc -4 0 . 17. (0, 6).
a + b c 19. (3 ,0 ). 21. (10,100).
(C)
3 ’ 3 23. 5 - 3 jc2. 25. 6jc2 - 6jc + 6.
23. (a) x — l y + 5 = 0, Ix + y — 1
27. 1 + 29.
15 = 0; (b) x = (1 ± V2)y. xL (jc+ I)2'
25. \b\ < 2 V T 0 . -2 —2x
31. 33.
27. (a) (x — f a ) 2 + y2 = ja 2; v-3 '
(jc2 + 1)2‘
(b) (x2 + y 2 ) 2 = 2a2(x2 - y2). —2(jc2 + 1) 1
35. 37.
31. Ix + y = 1 0 and x - y + 2 = 0 . Ot2 - l)2 ' 2Vx 1
33. y = - 2 x + 2; (0, 2) and (y, f).
39. (b) Area = 2.
35. x 2 + y 2 — 2 xy - 4x - Ay + 4 =
43. g'(0) = 0; y = 3.
0.
45. (1, 1).
37. The line is x = 2pm.
41. No. 43. g(x) = x 3. Section 2.4, p. 67
45. V = \A r - — 7 r r3 I . v = 6 1- 1 2 ; (a) t = 2 , (b) t > 2.
3. v = 4 t + 28; (a) t = - 7 ,
47. V = y 7ra
r z — a‘ (b) t > - 7 .
-b 5. v = 141; (a) t = 0, (b) t > 0.
49. a — ,/3 =
ad — b e ' H ad — b e ' 7. v = S t - 24; (a) t = 3, (b) t > 3.
-c a 9. (a) 7 seconds; (b) 48 ft/s;
y = -,8 =
ad — b e ' ad - be' (c) 176 ft/s; (d) 224 ft/s.
5 1. (jc — l)(x — 2) • • • (x —n); I I . (a) 1 2 ; (b) 6 ; (c) 18.
15.
7.
9.
13.
= 4 /S i , _
5
17. (2, 0). 19. a = 3. 33. \(B + / / ) 2.
23. (a) a > 0; (b) a < 0.
Section 4.4, p. 137
I. 1. 3. f R.
5. 4 by 4 in. 7. \ .
9. (1, 1).
I I . (a) f mi; (b) 1 h and 44 min;
(c) 8 min longer.
13. 1 5 /V T o mi/h.
19. 1. 21. a = 2.
23. x = y V 2 a. 25. (a) 0; (b) 1.
27. (2, 4). 29. Amax = |V 3 .
31. The spider should w alk straight to
the m idpoint of a side not containing S
or B, then straight on to B.
C H A PTER 5
7. (2 x~ m + 2 x ~ 4/5 - 1 7 ) dx.
q (15x2 + 8x) dx
2V3x + 2
37. (a) Point of inflection at x = 1;
(b) points of inflection at x = 1,2; 1 1 -dx? =
(c) points of inflection at x = —2, 0, 1,
—15(3¾2 - 2u + l)x 2(x3 + 2)4
2, 3.
39. a = - 3 . 41. j V 3 . («2 — w)2
43. jc = 21, y = 35. 13. AA = 27tt A r + 77 Ar2 and dA =
45. 18 = 16 + 2. 47. 5, 5, 5. 277r dr = 2 tjt Ar, since dr = Ar.
51. j V 3 a, \b. 59. 2 in. Imagine that the thin circular ring is
63. 4000 knives at a price of $18 cut across and u nrolled— with slight
apiece. distortions— into a long thin rectangle
65. 20 days. with length 277r and width Ar.
67. (a) 120 ft; (b) 312 ft. 15. 12, 12.048064.
69. i 71. V 2 . 17. 16.167, 16.166236.
73. 77/4. 75. 4. 19. 26.75, 26.749612.
77. 4 / tt. 21. 6.019, 6.018462.
