0% found this document useful (0 votes)
41 views20 pages

Simmons - Odd Solutions

Uploaded by

sauloalencastre
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
41 views20 pages

Simmons - Odd Solutions

Uploaded by

sauloalencastre
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

A N S W E R S T O

O D D - N U M B E R E D

P R O B L E M S

CHA PTER 1 (c) 2 x — 3y = 1 2 ; (d) y = —4; Section 1.5, p. 28


(e) x = 1; (f) x + 3y + 2 = 0; (g) x + 1- (a) 42; (b) 17; (c) - 3 ; (d) 32;
Section 1.2, p. 8
2y = 11; (h) 3y — 2x = 17; (i) x + (e) 5a 2 + 30a + 42; (f) 125r2 - 3.
I • (a) Rational; (b) integer, rational;
2y = 9; (j) x + y = 1. 3. 5. 5. 2x + h.
(c) integer, rational; (d) rational;
(e) integer, rational; (f) irrational; , (a)^ _ + ^ 1;(b)^ +
x(x + h )‘
(g) integer, rational; (h) irrational;
(i) rational; (j) rational. X = 1 ;( c)£ + i = , ; ( d)£ + 9- /( 1 ) = 0 ,/(2 ) = 2 ,/( 3 ) = 10,
3. 1 1 . 5. 7 7 3. /(0 ) = - 2 , / ( - 1 ) = - 1 0 , / ( - 2 ) =
7. 5 - x. 9 ■x 2 + 10. -3 0 .
II • 3x2 — 1. T — *' 13. (a) x > 0; (b) x < 0; (c) all x;
13. (a) jc < 0 and x > 1 ; (b) —2 < " • ( f. -¾ . (d) x < - 2 , x > 2; (e) all x except 2,
x < 1; (c) x < —7 and x > 3; 13. F = jC + 32 or C = f(F - 32). - 2 ; (f) all x; (g) x < - 2 , x > 1;
(d) —| < x < 1; (e) —3 < x < \ \ (h) x < - 2, x > 1; (i) —3 ^ x < 1;
Section 1.4, p. 22
(f) all x. ( j) x ^ 0, x > 2.
I • (a) (x — 4 ) 2 + (_y — 6 ) 2 = 9;
15. (a) x > 0; (b) - 2 < x < 0 and 15. /( 0 ) = 0 ,/(1 ) does not exist,
(b) (x + 3 ) 2 + ( y - I ) 2 = 5;
x > 2; (c) x < —1 and x > 3; (d) x < /( 2 ) = 2 ,/(3 ) = 1 ,/( /( 3 ) ) = 3. In the
(c) (x + 5)2 + ( j + 9 ) 2 = 49;
- 1 , 0 < x < 1, and x > 3. last part, it is tacitly understood that x
(d) (x - I ) 2 + (y + 6 ) 2 = 2 ;
17 • a = b. is restricted to those values for which
(e) (x — a)2 + y2 = a2 or x 2 + y 2 =
19- (a) Vertical; (b) horizontal; /( /( x ) ) exists: that is, x ^ 1.
2ax\ (f) x 2 + (y — a)2 = a 2 or x 2 +
(c) horizontal; (d) vertical; 17. /( 0 ) = 1,/(1) does not exist,
y 2 — 2 ay.
(e) horizontal; (f) vertical; (g) vertical; /( 2 ) = - 1 , / ( / ( 2 ) ) = i / ( /( / ( 2 ) ) ) = 2.
3- (a) Circle, center (2, 2) and radius
(h) horizontal. I 9 -/ (x i)/ (x 2) = f i x X + x2).
2 \/ 2 ; (b) point (9, 7); (c) circle, center 21 • No; it is true if and only if ad +
21 • (a) 5 V 2 ; (b) V l3 ; (c) V 8 9 ;
( —4, —5) and radius 1 ; (d) circle, b = be + d.
(d) |a - b\ V 2 .
center ( —f , 4) and radius 3; (e) empty; 23. (a) a = 4, b = —5, c = 3.
27. Center ( —2, f), radius j V 113.
(f) point (7 V 2 , —y V 2 ); (g) circle, 25. y = —x + V 3 — x2 and y = —x —
29- ( - 1 , - 1 ) .
center ( 8 , —3) and radius 1 1 .
31 ■Symmetric with respect to the V 3 — x2.
5- D istinct real roots, b2 — 4ac > 0;
straight line through the origin that 27. A = jx V 16 — x 2.
equal real roots, b2 — 4ac = 0 ; no real
bisects the first and third quadrants.
roots, b2 — 4ac < 0 . 29. A = x V 4 a 2 - x 2.
33. { V 2 h.
7 ■y = ± 2 V 2 x + 4. c2
31- (a) Yes, A = - — ; (b) yes, A =
Section 1.3, p. 14 9- (a) y 2 = —1 2 x; (b) x 2 = 4y; 1 2 / \ 477
7 6 P , (c) no. _______
1 - (a) - f ; (b) f; (c) j; (d) - 1 ; (e) 0 ; (c) y 2 = 8 x; (d) 3x 2 = —4y; (e) y 2 +
33. y = 27rr2V a 2 — r 2, A = 27rr2 +
(f) 1 0 . 1 2 x + 1 2 = 0 ; (f) x 2 — 6 x — 8 y +
4 7 tt V a 2 — r 2 ; V = ^ 7 r (4 < 3 2/* — /z3) ,
5- (a) Yes; (b) no; (c) no; (d) yes. 17 = 0.
7- (a) y = —4x + 5; (b) 3x + l y = 2; I I ■ 2 0 ft. A = Y7r(4a2 - h2) + 7 r/zV 4a2 — /z2.

856
ANSWERS TO ODD-NUMBERED PROBLEMS 857

35. A = 277/-2 + — .
r
37. (a) Largest area = 625 ft2, both
sides - 25 ft; (b) A - 10(k — 2x2 -
1250 —
2(x - 25)2, largest area=
1250 ft2, sides = 25 and 50 ft.

Section 1.6, p. 37
L (a) i

2 4

5. (a)

3. (a)

S e c t io n 1.7, p . 4 5
2_5tt
'■ « > ; (b)7~ (c ) ~
3
(d)
858 ANSWERS TO ODD-NUMBERED PROBLEMS

3. (a) - 4 ; (b) |V 3 ; (c) - { V 3 ; (d) odd; (e) neither; (f) odd;


(g) neither; (h) neither.
(d) { V 2 ; (e) (f) -\V ~2.
55. (a) E ven; (b) even; (c) odd.
7. (a) sin y ; (b) sin 0; (c) - s i n -y ; 57. y = 275(jc — 1)(jc — 2) —

V 3 ( jc - l ) ( j c - 3 ) + y ( j c - 2 ) ( j c - 3 ) .
(d) - s in y ; (e) cos 0 ; (f) cos y ;
59. (a)
(g) -cos y ; (h) sin y ; (i) cos y .

11. sin 15° = { V 2 - V 3; cos 15° =


7 V 2 + V 3.

13. (a) cos y = y V 2; (b) cos ^ =

~V 2. 67. \h2.
2
277 V3 5 TT (b)
15. (a) sin — = (b) cos — = CHA PTER 2

1 , / r , . . YI TT 1
, / / /M /i
- 2 -1 1 2 Section 2.2, p. 57
~2 sm — = r 1. (a) 4jc + y + 4 = 0 ; (b) 8jc - y =
19. |V 2 ( V 3 + 1). 16; (c) 8 x - y = 16.
(c) 5. (a) 2jco - 4 ; (b) 2jc0 — 2; (c) 4jc0 ;
Additional Problems, p. 47 (d) 2x0.
9. No, to both questions. I. 8jc + y + 7 = 0.
15. (ji - yi)x + (jc2 “ *i)y = *iy\ ~ I I . y = 4x + 1, y = — 4x + 2 5 .
x\yz.
Section 2.3, p. 62
19. (a) [ b , a b ~ b i ' 3. — 1 6 jc. 5. -72.
7. — 1 0 + 3 0 jc. 9. 6y + 7.
/un 1 a b2 + c2 — ab 1 1. 3500 - 1 4 *. 13. IOjc + 25.
( b ) | r --------& — 15. — 3 2 jc -4 0 . 17. (0, 6).
a + b c 19. (3 ,0 ). 21. (10,100).
(C)
3 ’ 3 23. 5 - 3 jc2. 25. 6jc2 - 6jc + 6.
23. (a) x — l y + 5 = 0, Ix + y — 1
27. 1 + 29.
15 = 0; (b) x = (1 ± V2)y. xL (jc+ I)2'
25. \b\ < 2 V T 0 . -2 —2x
31. 33.
27. (a) (x — f a ) 2 + y2 = ja 2; v-3 '
(jc2 + 1)2‘
(b) (x2 + y 2 ) 2 = 2a2(x2 - y2). —2(jc2 + 1) 1
35. 37.
31. Ix + y = 1 0 and x - y + 2 = 0 . Ot2 - l)2 ' 2Vx 1
33. y = - 2 x + 2; (0, 2) and (y, f).
39. (b) Area = 2.
35. x 2 + y 2 — 2 xy - 4x - Ay + 4 =
43. g'(0) = 0; y = 3.
0.
45. (1, 1).
37. The line is x = 2pm.
41. No. 43. g(x) = x 3. Section 2.4, p. 67
45. V = \A r - — 7 r r3 I . v = 6 1- 1 2 ; (a) t = 2 , (b) t > 2.