864 ANSWERS TO ODD-NUMBERED PROBLEMS
35
23. 0.849,0.848048. 13. 3 \ /ry = x V x - 3. 9. 4 8 V 2 /5 . II. 3 •
25. 1.037 mi. 27. 125.66 ft. 21 26
13. • 15. 3•
Section 5.5, p. 187 2
26
Section 5.3, p. 177 I . 8 s; velocity = - 1 2 8 ft/s and 17. 33. 19. 3•
1. yx 2 + X + c. 4 2
speed = 128 ft/s. 2 1. 9- 23. 3'
3. yx 3 + yx 4 + yx 5 + c. 3. v= - 3 2 1 + 128; 5 = —16r2 + 13
25. 1. 27. 3•
5. 2 V x + c. 7. yx 7/4 + c. 128/. 5 —2 1
29. 48« • 31. 6-
9. f x 2/3 + c. 5. l o V I o s. 7. 40 ft/s.
1 1 . f x 3/2 — 2 V x + c.
33. a 4 /4. 35. b2!6.
9. 96 ft/s. 1 1
13. 6 V x + yx 3 /2 + c. 37. 30- 39. 2 •
II. i’02/64 ft; 96 ft/s.
15. yX3 + 7 X6 + C. 41. 3.
A dditional Problem s, p. 188
17. Ix 4- j x 2 + c.
1. fx 5 — ^x4 + lOx + c. Section 6.7, p. 216
19 f x 6 + 3x 2 — 5x + c.
1. (a) f ; ( b ) f ; (c) 19; (d) f -
2 1 . —2 x - 2 + c. 3. }x3 — f x 2 + x - 4 V x + c.
128
3. 5 • 13. Tra212.
23. f x 3/2 - 4 x 7 /2 — 3x_l + c. 5. {x4 + f x 3 + -jx2 + c.
25. 9x1/3 — 16x1/4 + c. 7. 17x3 — 27x4 + c. Additional Problems, p. 217
27. 2 \T x — iy x 10/3 + c. 9. 6x —f x 3/2 —jx 2 + c. 7. (a) f ; (b) f ; (c) 12; (d) 5V 5/3;
29. x 4 - 4x 2 + 17x + c. —f(2 - 3x ) 3 / 2 + c.
(e) 1
31. i x 10/3 + ^ x 7 /3 + 3x 4/3 + c. ~ ^(5 x + 2 ) 1 6 5 + c. 9. ( a ) 4 ( 2 V 2 - 1); (b) f; (c) 3; (d)
33. f x 3/2 - f x 7 /2 + ^fx l l / 2 + c. 5 V 1 + X2 + c. 4r^ 9r
II- (a) (b)
35. yx 500 + c. } V 2 x 3 — 1 + c. 1 + x 4 ’ vw 1 + x 2 '
37. j(3 + 4x ) 3 /2 + c. |( x 2 — 2 x + 3 ) 2/ 3 + c. 3x 2 5 ¾9
(c) ,..... :;; w
(d) ^
.--------
39. - \( 2 x - 3 )“ ' + c. —j \ / 2 — x 2 + c. V3x3 + 7 V I + JO
41. - { V 5 - 4 x 2 + c.
+ - I + c.
43. f ( l + V x ) 5 /4 + c. x, CHA PTER 7
45. y(l + x 2 ) 3 /2 + c.
y(x + 1 ) 7/3 + C.
Section 7.2, p. 224
47. {(7 - x ) ~ 6 + c. y(l + X)7/3 - |(1 + X)4/3 + C.
i- £ 3. 1
49. —y(2 — x 2 ) 3 /2 + c. -n-(x3 + x + 32)11/2 + c.
5. f. 7. ff V 2 .
JL (x 3 _ , )4 /3 ( 4 x 3 + 3) + c
51. 2 V x 3 - 5 + c. 9. 4. 36.
53. -no(10x + 10)11 + c. Ix2 13. 2 1 15.
(a) y = 320
55. -jy(3x2 + 4)5/2 + c. 3x 2 + 13 ’ 17. - 4 V 2 . 19. 3 *
57. 4 \ / 3 x 3 — x + 2 + c. (b) 3 V y - 4 = (x - 1) 3 / 2 - 2. 21. f . 23. (a) j,; (b) j.