3. v = 4 t + 28; (a) t = - 7 ,
47. V = y 7ra
r z — a‘ (b) t > - 7 .
-b 5. v = 141; (a) t = 0, (b) t > 0.
49. a — ,/3 =
ad — b e ' H ad — b e ' 7. v = S t - 24; (a) t = 3, (b) t > 3.
-c a 9. (a) 7 seconds; (b) 48 ft/s;
y = -,8 =
ad — b e ' ad - be' (c) 176 ft/s; (d) 224 ft/s.
5 1. (jc — l)(x — 2) • • • (x —n); I I . (a) 1 2 ; (b) 6 ; (c) 18.

jc" + 1; jc”. 13. 1 0 seconds.


53. (a) Odd; (b) even; (c) even; 15. (a) 3200 gal/min; (b) 2400 gal/min.
ANSWERS TO ODD-NUMBERED PROBLEMS 859

17. dr/dt decreases as r increases. 35. -5 . 37. j . 10x3 — 3 6 x 2 + 4 2 x


23.
39. 4. 41. 3a/2. (5 x - 7 ) 2
Section 2.5, p. 73
43. 1. 45. 0. 288x10 - 360x5
1. 15. 3. - 5 .
47. Does not exist. 25.
5. 3. 7. - 3 . (24x5 - 5)2 '
49. Does not exist.
9. 4. 11. 5. —x 2 — 2x + 1
51. 3. 53. 0. 27.
13. 0 15. j . x 2(x I)2
55. 0. 57. 1.
17. (a) 6; (b) 4; (c) - 2 ; (d) 0; (e) does -4 2x4 - 2
59. lim /(x ), lim /( x ) , and lim /(x ) 29.
not exist; (f) \ . x—>0+ x—>0— x —>0 v2 •
19. (a) 5; (b) j ; (c) 0; (d) 1; (e) 1; do not exist. —(x + 30)
(f) y; (g) I- 6 1 . Because there are rationals as 33.
23. See Fig. 2.20. close as we please to every irrational, 35. (3, 2) and ( - 3 , - 2 ) .
25. (a) Lim it = 1; (b) x = 0.4. and irrationals as close as we please to 37. Two; ( - 3 ± V 5 )/2 .
every rational. 39. 4x + 5y = 13, 5x - 4y = 6.
Section 2.6, p. 79
63. Slope = 0.693. 41. 2y = x + 2.
I. (a) None; (b) 1, - 1 ; (c) 1; (d) all
x < 0; (e) all x < 0; (f) none; (g) 3, 43. x — 3y = 2, 3x + y = 6.
CHAPTER 3
—4; (h) none. [Remember that a 45. Area = 1.
function is automatically discontinuous S ectio n 3.1, p. 87 47. (0, 2), (± 1, 1).
at every point not in its dom ain; thus, I. (a) 54x8; (b) 0; (c) - 6 0 x 3;
1/x is discontinuous at x = 0 even (d) 1500x"(x40° + 1); (e) 2x - 6; Section 3.3, p. 97
though it is a continuous function.] (f) x 4 + x 3 + x2 + x + 1; (g) 4x3 +
1 10
3. f. 5. 3. 3x2 + 2x + 1; (h) 5x4 - 40x3 + ■ (2 - 5x)3 '
7. f. 9. 1. 120x2 — 160x + 80; (i) 12x(x10 + 3. 6(x + 2)(x2 + 4x — I)2.
15. (a) \ at x = 7t/6; (b) at x = x 4 — x — 1); (j) 18x2 — 6x + 4. 5. (13 - 8x)(5 - x)2(4 + x)4.
7r/4; ( c ) 1 at x = tt/2 . 3. (a) v = - 6 + 6t, a = 6; (b) v = -1 2
- 9 + 18r2, a = 36 1\ (c) v = 18/ - 12, 7. 9. -3 6 (1 - 6x)5.
17. (a) Yes; (b) yes. (3x + 1)5 ‘
19. (a) Yes, at x = 0; (b) yes, at x = 0; a = 18. 12(x3 - I)3
(c) no; (d) yes, at x = 0. 5. y = 7x - 10. 11
21. (a) No; (b) yes, at x = 0. 7. (1, - 2 ) and ( - j , - § ) . 13. 16(2x + 1)3[1 + (2x + I)4].
23. No maximum, minimum = 1. I I . a = 1, 3. —5(x5 - 5)(x5 - I)3
25. M aximum = 1, no m inim um . > 3 .i-A c- a . x 26
27. Maximum = - 3 , m inim um = - 8 . 2 a 4a
17. 4(x5 - 3x)3 • (5x4 - 3).
29. No maximum, minimum = 2. 15. (a) 3ac < b2\ (b) 3ac = b2\ 19. 6(x + x 2 - 2 x 5)5 ■(1 + 2x - 10x4).
Additional Problems, p. 81 (c) 3ac > b2. 4x
17. y — a3 = 3a2(x — a); all a ^ 0. 21 ------- -------
1. b = - 6 . ~ ' ( 1 2 - x 2)3 ’
5. (b) Drop the perpendicular from P 19. y = 12x — 16 and y = 3x + 2. 23. 7(x2 + 3x - 5)6 • (2x + 3).
to a point A on the axis o f the 23. ( - 1, -2 ). 25. —6(3x2 - 5x + 2 )“ 7 • (6x - 5).
parabola. Draw the circle w hose center Section 3.2, p. 91 27. 4(5x + 3)3(4x - 3)6(55x + 6).
is the vertex V and which passes 1. 2x. 2x(x2 + 9)
through A. Let B be the second point 3. 15x4 + 57x2 + 6. (9 - x 2)3 •
at which this circle intersects the axis, 5. 18x2 + 2x — 1. 31. 2 (2 x - 3 )7( 3 x 2 - x + 2 ) 9( 8 4 x 2 -
and draw the line PB. This line will be 7. 72x5 + 20x4 + 6x + 1. 1 0 8 x + 3 1 ).
tangent to the parabola at P. -2 Z } ( 2 t ~ l ) 2(t2 ~ 2t - 9)
7. (a) x = 0; (b) x = ± 2 ; (c) x = f ; (x — I)2 (,t2 + 3)3
(d) differentiable at all points. 4x3 + 12x2 - 1 72
11. 35
13. m = 2a, b — —a2. (5 - 4r)4 '
(x + 2)2
15. When t = f ; 8 ft/s. 37. 5(2x2 + 5x - 3)4(4x + 5).
3 - 6x2 —4x
19. Does not exist. 13. 15.
(1 + 2x2)2’ ' (1 + x 2)2'
21. - 5 . 39. 20(31 ^ 41. 5Ox - 55.
23. Does not exist. —4x —3 (1 - 2 x )5
17. ------ —— 19 ------- -—
25. Does not exist. (x2 - l ) 2' (2x - 3)2' 43. y = 16x — 15.
27. 2. 29. 2. —x 2 + 2x + 3
21. 45. (a) 3u2 (b) 4(2u - 1)
31. - 3 . 33. j. ( x 2 + 2x + l ) 2 ' dx dx
860 ANSWERS TO ODD-NUMBERED PROBLEMS

. -) _ dii 29. (a) x + 4;y = 7; (b) x + 2y = 4; , , 18x4 - 24x3 - 9 ^ — 10(x + 3)


(c) Au(u2 — 2 ) — .
dx (c) x + 3y = 0; (d) x + 3y = 19. ( g ) ------ ( x - 1 ) 2 ; (h) T x - 2 ? •
33. (a) 2x3/2; (b) 2x5/2. 23. (a) (x + 2)(x + 3) + (x + 1)(x + 3) +
Section 3.4, p. 101
COS X
1. 5 cos (5x — 2). 35. (V 2 , V 4 ). 37. (x + l)(x + 2); (b) (x3 + 3x2)(x4 + 4) X
3y 2 + 2 y ' (2 x + 2) + (x2 + 2x)(x4 + 4) X
3. —cos (cos x) • sin x.
5. 3 sin 2 x • cos x. (3x2 + 6x) + (x2 + 2 x )(x 3 + 3x2) X
y cos V x
39. 41. (4x3).
1. 9. 3x2 cos y — x 2 V x
25. (0, 10V5), (± 3 , V 5 ).
1+ cos X
tan _Vx_ sec 2 V x 27. (2, - 2 ) and ( - 1 0 , f).
1 1 . 5 sec 2 5x. 43.
29. (a) -6 (1 + 2x)2(4 - 5x)5(15x + 1);
13. sec 2 (sin x) • cos x.
(b) 10x(x2 + l)9(x2 - l ) 14(5x2 + 1);
15. 8 x(l + tan 2 x 2)tan x 2 • sec 2 x 2.
5 sin 2x —2x (2 x 2 - 19)
17. 15(cos 3x + sin 5x). 45.
V — 5 cos 2 x
(c) -; (d) —3x 6(3 - 2x)2
19. -4 5 ( 5 x - 3 ) 2 sin 3(5x - 3)3. 6 (16 + x2)4
COS X 3 3 sec 2 (3x — I ) - 1/2
X (4x — 9)(32x2 — 96x + 63).
21 23. 47. -
( 1 — sin x ) 2 1 + cos 3x ’ 2(3x —- n3/2
1) 31. (a) y = (x4 + 1)3; (b) ^ =
—x sin x — cos x 2(x6 + I)6.
25. 33. (a) 3 sin (1 — 3x);
Section 3.6, p. 110
1
1 . (a) 8 , 0 , 0 , 0 ; (b) 16x - 1 1 , 16, 0 , (b) —7x6 cos (1 - x 7);
27. 3x 2 sin — 2 cos —7 .
—7
0; (c) 24x2 + 14x - 1, 48x + 14, 48, (c) sin (cos x) • sin x;
Xz X
0; (d) 4x 3 — 39x 2 + lOx + 3, 12x 2 — (d) sin [sin (cos x)] • cos (cos x) • sin x;
29. 6 sin x cos x (2 — cos 2 x)2.
78x + 10, 24x - 78, 24; (e) f x 3/2, (e) —4 cos3 x • sin x;
3 1 . cos (tan x) • sec 2 x. l l r \/2 1 5 -1 / 2 _ i i —3/2
4A , 8A ? 16a (f) 90x( 1 - 3x2)2 cos4 (1 - 3x2)3 •
35. 2m r + —— or 2mr — 7 , « an 3. (a) n\{\ — x)_(”+l);
6 6 sin (1 - 3x2)3; (g) ------—---- ;
integer. (b) ( —l) nn! 3"(1 + 3 x )-(" + l>; 1 — sin x
37. (a) The particle starts at s = A (c) ( —l) ”+ 1 n!(l + x ) - (”+1\
(h) 15 sin4 3x • cos 3x; (i) —4x3 sin x 4;
when t = 0, moves to s = —A when
(/ 7 — 1)anx n 2 (j) 15 sin x • cos4 x • (1 — cos5 x)2;
t = 7 r/k, and moves back to s = A 5. -
(k) —3 sec2 ( 1 - 3x);
when t = 2n/k. This oscillatory motion (1) —24x2 tan3 ( 1 - 2x3) •
continues with period 2ir/k. (b) v = 7. (a) t = j , s = 0, v = 12; (b) t = 4, sec2 (1 — 2y3); (m) —sin (tan x) • sec2 x;
—Ak sin kt. (c) v = 0 when x = ± A s = 32, v = 6; (c) t = 1 ,5 = 6, v — (n) —cos [cos (tan x)] • sin (tan x) •
and |f| has its largest value A k when -3 . sec2 x; (0 ) 20x4 tan3 x 5 • sec2 x5.
s = 0 . (d) a = —Ak2 cos kt = —k2s. 9. 3, j.
13. (a) sin x, cosx; (b) —s in x ,—cos x; 35. 2/7 7r ± y , /1 an integer.
Section 3.5, p. 107 (c) sin x, cos x; (d) - c o s x, sin x.
1
3x 2 1 39. (a) y —>0 as x —> ±°«;
3.
Ay2 ' 1 - ly 6’ A d d itio n al Problem s, p. I l l
I. ( - 1 , 10) and (3, -2 2 ) . (c) 2x sin — - cos —; (d) 0.
3x2 - Ay x x
5.
3y 2 + 4x ‘
7.
S 3. (1 ,2 ) and ( —1, —2); the smallest
6X+ 5
2
slope = 1, at (0, 0). 41. (a) r;■I'M
(b) 2
9. II. 3(3x2 + 5x — 1)2/3’ 5x3/5’
5. Slope = 4x3 — 4x; x = 0, ± 1 ;
3x 2 ‘
—1 < x < 0, x > 1. x l/2
±3 - 2 (C) 1, —4 ; (d) - ^ _ ^3/2y/3-
13. 15. 7. a = 1, b = 1, c = 0.
(1 + x ) 2 ‘
9. a = 1, b = 0, c = —1. 43. (a) y = lOx — 19; (b) x — Ay +
±9x 13. a = I, b = —2, c = 2, d = — 1. 9 = 0; (c) 12x - 13y = 11; (d) y =
17.
17. (6, 9), ( - 2 , 1), ( - 4 , 4). —2x - 15.
2 V 3 6 - 9x2
7/4 —4x —4(x + 1) 47. (a) -2 (1 + 3x)_5/3;
19. f5Jx - 1'5. 21.
•9. (a) ; (b)
6 - (x2 - I)2 (x - I)3 5
23. 4x_3/5.
5* (b ) ~ 4(x
77T +7 1)5/2’ (°) ~ ^ _6/5;
3(xJ - 16) . x(4 — x 3) —2 x 2 — 6x — 11
25. (c) (x3
, 3 +, 2)2 ’i (d) (x2 + x — 4)2 (d) f x 3/2; (e) - } x ~ 3/2 + f x - 5/2-
4x 3 x3 + 8 '
(f) 20(x2 + 1)(x2 + 4 ) 1/2.
2 7 _I (* + 2 ) 1/2 x 2(3 - x 2) - 2 53. (a) —20 cos x + x sin x;
2 (x - 1) 5/2 ( } (1 - X 2)2 ,( f ) (1 + x ) 2 ’ (b) —362 sin 3x.
ANSWERS TO ODD-NUMBERED PROBLEMS 861

CHAPTER 4 13. 27. max - y-§-V3 at x = —; min


6
S e c tio n 4 .1 , p . 1 1 9 —|V 3 at jc =
6
29. 125.

Section 4.2, p. 122

15.

7.

9.

13.

23. (0, 3), ( tt-, - 1 ) , (2 tt, 3) and


,2 3 n /4 3x
( l ^ “ I) . ( l ^ “ l)-
862 ANSWERS TO ODD-NUMBERED PROBLEMS

Section 4.3, p. 129 13. 5000. 15. 345.


1. i 7. alb. 17. ( a ) p = 110 - yjjc; (b) $55.
9. $8.50. 1 1 . 2 p.m .; 30 mi. 19. $160. 21. $16.
4, 4. 15. 108. 23. $573.33; jc = 20.
4 by 8 in. 19. 1. 25. 636.
24 in. 23. V 3 .
3 Additional Problems, p. 156
JO . 27. 1.
(a2/3 + b 2/3)y2 (convince yourself
that this and the preceding problem are
essentially the same).

= 4 /S i , _
5
17. (2, 0). 19. a = 3. 33. \(B + / / ) 2.
23. (a) a > 0; (b) a < 0.
Section 4.4, p. 137
I. 1. 3. f R.
5. 4 by 4 in. 7. \ .
9. (1, 1).
I I . (a) f mi; (b) 1 h and 44 min;
(c) 8 min longer.
13. 1 5 /V T o mi/h.
19. 1. 21. a = 2.
23. x = y V 2 a. 25. (a) 0; (b) 1.
27. (2, 4). 29. Amax = |V 3 .
31. The spider should w alk straight to
the m idpoint of a side not containing S
or B, then straight on to B.

Section 4.5, p. 142


I. (a) 12077 ft2/s; (b) 2 4 0 tt ft2/s.
3. 2/77 ft/m in.
5. 4 ft/s at each of the stated
moments.
7. 3 ft/s. 9. 4y ft/s.
13. 52 mi/h.
15. y lb /in 2 per min.

17. (a) — in/min; (b) ---- ----- in/min.


^ 2V 277
19. - j— in/s.
577
21. 2/(V 2 - 1) = 7.69 h. 9.
23. 4 0 ft/min.

Section 4.6, p. 146


27. (a) PI x = tt, CU 0 < x < tt,
3. 0.618034. 5. 2.154435.
CD TT < X < 277; (b) ? \ x = ~ , 7. 1.305407 ft.
4 4
II. 0.918247 and 2.863580.
CU 0 < x < - j , CD < 13. (a) 1.236123; (b) 0.876726.
4 4 4 4
3 tt 3 tt 57t ^ 5 tt Section 4.7, p. 155
x < CU —— < x < — , CD ——
4 4 4 4 I. $43/unit; $43.03.
3. $80/unit; $80.14.
< x < - - , CU
4 4 <x< 2tt; 5. $193.89; x = 89.
(c) PI X = TT, CD 0 < X < TT, C U TT < 7. $0.85; jc = 232.
x < 27r. 9. $0.31; jc = 93. 11. 200.
ANSWERS TO ODD-NUMBERED PROBLEMS 863

79. A square w ith side g(a + b —


V a 2 — ab + b2).
81. V 2.
83. 3 by 6 by 12 inches.
bs
85. a - m, if this num ber
Vr2 -
is positive.
87. x2 + y2 = 32.
89. (3, 3).
91. (5, 0) and ( - 5 , 0).
99. (a) 12 ft/s; (b) 3 ft/s.
101. l/7rft/m in. 103. At least 9 ft.
ax
107. ~ r = _______ in/s.
dt V x2 + r2
109. 0.32 lb/min.
111. 14477 m 3/m in.
I 15. Decreasing 1 in2/min.