59. | x 15 + c. 61. y = x 3 + 2. 35. x 2 — y 2 = c. 25. f .
63. (a) y sin 2x + c; (b) —j cos 5x + 39. (a) 25 s, 1200 ft/s; (b) 25'\ f l = 27. 2 ( V b - 1) —> 0 0 as b —>0 0 .
c; (c) 2 sin 2x — 3 cos 5x + c; 35 s, 8 0 0 V 2 = 1120 ft/s. 29. (a) 2 (V 2 - 1); (b) y (3 V 3 -
(d) - y cos 2x + j sin 5x + c. 41. 30 m/s.
65. (b) yx — y sin 2x + c. 43. (a) 44 ft; (b) 680 ft. V 2 - 3);
/, (c) 32 + ~2 V 2 - 2.
67. (a) y sin 5 x + c; (b) —y cos 6 x + 45. A bout 1.86 mi. About 0.36 in.
4 V 2 - 5
c; (c) sin (sin x) + c. 47. A bout 179,427 mi/s. 33. a 2 = (0.21895)a2.
69. (a) j sin 2 x + c; (b) —y cos 2 x + c.
They differ by a constant. CHA PTER 6
Section 7.3, p. 229
Section 6.3, p. 196 I. (a) 8 7 7 ; (b) 1 6 7 r / 1 5 ; (c) 3 7 7 / 5 ;
Section 5.4, p. 181
1. (a) 55; (b) 62; (c) 206; (d) 0; (e) 0; (d) 277/3; (e) 877/3; (f) 1677«3/105.
1. y = 2 x 3 + 2 x 2 — 5x + c.
3. y — 6 x 4 + 6 x 3 — 4x 2 + 3x + c. (f) 1500; (g) 7. 5. 477. 7. y a3.
9. -y-a 3. 1 1. 27T2a2b.
5. 3y2 — 4y 3/2 = 3 x 2 + 4x 3/2 + c. 5 (a) (” ~ (b) 0 ¾~ \)n(2n ~ 1 )
1 1 , 2 13. { V 3 « 3. 15. 9V 2/2.
/. y = ------- b —x z + c. 1)n
x 2 in 17. lj-a3. 19.
tx 2 in3. 5 7
(c) [H
9 - y — ~z ■ t - 2 1 . (a) The volumes are A(x) dx
Section 6.6, p. 212 [H °
1. 9. 3. f . and B(x) dx, which are equal
2 x 2 - 31
11. v =
33 - 2 x 2 ' 5. 12. 7. because A{x) = B(x) for every x.
ANSWERS TO ODD-NUMBERED PROBLEMS 865
2 3 . t 7 ra 2h. 25. y = a x 4. 27. (a) 277a3; (b) j77a3; (c) \ \ tto3. (b) I ln (3x2 + 2) + c; (c) fx 2 +
29. a2h. 3 1 . j a 2h. 2 ln x + c; (d) x + ln x + c;
Section 7.4, p. 235 33. 12877/3. 35. 1 177/15. (e) x - ln (x + 1) + c;
3. 12877-/5. 5. 486tt/5. 37. 13577/2. 39. 277. (f) y ln (x2 + 1) + c;
7. lir ib — a). 9. - j - (2 — V 2 ). 43. t - 45. £ (g) ln (3 - 2x2) + c;
47. if. 49. f^ . (h) ln x(x — 1) + c; (i) {(In x)2 + c;
11. (a) 8 7 7 ; (b) 25677/15. (j) ln (ln x) + c; (k) 2 ln (V x + 1 ) +
51 . AB = 3½. 53. 9077.
13. 7 7 /2 ^/6 . 15. 8 7 7 / 9 . c; (1) ln (ex + e~ x) + c.
55. I6 8 7 7 . 57. 77a2/2.
17. By a factor of 1.71, 9. No max., no pt. of infl., min.
59. 7 ft-lb. 61. 2325 ft-lb.
approximately. (3, 9 — 18 ln 3) = (3, -1 1 ).