117. When t = R()^ ~


a \fa — bV b
I 19. (a) 3.316625; (b) 1.903778;
(c) 2.087798.
123. 1.856636 in approximately.
125. $42. 127. 30.

C H A PTER 5

Section 5.2, p. 169


1. (63;t8 - 15x4) dx.
(2x - 3x3) dx
3.
Vl
(2 - x) dx
5.
V 4x - x 2

7. (2 x~ m + 2 x ~ 4/5 - 1 7 ) dx.
q (15x2 + 8x) dx
2V3x + 2
37. (a) Point of inflection at x = 1;
(b) points of inflection at x = 1,2; 1 1 -dx? =
(c) points of inflection at x = —2, 0, 1,
—15(3¾2 - 2u + l)x 2(x3 + 2)4
2, 3.
39. a = - 3 . 41. j V 3 . («2 — w)2
43. jc = 21, y = 35. 13. AA = 27tt A r + 77 Ar2 and dA =
45. 18 = 16 + 2. 47. 5, 5, 5. 277r dr = 2 tjt Ar, since dr = Ar.
51. j V 3 a, \b. 59. 2 in. Imagine that the thin circular ring is
63. 4000 knives at a price of $18 cut across and u nrolled— with slight
apiece. distortions— into a long thin rectangle
65. 20 days. with length 277r and width Ar.
67. (a) 120 ft; (b) 312 ft. 15. 12, 12.048064.
69. i 71. V 2 . 17. 16.167, 16.166236.
73. 77/4. 75. 4. 19. 26.75, 26.749612.
77. 4 / tt. 21. 6.019, 6.018462.
864 ANSWERS TO ODD-NUMBERED PROBLEMS

35
23. 0.849,0.848048. 13. 3 \ /ry = x V x - 3. 9. 4 8 V 2 /5 . II. 3 •
25. 1.037 mi. 27. 125.66 ft. 21 26
13. • 15. 3•
Section 5.5, p. 187 2
26
Section 5.3, p. 177 I . 8 s; velocity = - 1 2 8 ft/s and 17. 33. 19. 3•
1. yx 2 + X + c. 4 2
speed = 128 ft/s. 2 1. 9- 23. 3'
3. yx 3 + yx 4 + yx 5 + c. 3. v= - 3 2 1 + 128; 5 = —16r2 + 13
25. 1. 27. 3•
5. 2 V x + c. 7. yx 7/4 + c. 128/. 5 —2 1
29. 48« • 31. 6-
9. f x 2/3 + c. 5. l o V I o s. 7. 40 ft/s.
1 1 . f x 3/2 — 2 V x + c.
33. a 4 /4. 35. b2!6.
9. 96 ft/s. 1 1
13. 6 V x + yx 3 /2 + c. 37. 30- 39. 2 •
II. i’02/64 ft; 96 ft/s.
15. yX3 + 7 X6 + C. 41. 3.
A dditional Problem s, p. 188
17. Ix 4- j x 2 + c.
1. fx 5 — ^x4 + lOx + c. Section 6.7, p. 216
19 f x 6 + 3x 2 — 5x + c.
1. (a) f ; ( b ) f ; (c) 19; (d) f -
2 1 . —2 x - 2 + c. 3. }x3 — f x 2 + x - 4 V x + c.
128
3. 5 • 13. Tra212.
23. f x 3/2 - 4 x 7 /2 — 3x_l + c. 5. {x4 + f x 3 + -jx2 + c.
25. 9x1/3 — 16x1/4 + c. 7. 17x3 — 27x4 + c. Additional Problems, p. 217
27. 2 \T x — iy x 10/3 + c. 9. 6x —f x 3/2 —jx 2 + c. 7. (a) f ; (b) f ; (c) 12; (d) 5V 5/3;
29. x 4 - 4x 2 + 17x + c. —f(2 - 3x ) 3 / 2 + c.
(e) 1
31. i x 10/3 + ^ x 7 /3 + 3x 4/3 + c. ~ ^(5 x + 2 ) 1 6 5 + c. 9. ( a ) 4 ( 2 V 2 - 1); (b) f; (c) 3; (d)
33. f x 3/2 - f x 7 /2 + ^fx l l / 2 + c. 5 V 1 + X2 + c. 4r^ 9r
II- (a) (b)
35. yx 500 + c. } V 2 x 3 — 1 + c. 1 + x 4 ’ vw 1 + x 2 '
37. j(3 + 4x ) 3 /2 + c. |( x 2 — 2 x + 3 ) 2/ 3 + c. 3x 2 5 ¾9
(c) ,..... :;; w
(d) ^
.--------
39. - \( 2 x - 3 )“ ' + c. —j \ / 2 — x 2 + c. V3x3 + 7 V I + JO
41. - { V 5 - 4 x 2 + c.
+ - I + c.
43. f ( l + V x ) 5 /4 + c. x, CHA PTER 7
45. y(l + x 2 ) 3 /2 + c.
y(x + 1 ) 7/3 + C.
Section 7.2, p. 224
47. {(7 - x ) ~ 6 + c. y(l + X)7/3 - |(1 + X)4/3 + C.
i- £ 3. 1
49. —y(2 — x 2 ) 3 /2 + c. -n-(x3 + x + 32)11/2 + c.
5. f. 7. ff V 2 .
JL (x 3 _ , )4 /3 ( 4 x 3 + 3) + c
51. 2 V x 3 - 5 + c. 9. 4. 36.
53. -no(10x + 10)11 + c. Ix2 13. 2 1 15.
(a) y = 320
55. -jy(3x2 + 4)5/2 + c. 3x 2 + 13 ’ 17. - 4 V 2 . 19. 3 *
57. 4 \ / 3 x 3 — x + 2 + c. (b) 3 V y - 4 = (x - 1) 3 / 2 - 2. 21. f . 23. (a) j,; (b) j.
59. | x 15 + c. 61. y = x 3 + 2. 35. x 2 — y 2 = c. 25. f .
63. (a) y sin 2x + c; (b) —j cos 5x + 39. (a) 25 s, 1200 ft/s; (b) 25'\ f l = 27. 2 ( V b - 1) —> 0 0 as b —>0 0 .
c; (c) 2 sin 2x — 3 cos 5x + c; 35 s, 8 0 0 V 2 = 1120 ft/s. 29. (a) 2 (V 2 - 1); (b) y (3 V 3 -
(d) - y cos 2x + j sin 5x + c. 41. 30 m/s.
65. (b) yx — y sin 2x + c. 43. (a) 44 ft; (b) 680 ft. V 2 - 3);
/, (c) 32 + ~2 V 2 - 2.
67. (a) y sin 5 x + c; (b) —y cos 6 x + 45. A bout 1.86 mi. About 0.36 in.
4 V 2 - 5
c; (c) sin (sin x) + c. 47. A bout 179,427 mi/s. 33. a 2 = (0.21895)a2.
69. (a) j sin 2 x + c; (b) —y cos 2 x + c.
They differ by a constant. CHA PTER 6
Section 7.3, p. 229
Section 6.3, p. 196 I. (a) 8 7 7 ; (b) 1 6 7 r / 1 5 ; (c) 3 7 7 / 5 ;
Section 5.4, p. 181
1. (a) 55; (b) 62; (c) 206; (d) 0; (e) 0; (d) 277/3; (e) 877/3; (f) 1677«3/105.
1. y = 2 x 3 + 2 x 2 — 5x + c.
3. y — 6 x 4 + 6 x 3 — 4x 2 + 3x + c. (f) 1500; (g) 7. 5. 477. 7. y a3.
9. -y-a 3. 1 1. 27T2a2b.
5. 3y2 — 4y 3/2 = 3 x 2 + 4x 3/2 + c. 5 (a) (” ~ (b) 0 ¾~ \)n(2n ~ 1 )
1 1 , 2 13. { V 3 « 3. 15. 9V 2/2.
/. y = ------- b —x z + c. 1)n
x 2 in 17. lj-a3. 19.
tx 2 in3. 5 7
(c) [H
9 - y — ~z ■ t - 2 1 . (a) The volumes are A(x) dx
Section 6.6, p. 212 [H °
1. 9. 3. f . and B(x) dx, which are equal
2 x 2 - 31
11. v =
33 - 2 x 2 ' 5. 12. 7. because A{x) = B(x) for every x.
ANSWERS TO ODD-NUMBERED PROBLEMS 865