63. 9 4 5 - 2 13 ft-lb.
Section 7.5, p. 240 65. i f aB. 11. 77 ln 4. 15. min.
1. j f ( lO v T ) - 1). 67. -¾ c, where c is the constant of
proportionality. 17. 1/V e.
c
J.
11 8
Q .
6• 69. 12577W/6. 7 1. f • 83ttw ft-lb. 2x
7. 12. 19. (a) y ( 1 + ^ 2
6x - 2 r
73. 10 tons. 75. j ton.
2x
Section 7.6, p. 244 77. 187.5 tons. 79. 60 tons. (b) “ •
5\x2 + 3 x + 5
1. 25377/20. 3. 1277. 81. 4096 lb.
1
21. (a) x x x x + (ln x)(l + ln x)
5. ^ - ( l O V l O - 1). x
C HA PTER 8 1 — ln x
(b) V x . Max = V e .
7. - y ^ ( 2 V 2 - 1)/72. Section 8.2, p. 263
1. (a) log4 16 = 2; (b) log 3 8 1 = 4 ;
). - f 77a r. 1 1. ^0, — <3j. (c) log81 9 = 0.5; (d) log32 16 = j. Section 8.5, p. 282
3. (a) 4; (b) 6; (c) - 4 ; (d) f. I. (a) 2520; (b) 13.8.
2
13. (a) y = — a; (b) area - 4772a£>. 5. (a) a = 32; (b) a = (c) a = 6; 3. 20.1. 5. 95.8 percent.
77
(d) a = 49. 7. When t = 6. Can you solve this
Section 7.7, p. 249 9. (a) 7; (b) acidic pH < 7, basic problem w ithout calculation, by
I . 6 4 ft-lb. 3. 6000 ft-lb. pH > 7. merely thinking about it?
5. 550 ft-lb. 7. 50,000 ft-lb. 9. x = 10(j)'. 11. 2 more hours.
Section 8.3, p. 269 13. (a) About 3330 years (1380 B.C.);
I I . (b) 250 ft-lb. 13. 5 ft-lb.
1. j( e x — e~ x). 3. (x 2 + 2x)ex. (b) about 3850 years (1900 B.C.);
15. GMm/2a. 17. mgRh/(R + h).
5. e e'ex. 7. xe™. (c) about 10,510 years; (d) about 7010
19. 24077VV ft-lb. 21. ^77a3w(h + a).
9. 4x2<?2x. 11. j e 3x + c. years.
23. About 118,500.
1 3 . 5 ex/5 + c. 1 5 . 2 ex3 + c. 15. x —>A if A < B\ x —» B if A > B.
25. m\ = \rti2.
17. (a) Max. pt. (0, 1), no min. pt.,
Section 7.8, p. 254 Section 8.6, p. 287
pts. of infl. |± { V 2 , -^ = j; (b) no
I. 150 tons. 3. 125 tons. 1 .X
5. f ton. 7. I tons.
3. x =
9. 30077 1b. max. pt., min. pt. ( - 3 , —— ), pt. of xo + (xi - x0)e~
I I . 10-^ tons; 11 ft.
5. s = — (1 — e ct).
13. 300V 2 w or approximately infl. ( - 6 , ). c
13.2 tons. 7. When v < 1, the resisting force in
19. j( e b — 0 ~b)•
the second case becomes very sm all.
Additional Problems, p. 254 23. Area = 1 — e b —> 1 as b
I1. ±6 . -, 128 9. About 53.4 lb.
J . 15 . 25. (a) e; (b) e\ (c) e\ (d) e2\ (e) \T e.
29. 8%.
5. 36. 7. Additional Problems, p. 288
9. 18. 11. f. Section 8.4, p. 276 1. ~ x e ^ x~xl/ V 1 —x2.
13. 64. 15. f . I . (a) 2; (b) 3; (c) 1/x; (d) 1/x; (e) —x; 3. (2x - 2)ex2- 2x+l.