2 3 . t 7 ra 2h. 25. y = a x 4. 27. (a) 277a3; (b) j77a3; (c) \ \ tto3. (b) I ln (3x2 + 2) + c; (c) fx 2 +
29. a2h. 3 1 . j a 2h. 2 ln x + c; (d) x + ln x + c;
Section 7.4, p. 235 33. 12877/3. 35. 1 177/15. (e) x - ln (x + 1) + c;
3. 12877-/5. 5. 486tt/5. 37. 13577/2. 39. 277. (f) y ln (x2 + 1) + c;
7. lir ib — a). 9. - j - (2 — V 2 ). 43. t - 45. £ (g) ln (3 - 2x2) + c;
47. if. 49. f^ . (h) ln x(x — 1) + c; (i) {(In x)2 + c;
11. (a) 8 7 7 ; (b) 25677/15. (j) ln (ln x) + c; (k) 2 ln (V x + 1 ) +
51 . AB = 3½. 53. 9077.
13. 7 7 /2 ^/6 . 15. 8 7 7 / 9 . c; (1) ln (ex + e~ x) + c.
55. I6 8 7 7 . 57. 77a2/2.
17. By a factor of 1.71, 9. No max., no pt. of infl., min.
59. 7 ft-lb. 61. 2325 ft-lb.
approximately. (3, 9 — 18 ln 3) = (3, -1 1 ).
63. 9 4 5 - 2 13 ft-lb.
Section 7.5, p. 240 65. i f aB. 11. 77 ln 4. 15. min.
1. j f ( lO v T ) - 1). 67. -¾ c, where c is the constant of
proportionality. 17. 1/V e.
c
J.
11 8
Q .
6• 69. 12577W/6. 7 1. f • 83ttw ft-lb. 2x
7. 12. 19. (a) y ( 1 + ^ 2
6x - 2 r
73. 10 tons. 75. j ton.
2x
Section 7.6, p. 244 77. 187.5 tons. 79. 60 tons. (b) “ •
5\x2 + 3 x + 5
1. 25377/20. 3. 1277. 81. 4096 lb.
1
21. (a) x x x x + (ln x)(l + ln x)
5. ^ - ( l O V l O - 1). x
C HA PTER 8 1 — ln x
(b) V x . Max = V e .
7. - y ^ ( 2 V 2 - 1)/72. Section 8.2, p. 263
1. (a) log4 16 = 2; (b) log 3 8 1 = 4 ;
). - f 77a r. 1 1. ^0, — <3j. (c) log81 9 = 0.5; (d) log32 16 = j. Section 8.5, p. 282
3. (a) 4; (b) 6; (c) - 4 ; (d) f. I. (a) 2520; (b) 13.8.
2
13. (a) y = — a; (b) area - 4772a£>. 5. (a) a = 32; (b) a = (c) a = 6; 3. 20.1. 5. 95.8 percent.
77
(d) a = 49. 7. When t = 6. Can you solve this
Section 7.7, p. 249 9. (a) 7; (b) acidic pH < 7, basic problem w ithout calculation, by
I . 6 4 ft-lb. 3. 6000 ft-lb. pH > 7. merely thinking about it?
5. 550 ft-lb. 7. 50,000 ft-lb. 9. x = 10(j)'. 11. 2 more hours.
Section 8.3, p. 269 13. (a) About 3330 years (1380 B.C.);
I I . (b) 250 ft-lb. 13. 5 ft-lb.
1. j( e x — e~ x). 3. (x 2 + 2x)ex. (b) about 3850 years (1900 B.C.);
15. GMm/2a. 17. mgRh/(R + h).
5. e e'ex. 7. xe™. (c) about 10,510 years; (d) about 7010
19. 24077VV ft-lb. 21. ^77a3w(h + a).
9. 4x2<?2x. 11. j e 3x + c. years.
23. About 118,500.
1 3 . 5 ex/5 + c. 1 5 . 2 ex3 + c. 15. x —>A if A < B\ x —» B if A > B.
25. m\ = \rti2.
17. (a) Max. pt. (0, 1), no min. pt.,
Section 7.8, p. 254 Section 8.6, p. 287
pts. of infl. |± { V 2 , -^ = j; (b) no
I. 150 tons. 3. 125 tons. 1 .X
5. f ton. 7. I tons.
3. x =
9. 30077 1b. max. pt., min. pt. ( - 3 , —— ), pt. of xo + (xi - x0)e~
I I . 10-^ tons; 11 ft.
5. s = — (1 — e ct).
13. 300V 2 w or approximately infl. ( - 6 , ). c
13.2 tons. 7. When v < 1, the resisting force in
19. j( e b — 0 ~b)•
the second case becomes very sm all.
Additional Problems, p. 254 23. Area = 1 — e b —> 1 as b
I1. ±6 . -, 128 9. About 53.4 lb.
J . 15 . 25. (a) e; (b) e\ (c) e\ (d) e2\ (e) \T e.
29. 8%.
5. 36. 7. Additional Problems, p. 288
9. 18. 11. f. Section 8.4, p. 276 1. ~ x e ^ x~xl/ V 1 —x2.
13. 64. 15. f . I . (a) 2; (b) 3; (c) 1/x; (d) 1/x; (e) —x; 3. (2x - 2)ex2- 2x+l.
17. (f) 1/x; (g) x; (h) 3x; (i) 0; (j) j; (k) j; eVx 1 ---
5. - — + —V P .
19. (a) 56 tt/ 15; (b) 56 tt/15; ( c) 32 tt/3; (1) 0; (m) x 3y2; (n) 8; (0 ) 2e3; (p) x 2e*.
2V~x 2
(d) 4877/5; (e) 77a3/15. - (a) — ------
+ 2x)
3. — ; n(b)\ — ---------.
+x>’)
7. - y e -3' + c. 9 - e \/x +
21. (a) 51277/15; (b) 12877/3. x(3y - 1) x(l-xy)
23. V - 25. y77(fc5 - a 5). 5. (a) } ln (3x + 1) + c; 11. 2 V e x + 1 + c.
866 ANSWERS TO ODD-NUMBERED PROBLEMS

77 ^ A 13. sin 4 6 = (4 sin 6 - 8 sin3 6) cos 6. 11. sec2 jc e tanx.


13. (1/a, e). 17. ^ r( e 6 - 1).
15. (a) j ( V 6 - V 2); 13. —j cot 6 jc + c.

- - (w y(3x + 1} n-.'i y(2 x 2 + !) (b) y V 72 — V 3 . Show that these 15. —j cot 2x + c.


23' (a) W - D ’ (b) 4 1 - 3 , ) ' numbers are equal. 17. j tan5 jc + c.
17. (a) 0, 2 7 7 ; (b) 7 7 / 2 , 377/2; (c) 7 7 . 19. —y CSC 7JC + C.
25. (a) y ln (1 + 2jc) + c; (b) - y ln
,r, / x ^ 77 27771 77 2777X 21. y. 23. y(7r - 2).
(1 ~ 3 x ) + c; ( c ) y l n 2; (d) y ln 10; 19. (a) 6 = - + — — or — + — —
4 3 12 3 25. 2. 27. 4 V 3 ; no.
(e) ln 3; (f) 2 V ln jc + c; (g) y ln 7;
for all integers rr, (b) 6 = (1 + 2n)5-rr 29. 3.277 mi/s. 31. (c) 66°.
(h) - y ln (1 — x 2) + c; ( i ) l ( l n 3)2;
r „ . / ■> „ 777 , 27771
( j ) j ln (3jc2 - 3jc + 7 ) + c; ( k ) ln for all integers n; (c) 6 = -I---- — Section 9.5, p. 318
(ex + 1) + c; (1) ln (jc + 1)(jc + 2 ) + c; 1177 27m 1. y V 3 , —y V 3 , —V 3 , |V 3 , - 2 .
or -I-----— for all integers n.
(m) y (ln jc)3 + c; (n) j (ln x)2 + c; 3. (a) 7 7 ; (b) 77/2; (c) 0.123; (d) 0.8;
(o) y [ln (ln x)]2 + c; (p) - y (ln x )2 + c. 35. For a p ro o f by geometry, use the (e) 0.96; (f) 77/7; (g) 7 7 / 6 ; (h) 7 7 /4 .
fact that the vertex opposite the fixed 5. 1/(25 + jc2 ).
29- T2a~ + 74 ln 2; a = V ln 2 side must lie on a circle of w hich this 1
side is a chord.
7. 9. sin 1 jc.
31. (a) (ln 10)10*; (b) (ln 3)3*; V x ( jc + 1)
(c) (ln 7 7 ) 7 7 *; (d) (3 ln 7)73*; 37. f V 2 ft.
(e) (ln 6)(2x - 2)6*2-2*; 11. (sin -1 jc) 2 . 13. ---------.
Section 9.2, p. 304 5 + 3 cos jc
ln 5 :Vx
(f) I. 3 cos (3jc — 2). 15. / .
77 6 17. \ sin-1 2jc + c.
2V x, 3. 48 cos 16jc. 5. 2jc cos jc2 . 19. / .
77 8 21. y sin-1 fjc + c.
33. Max. at x = ; pts. of infl. at 7. 15(cos 3jc — sin 5jc).
ln 5 23. j ta n -1 jx + c.
9. jc cos jc + sin x.
2±V2 25 . -77/12. 27. 77/4.
II. f sin 1 2 jc. 13. cos5 jc.
ln 5 29 .(a) sin-1 f; (b) { rad/s.
15. 3e2x cos 3jc + 2 e 2* sin 3jc.
31. The formula is invalid, because
35. (a) (In*)* + ln (ln jc) 17. - t a n x. 21. 45°.
ln x 23. 5. the integrand 1 /V l — jc2 is
n n vAln* discontinuous at the point jc = 1 in the
(b) (2 ln jc)jcln *“ 1; (c) ----- — X 31. 7 7 / 3 , tangent = 3.
JC 33. 1. 35. 1. interval of integration.
33 . 4 7 7 ¾ 2.
[1 + ln (ln jc)]; (d) — (1 + y ln jc); 37. 39. 1.
V jc 41. 1. 43. - 1 . Section 9.6, p. 323
Y^/x
(e) v-2/3 ( 1 + y ln jc) . Section 9.3, p. 309
1. (a) jc = 5V2 sin \ t ~
I . — 7 cos 5jc + c.
37. In the year 3524, approximately. 3. | cos (1 — 9jc) + c. A = 5V 2 , T = 277; (b) jc =
39. In 4 more hours. 5. sin2 jc + c or - c o s 2 x + c or 2 tt '
41. 73.12°F. 2 sin ^3f + - y -j, A = 2, T
—\ cos 2x + c.
47. 17 more days. 7. j sin4 2jc + c. 9. \ sin8 \ x + c.
(c) jc = V 2 sin (t + J, A = V 2 ,
49. v 2 = £ ( 1 - e~2cs)\ v -> as I I. - 2 cos Vjc + c.
C y c
S —» 0 0 . 13. \ sin (sin 2 jc) + c. 77
T = 2 7 7 ; (d) jc = 4 sin 21 — —
5 1. When t = 4.86 min; when t = ~6J’
15. \ sec (^2x 3 + c. A = 4, T = 77.
21.50 min.
53. About 1.39 h. 17. —In (cos jc ) + c. , , V l4 5 . 77
19. sin ( jc 2 + x) + c. i~ ; 7 '
C H A PT ER 9 21. f. 23. V 2 - 1.
Section 9.1, p. 299 25. f. 27. 3. 5. T = 277\/ — = 89 min.
V g
I. (a) 77/12; (b) 7 tt/ 12; (c) 2 tt/3; 29. y772. 7. A bout 39 in.
(d) 577/12; (e) 5 7 7 / 6 ; (f) 377/4;
(g) 577/4; (h) 7 7 7 / 6 ; (i) 777/2; (j) 577. Section 9.4, p. 311 Section 9.7, p. 329
3. 6 = 2 radians. 1. 8jc sec2 4jc2 . 1. (a) h (b) 1; (c) t
5. A = 25 cot \d . 3. 2 tan (sin jc ) • sec2 (sin jc) • cos jc.
13. 3jc2 cosh x 3.
I . H = L tan 6. 5. 0. 15. 6 csch 6x. 17. 0.
I I . sin 36 = 3 sin 6 - 4 sin3 8, 7. 24 csc ( —6 jc ) cot ( ~ 6 jc) . 19. j cosh (5jc - 3) + c.
cos 36 = 4 cos3 6 — 3 cos 6. 9. - V c s c 2 jc cot 2 jc. 2 1 . 2 V 2 sinh {jc + c.
ANSWERS TO ODD-NUMBERED PROBLEMS 867