17. (f) 1/x; (g) x; (h) 3x; (i) 0; (j) j; (k) j; eVx 1 ---
5. - — + —V P .
19. (a) 56 tt/ 15; (b) 56 tt/15; ( c) 32 tt/3; (1) 0; (m) x 3y2; (n) 8; (0 ) 2e3; (p) x 2e*.
2V~x 2
(d) 4877/5; (e) 77a3/15. - (a) — ------
+ 2x)
3. — ; n(b)\ — ---------.
+x>’)
7. - y e -3' + c. 9 - e \/x +
21. (a) 51277/15; (b) 12877/3. x(3y - 1) x(l-xy)
23. V - 25. y77(fc5 - a 5). 5. (a) } ln (3x + 1) + c; 11. 2 V e x + 1 + c.
866 ANSWERS TO ODD-NUMBERED PROBLEMS
6 3 . x ln V 2 x — 1 — yx —
13 - ~gX
, gXJ 1 2 +■ JfX
4 — ln
V l + ln x — 1
\ ln (2 x -
3x + 2 V l + ln x + 1 65. sin -1 jc1- V T 7
In (3x + 2); (c) x ----- 5----- -, 7. - 2 V x cos Vx + 2 sin V x. 67. T7?T sin 20x.
xz + 1 9. —cos x. 69. y[ln (sin x)]2.
> In (jc2
-1 r ^2 — — + 1); (d) 1 + 11. {(x2 — x sin 2x — y cos 2x). 71 7 e sc 3 2x — jo csc5 2x.
jc + 2 ’
13. ex - ln (ex + 1). 73. x ln (2x + x 2) — 2x + 2 ln (x + 2).
jc + ln (jc + 2); (e) 1 -----~---- - , 15. f(x - 1)8/3 + f(x - 1)5/3 + 75. fx 4/3 - -^x 11/6.
jcz + 1
f(* - 1)2/3. 77. x ln (1 + x 2) — 2x + 2 tan-1 x.
jc— 2 tan-1 jc. 17. 2 V x tan 1 V x — ln (1 + x). 79. x tan x — y*2 + In (cos x).
3. 3 ln (jc — 3) + 4 ln (jc + 2). 19. 3x + 11 ln (x — 2). 8 1. y sec7 x.
5. 5 ln (jc - 7) — 3 ln jc.
2 - V4 -x 2 8 3. y(2x2 sin -1 x — sin-1 x +
7. 2 ln jc — 4 ln (jc + 8) +
21. 2 ln + V 4 - x 2.
3 ln (jc - 3). x V 1 —x 2).
9. 3 ln jc + 2 ln (jc + 13) — j tan 1 x 4 87. ln (tan x).
23. - } e ~ x3(x3 + 1). 2 e vS
ln (jc - 3). 91. 5(ln x )2.
2 2 V x — 2 — 4 tan-1 (y V x — 2 ).
I 1. —In (jc + 1) — 3 ln x. 25. In (x + 3) +
x+ 1 x + 3' —cot X.
13. 2 ln x + y ln (x2 + 2x + 2) — { (s in -1 3x + 3 x V 1 — 9 x 2).
1 _i x2 + 1
6 tan-1 (jc + 1). 27. — tan ln (x 2 + 5x + 6).
6
15. jc + 2 In (jc — 1 )- + x 2 — 3'
2 jc — 2 29. ln x V x 2 — 1 — V x 2 — 1 + 101. — In
x2 + 1
| ln (jc2 + 1 ) + 2 tan-1 jc.
tan-1 V x 2 — 1.
103 _ In (x — 1) — 7 In (x 2 +
I 7. yx2 - 2jc + 4 ln (jc + 2).