2 3 . x — tanh x + c. (b) y tan2 x + ln (cos x), y tan4 x —


107. —J— tan 1 V 5 x + c.
V5 } tan2 x — ln (cos x), y tan6 x —
29. -y- sinh 1.
aL \ tan4 x + y tan2 x + ln (cos x).
109. y sin 1 | x + c. 27. (a) 772/2; (b) 7 7 ; (c) (477 — 772)/8;
Additional Problems, p. 330 (d) 3t72/16.
l l l . | tan-1 x 4 + c.
I. —9 cos (1 - 9x). 29. y[sec x tan x + ln (sec x + tan x)].
113. 36 ft from the point on the road
3. —2 sin x cos x = —sin 2x.
closest to the billboard. Section 10.4, p. 348
5. —10 sin 5x c o s 5 x = - 5 sin lOx
115. rad/s. _j x V q2 —x^
7. —6 sin 6x.
117. T = 2 tt/ V 2 w = 0.56 s.
9. —x 2 sin x + 2x cos x.
119. A = 5 , / = I / 7 7 .
I I . x cos x 1 -j £ _________ X

13. (sin x)[sin (cos x)]. 2a3 tan a 2a2{a2 + x 2) '


15. —(cos x)[sin (sin x)]. CH A PTER 10 5. - y V 9 - x 2(x2 + 18).
17. cos x. 25. 0.
27. 1. 29. 2. Add a constant o f integration to the
7. - in ----------
31. f . 33. 2. answer for each indefinite integral in a \ a + V a 2 + x2
35. 77/4. 37. y sin 3x + c. this chapter.
9. ln (x + V x 2 — a2).
39. - 2 sin (1 - jx ) + c.
4 1 . jg sin6 3x + c. Section 10.2, p. 339 11. yxVa 2 + x 2 +
43. —| cos 3x + y cos3 3x + c. I. -y (3 — 2x)3/2.
ya2 ln (x + V a 2 + x2).
45. j sin x 3 + c. 3. y l n [ l + (In x)2].
5. —2 cos 2x. 1 , a + x
47. y cos (cos 2x) + c. 13. — l n -------- .
7. y ln [sin (3x - 1)]. 2a a —x
49. —j csc 4x + c.
9. y(x2 + 1)3/2. 11 l5ep5x. 15. V a 2 + x 2 -
1 13. —y cot (3x + 2).
51. + c.
2(3 + 2 cos x) 15. 2. 17. 2 V l - cos x. a + V a 2 + x2
a ln
53. —I V 7 - sin 5x + c. 19. e1™ '*. 21. y sec 5x.
55. j . 57. i 23. y(ln x)2. 25. ln 2. V x 2 — a2
59. 2 V 2 . 61. 2177. 17. ln (x + V x 2 — a2) —
27. sin 1 ex. 29. y sin3 x. A,

—csc2 2x 31. ln (1 + ex). 33. —y ln (cos 3x).


67. 12 sec2 3x 69. 19. 7 - [a 4 sin - 1 — +
V c o t 2x 35. 4 V x 2 + 1. 37. tan-1 ex. 8 a
71. 4 sec2 x tan x. 39. \( e x + I)7. 4 1. y tan 5x. V a 2 — x 2(2 a 3 — a2x)].
73. —10 cot 5x csc2 5x. 43. - y csc 2x. 45. 4 (V 2 - 1).
47. f. 21. - V 4 - x 2. 23. - ta n " 1 - .
1 1
75. t a n ---------secz2 1
—. a a
x x x 49. (a) n = 3, ye*4; (b) n = 2, y sin x 3;
25. - y ( 9 - x 2)3/2.
(c) n = - 1 , y(ln x)2; (d) n = —
77.
V s e c V x + ta n V x 2 tan V x. 27. V 9 + x 2. 31. 2TT2ba2.
4V x 33. 3 - V 2 + ln (1 + y V 2 ).
79. sec2 x sec2 (tan x). Section 10.3, p.. 344 Section 10.5, p. 350
81. - 3 csc yx + c. 1. yx —
- y
I sin 2x.
I. sin - 1 (x — 1). 3. tan - 1 (x + 2).
83. —y cot 3x + c. 3. ^ x + y sin 2x + sin 4x — 5. - V 2 x — x 2 + 2 sin - 1 (x — 1).
85. —\ csc4 x + c. sin3 2x.
87. —y cot4 x + c. 5. —y cos3 x + y cos5 x. 7. -y sin - 1 ^ - 6 V 6 x —x 2 -
89. 477/3. 91. 300 km/h. 7. sin x — y sin3 x.
93. (a) -77/3; (b) 77/3; (c) - 7 7 ; 9. y sin372 x — y sin7/2 x. y(x — 3 ) V 6 x — x 2.
(d) 0.7; (e) 0.7; (f) —1; (g) tj/3. 11- ~ 16 sin 12x. 9. y ln (x 2 + 2 x + 5) +
1 _ x4 13. i » _ i (x + 1
95. 97. 3 ta n -
V 25 - x2 1 + x 10' 15. y sec7 x — f sec5 x + y sec3 x.
17. - c o t x — x. 19. —y cot 4
4x.
1 1 + X II. ln (x - 1 + V x 2 - 2x - 8).
99. 101. 1
21. —y cot 2x y1 csc 2x.
xV x2 - 1 1 + x 2' 13. y In (2x + 1 + V 4 x 2 + Ax + 17).
23. y sin 3x.
\/x 2 —1 25. (a) tan x — x, y tan3 x — tan x + . 1 5 . ---------,
103. -------------. 105. / .
77 2
y tan5 x — y tan3 x + tan x — x; 4 V x 2 - 2x - 3
868 ANSWERS TO ODD-NUMBERED PROBLEMS

Section 10.6, p. 356 Section 10.8, p. 368 57. - i( x + i r 4 + f(x + I) - 5 -

1. (a) x + 1 H--------- - , jx2 + x + I. - V l - X 2. l ( x + l ) - 6 + j ( x + I ) - 7.


x—1 3. j sin3 x — f sin5 x + y sin7 x. 5 9 . j tan5 x — y tan3 x + tan x — x.
ln (x — 1); (b) yx2 —f x + jf ~ 5. 2 V l + ln x + 61. - 2 ln (x + 2) + 3 ln (x + 3).

6 3 . x ln V 2 x — 1 — yx —
13 - ~gX
, gXJ 1 2 +■ JfX
4 — ln
V l + ln x — 1
\ ln (2 x -
3x + 2 V l + ln x + 1 65. sin -1 jc1- V T 7
In (3x + 2); (c) x ----- 5----- -, 7. - 2 V x cos Vx + 2 sin V x. 67. T7?T sin 20x.
xz + 1 9. —cos x. 69. y[ln (sin x)]2.
> In (jc2
-1 r ^2 — — + 1); (d) 1 + 11. {(x2 — x sin 2x — y cos 2x). 71 7 e sc 3 2x — jo csc5 2x.
jc + 2 ’
13. ex - ln (ex + 1). 73. x ln (2x + x 2) — 2x + 2 ln (x + 2).
jc + ln (jc + 2); (e) 1 -----~---- - , 15. f(x - 1)8/3 + f(x - 1)5/3 + 75. fx 4/3 - -^x 11/6.
jcz + 1
f(* - 1)2/3. 77. x ln (1 + x 2) — 2x + 2 tan-1 x.
jc— 2 tan-1 jc. 17. 2 V x tan 1 V x — ln (1 + x). 79. x tan x — y*2 + In (cos x).
3. 3 ln (jc — 3) + 4 ln (jc + 2). 19. 3x + 11 ln (x — 2). 8 1. y sec7 x.
5. 5 ln (jc - 7) — 3 ln jc.
2 - V4 -x 2 8 3. y(2x2 sin -1 x — sin-1 x +
7. 2 ln jc — 4 ln (jc + 8) +
21. 2 ln + V 4 - x 2.
3 ln (jc - 3). x V 1 —x 2).
9. 3 ln jc + 2 ln (jc + 13) — j tan 1 x 4 87. ln (tan x).
23. - } e ~ x3(x3 + 1). 2 e vS
ln (jc - 3). 91. 5(ln x )2.
2 2 V x — 2 — 4 tan-1 (y V x — 2 ).
I 1. —In (jc + 1) — 3 ln x. 25. In (x + 3) +
x+ 1 x + 3' —cot X.
13. 2 ln x + y ln (x2 + 2x + 2) — { (s in -1 3x + 3 x V 1 — 9 x 2).
1 _i x2 + 1
6 tan-1 (jc + 1). 27. — tan ln (x 2 + 5x + 6).
6
15. jc + 2 In (jc — 1 )- + x 2 — 3'
2 jc — 2 29. ln x V x 2 — 1 — V x 2 — 1 + 101. — In
x2 + 1
| ln (jc2 + 1 ) + 2 tan-1 jc.
tan-1 V x 2 — 1.
103 _ In (x — 1) — 7 In (x 2 +
I 7. yx2 - 2jc + 4 ln (jc + 2).
31 . - t1 cos
- - xv3. , 3. 1 f 2x + 1
19. yx2 — 2 jc + 5 ln (x + 2). 6 Ix 2 + 4 x + 1) + ------ tan 1 / ----------
V3 V V3
21 1
5 \ sin 6+ 4 35. In (x - 1) - 105. \ se '4 v — y sec 2x.
x —1 2 (x — 1 ) 2

„ 1 1 ( ex — 2 107. cos x — j cos3 x.


37. 7 tan6 x + j tan4 x. 109. f(x - 1)5/3 + |(jc - 1)2/3.
23’ 4 l n b T 2 / -
39. - I n (1 + V l - x2).
29. x =
*0
4 1. -^(x — j sin 4x + j sin3 2x). 1 1 1 . — (ax + b) ln (ax + b) —x.
x0 + (1 - x0)e kr a
43. 2 V x - 1 -
Section 10.7, p. 362 113. sin ex.
Vx - 1
I. yx2 In x - } x 2. 4 tan" 115. f x 3/2(3 ln x — 2).
3. yx2 tan-1 x — yx + y tan-1 x. 117. tan x — cot x.
45. x ln (x2 + 3) — 2x +
5. ye*(sin x —cos x). x —1
1 19. 7 ln
7. yxV 1 — x2 + y sin-1 x. 2 V 3 tan-1 — . x + 3 x + 3’
V3
12 1. (x 1) ln (1 Vx) — yx — V x.
e5x 123. y(x - I)2 ta n " 1 (x - 1) -
j V 1 - x 2. 47. -r— (3 sin 3x + 5 cos 3x).
34 y(x — 1) + (x — y) tan-1 (x — 1) —
I I. yx sin (3x — 2) + y cos (3x — 2).
1 fx 2 - 3
13. x tan x + ln (cos x). 49. — ln 1 ln [(x - I)2 + 1],
x2 + 1
15. x ln ( a2 + x 2) — 2 x + 2a tan-1 —. 125. y(xV 1 —x2 - sin-1 x).
51. y ln (x5 + 5x + 3).
17. y(ln x)2. 19. 77( 77- 2). 53. - 4 ln (V x + 1 + 2 ) + Section 10.9, p. 374
23. (b) x(ln x)5 - 5x(ln x)4 + 1. (a) 0.643; (b) 0.656.
6 ln ( V x + 1 + 3).
20x(ln x)3 - 60x(ln x )2 + 120x ln x — 3. 2.2845. 5. 0.881.
120x. 55. tan-1 ( V 3 cos x). 7. 3.14156.
25. 2 t7 [V 2 + ln ( V 2 + 1)]. V3 9. About 23,630 yd2.
ANSWERS TO ODD-NUMBERED PROBLEMS 869

Additional Problems, p. 375 V a 2 + x2 5 _, (x + 2


115. ln (x + V a 2 + x2) —
1. f(3x + 5)3/2. 3. In (1 + 3x2). 2 ( 2
5. —f sin (1 — 5x).
161. fx 3 tan 1 x - jx 2 + { ln (1 + x2).
7. 2 sec V x. 9. ta n -1 x 2. 117. - 3 a 4 yT ^ fl2 ~ * 2 (2 x 2 + a2).
I I . } ln (sin 4x). 13. —1/ln x. 163. 7 x[cos (ln x) + sin (ln x)].
15. In (tan x). 1 _ I A. A 165. x 3 sin x + 3x 2 cos x — 6 x sin x —
119. — tan 1 ----- 2 2 .
2 a a 2 (a1 + x z) 6cos x.
2 / 3x — 5
1 7 . cos ^ -
V x2 —9 x ln x
121. ------------ . 123. 167. - + ln x - ln (x + 1 ).
19. —2 csc x 3. 21. tan- 1 (lnx). 9x x + 1
V l - 9x 2
2 3 -------- . 169. 7 V 1 + x 2 (x 2 - 2).
' 3(3x + 5) 1 , ( 3 + V 9 + 4x2
125. - l n ( --------- - ---------
25. — 7 ln (3 — 2x). e
17 1. —5----- TT (a sin bx — b cos bx).
27. y sin (1 + x 3). c r + bz
127. —/
x • -1 *
— sin 1 —.
29. — 7 cot (x2 + 1). 173. —x e ~ x — e~x.
V ^ 7 2 a
31. tan-1 (sin x). 175. —{x3^ -2 * — \ x 2e~ 2x — \x e ~ 2x —
33. 7 In (sin 2x). 35. {(tan - 1 x)2.
129. ln (x + V a 2 + x 2) — \ e ~ 2x.
37. 7 In (2x + 1). V a 2+ x2 177.277-. 179. a 1'2.
39. 3ex/3. 4 1 . tan (sin x).
43. j sin - 1 5x. 45. tan - 1 (sec x). 131. f x V x 2 — a2 +
183. +
47. {(In x)3. 7a 2 ln (x + V x 2 — a2). 6 12
49. —In (1 + cos x). x 6 ln x _ x 6
53. —cos (ln x). 133. sin - 1 + 4
51. 36 216*