31 . - t1 cos
- - xv3. , 3. 1 f 2x + 1
19. yx2 — 2 jc + 5 ln (x + 2). 6 Ix 2 + 4 x + 1) + ------ tan 1 / ----------
V3 V V3
21 1
5 \ sin 6+ 4 35. In (x - 1) - 105. \ se '4 v — y sec 2x.
x —1 2 (x — 1 ) 2
Section 11.4, p. 396 3. (a) m = 7 ; (b) m = 0. 11. All terms must be zero from some
I. {M a2. 3. \M h 2. 5. 16, 34, 34, 14, 2 percent. point on.
5. \M a l. 7. {M a2. 13. (a) 0.6000 . . . ; (b) 1 . 6 6 6 . . . ;
Additional Problems, p. 424
9. ± M a 2. (c) 1 .0 8 0 0 0 .. . ; (d) 1 .1 2 5 0 0 0 ...;
1 I
1. 2- 3. 44. (e) 1.0384615384615 . . . .
II. (a) { V i a = 0.707a; 5. 12. 7. i
(b) ^ v f ( ) a s 0.548a; 9 - -75.
V. 11. 0 0 . Section 13.4, p. 449
13. 6 . 15. 3. 3. (a) \x\ < 1, ax/( 1 — x 2)\ (b) |jc| > 1,
(c) jVTOa = 0.632a.
17. i 19. 0 0 . M{x — 1); (c) |l 4- x\ > 1, 1 + x (also,
Additional Problems, p. 396 if x = 0 the sum is 0 ); (d) e ~ x < x < e,
2 1 . 0 . 23.
3. (a) ({, |) ; (b) (0, f); (c) (1, f); ln x/(\ — ln x).
25. 0. 27. 2J.
(d) (I, f ); (e) (0, f ) ; (f) (jf, ff); 5. * < 0 .
29. j . 31. 9.
33. 3. 35. Section 13.5, p. 454
® (t ^ t -°) 37. f . 39. I. (a) D; (b) C; (c) C; (d) C; (e) C;
5. Snabc', 877(a + £>)c.
41 (f) D; (g) C; (h) C.
7. iM a2. H1- — 16'
43. 0. No; instead, it emphasizes the 3. D. 5. D.
7. D. 9. D.
c h a p t e r 12 logical point that L’Hospital’s rule
II. D. 13. C.
makes a definite statement only when
Section 12.2, p. 403 15. C. 17. D.
the limit on the right exists.
1. 3. 3. £ . 19. C.
49. 0 . 51. 0 .
5 . I6 . 7/ . _ I9 .
j 2 1 . C if/? > 1, D if p < 1.
53. 0 . 55. 0 .
9. j . 11. - 6 . 23. C.
57. 0 . 59. 0 .
13. 3. 15. 4. 1 25. C i f p > 1, D i f p < 1.
61. P- 63. 3-
17. 19. I/ 77. 29. ln 2.
65. 0 . 67. 0 .
21. 16. 23. i 69. 6'
1
71 1. Section 13.6, p. 460
25. 6. 73. 1 75. 1. 1. C. 3. D.
27. /(0 ) = {a2(sin 6 — sin 0 cos 6), 77. 1. 79. 1. 5. C. 7. C.
g(6) = {a2(6 - sin 6 cos 6); limit = f.
81. 1. 83. —oo. Section 13.7, p. 464
Section 12.3, p. 408 85. 1. 87. 1. 1. C. 3. D.
1. - 3 . 3. 1. 89. 1. 91. 1. 5. C. 7. C.
5. 3. 7. 0. 93. e2. 95. e4. 9. D. ll.C.
9. 2. 1 1 . 1 . 97. e \ 99. 1. 13. D. 17. D.
13. 0. 15. 0. 1 0 1 . l/(3e6). 103. 1. 19. C. 21. D.
1
17. 0. 19. 2. 105 • 2- 107. 77/4. 23. C.
2 1 . i 1
23. 1. 109 . 77/8. 111. 3-
25. 1. 27. 1. 113,. 2. 1 15. Diverges. Section 13.8, p. 469
29. 1. 31. 1. I. CC. 3. D.
117,. Diverges. 119. 3.
33. e*. 35. 1. 5. AC. 7. AC.
37. 1. 39. I/V e . 9. D. 1 1 . CC.