57. 7 tan - 1 e2x. 135. i V 2 ta n - ' I ^ 5 . (b) {[sec x tan x + ln (sec x +


tan x)].
59. |( 2 + x4)372. 6 1 . \n (ex + x).
63. —4/Ve*. 65. —cot x. 137. _ L Si n - i / 3 x ^ 1
V7 C H A P TE R 11
67. —7 ln (cos x 2). V3
69. 7 In (1 + x 2). Section 11.2, p. 391
L „ 3 x 2—2
139. 7 sin 1 (x — 1) — 2 v 2 x —x 2 —
71. 73. tan x + sec x.
f(x — l ) V 2x — x 2. 1 . (it).
75. |(1 + x5/3)3/2.
77. etanx.
5. (0, fa ). 7. ( f , f).
79. - f ( l + cos x)5.
81. sin (tan x). 83. 77 6/ .
85. i 87. 9- ( 3 (4 - tt) a’ 3(4 - 7 T)al
89. j x — jo sin lOx. 1 1 . (fa , fa )
91. yx + jg sin 14x. 145. 3 V x 2 + 4x + 8 + ln (x + 2 +
4 a + ab + b2 , . 2
9 3 . —j cos 3 x + f cos 5 x — 7 cos 7 x. V x 2 + 4x + 8). 13. —-------------- --------- ; this —>— a as
95. { sin Ax — J2 sin 3 4x.
377 a + b TT
5x - 3
97. csc x - 7 csc 3 x. 147. b —» a.
99. f sin 8 /5 x. 4 V x 2 + 2x — 3
15. (a) On the axis, a distance \h from
1 0 1 . { tan 5 x + f tan 3 x + tan x. 149. 19 ln (x — 4) - 3 ln (x + 3). the center of the base; (b) on the axis,
103. 7 sec9 x — 7 sec 7 x. 151. 3 ln (2x + 1) - 5 ln (2x - 1). a distance f a from the center of the
105. cot4 x + 7 cot 2 x + ln (sin x). 153. 5 ln x + ln (x + 4) — base.
107. 7 tan 3x — 7 cot 3x — 3 ln (x — 3).
7 ln (csc 6 x + cot 6 x). 155. —2 ln x + 3 ln (x + 3) — Section 11.3, p. 393
3 ln (x — 3).
V3 1 3
157. 2 ln x + — — — j -
3 . (a) y-77 a 2; (b) 6V277a2.
a tan -1 _
5 ln (x + 1). 5. 777 a 3; 6 V 377 a 2.
1 13. —iy (a 2 “ x 2)3/2( 3 x 2 + 2 a 2). 159. - I n x + ln (x 2 + 4x + 8) - 7. (a) 77 r2h\ (b) 777 r2h.
870 ANSWERS TO ODD-NUMBERED PROBLEMS

Section 11.4, p. 396 3. (a) m = 7 ; (b) m = 0. 11. All terms must be zero from some
I. {M a2. 3. \M h 2. 5. 16, 34, 34, 14, 2 percent. point on.
5. \M a l. 7. {M a2. 13. (a) 0.6000 . . . ; (b) 1 . 6 6 6 . . . ;
Additional Problems, p. 424
9. ± M a 2. (c) 1 .0 8 0 0 0 .. . ; (d) 1 .1 2 5 0 0 0 ...;
1 I
1. 2- 3. 44. (e) 1.0384615384615 . . . .
II. (a) { V i a = 0.707a; 5. 12. 7. i
(b) ^ v f ( ) a s 0.548a; 9 - -75.
V. 11. 0 0 . Section 13.4, p. 449
13. 6 . 15. 3. 3. (a) \x\ < 1, ax/( 1 — x 2)\ (b) |jc| > 1,
(c) jVTOa = 0.632a.
17. i 19. 0 0 . M{x — 1); (c) |l 4- x\ > 1, 1 + x (also,
Additional Problems, p. 396 if x = 0 the sum is 0 ); (d) e ~ x < x < e,
2 1 . 0 . 23.
3. (a) ({, |) ; (b) (0, f); (c) (1, f); ln x/(\ — ln x).
25. 0. 27. 2J.
(d) (I, f ); (e) (0, f ) ; (f) (jf, ff); 5. * < 0 .
29. j . 31. 9.
33. 3. 35. Section 13.5, p. 454
® (t ^ t -°) 37. f . 39. I. (a) D; (b) C; (c) C; (d) C; (e) C;
5. Snabc', 877(a + £>)c.
41 (f) D; (g) C; (h) C.
7. iM a2. H1- — 16'
43. 0. No; instead, it emphasizes the 3. D. 5. D.
7. D. 9. D.
c h a p t e r 12 logical point that L’Hospital’s rule
II. D. 13. C.
makes a definite statement only when
Section 12.2, p. 403 15. C. 17. D.
the limit on the right exists.
1. 3. 3. £ . 19. C.
49. 0 . 51. 0 .
5 . I6 . 7/ . _ I9 .
j 2 1 . C if/? > 1, D if p < 1.
53. 0 . 55. 0 .
9. j . 11. - 6 . 23. C.
57. 0 . 59. 0 .
13. 3. 15. 4. 1 25. C i f p > 1, D i f p < 1.
61. P- 63. 3-
17. 19. I/ 77. 29. ln 2.
65. 0 . 67. 0 .
21. 16. 23. i 69. 6'
1
71 1. Section 13.6, p. 460
25. 6. 73. 1 75. 1. 1. C. 3. D.
27. /(0 ) = {a2(sin 6 — sin 0 cos 6), 77. 1. 79. 1. 5. C. 7. C.
g(6) = {a2(6 - sin 6 cos 6); limit = f.
81. 1. 83. —oo. Section 13.7, p. 464
Section 12.3, p. 408 85. 1. 87. 1. 1. C. 3. D.
1. - 3 . 3. 1. 89. 1. 91. 1. 5. C. 7. C.
5. 3. 7. 0. 93. e2. 95. e4. 9. D. ll.C.
9. 2. 1 1 . 1 . 97. e \ 99. 1. 13. D. 17. D.
13. 0. 15. 0. 1 0 1 . l/(3e6). 103. 1. 19. C. 21. D.
1
17. 0. 19. 2. 105 • 2- 107. 77/4. 23. C.
2 1 . i 1
23. 1. 109 . 77/8. 111. 3-
25. 1. 27. 1. 113,. 2. 1 15. Diverges. Section 13.8, p. 469
29. 1. 31. 1. I. CC. 3. D.
117,. Diverges. 119. 3.
33. e*. 35. 1. 5. AC. 7. AC.
37. 1. 39. I/V e . 9. D. 1 1 . CC.

41. eP. C H A PT ER 13 13. CC. 15. AC.


Section 13.2, p. 437 17. AC. 19. AC.
Section 12.4, p. 413
1. (a) D; (b) C, 0; (c) C, 0; (d) C, 0; 21. CC. 23. D.
1. l / ( l e 6). 3. f.
(e) D; (f) C, 1; (g) C, 0; (h) C, {■, 25. CC.
5. 1 — cos 1. 7. 1.
(i) C, 0; (j) D; (k) C, 0; (1) C, 0; 27. (a) F; (b) T; (c) F; (d) F; (e) T;
9. 0. 11. ln V 3.
(m) D; (n) C, 0; (0 ) C, 77; (p) C, (f) F.
13. V 2 (ln 4 — 4).
15. 1. 5. (a) a/2; (b) 4 a 3. Additional Problems, p. 470
17. Converges if p < 1, diverges if 9. A decreasing sequence of positive I. (a) 0 ; (b) | ; (c) 0 ; (d) 1 .
p> 1 .
numbers converges. 5. (a) i ; (b) i ; (c)
19. (a) 77/5; (b) 77. Section 13.3, p. 444
fan _ fin
7. xn = ----------- , where A and B are
Section 12.5, p. 423 5. (a) C; (b) D; (c) D; (d) C; (e) D; V5
(f) C; (g) D; (h) D. the positive and negative roots o f
1 . k = —, k = —, no k.
2 77 9. 40 mi. x2 - x - I =0.
ANSW ERS TO ODD-NUMBERED PROBLEMS 871

1 + V l + 4a Section 15.3, p. 541


aQ l + * 2 + ^2!7 + TT
3! + T7
4! + 1. (a) x2/25 + y 2/21 = 1; (b) x 2/36 +
"■ --------- 2---------'
y 2/ 52 = 1; (c) Ax2/9 + y2/4 = 1;
23. |x| > V I a0ex2’, (b) y = a0 - (a0 - 1)* +
jc(1 — xn) nxn+x (d) j:2/16 + y2/ l = 1; (e) x 2/21 +
(ap 1) , _ (ap 1) , y 2/36 = 1; (f) 24*2/2500 + yVlOO = 1.
Sn~ (1 -x ) 2 \-x'
2! 3 ! 3. (a) (0, 0), (0, ± 5 ), (0, ±4), * = f;
31. (a) - I n 2; (b) 1.
1 + ( a0 - 1) X (b) (0, 0), (± 2 , 0), ( ± V 3 , 0), e =
35. (a) C; (b) D; (c) C; (d) D; (e) C;
(f) D; (g) C; (h) D; (i) C; (j) D; (k) C; V 3 /2 ; (c) ( - 2 , 1), ( - 2 , 1 ± V 2 ),
x2 x3
(1) C; (m) C; (n) C; (o) C; (p) D; ( - 2 , 2) and ( - 2 , 0), e = V 2/2;
' - x + v - v +
(q) C; (r) C; (s) C; (t) D; (u) C; (v) C. (d) (1, 0), (2, 0) and (0, 0), (1 ±
51. C. 53. Inconclusive. 1 + (ao - l)e~ x. { V 3 , 0), e = V 3 /2 ; (e) (2, - 1 ) ,
55. D. 57. C. 5. y = (5, - 1 ) and ( - 1 , - 1 ) , (2 ± V 5 , - 1 ) ,
59. D. .2 e = V 5 /3 ; (f) (0, 2), (± 2 V 2 , 2),
ai
X 1!2! 2!3! 3!4! (± 2 , 2), e = V 2 /2 .
C H A PTE R 14 7. (a) jTrab2', (b) jTra2b.
Section 14.2, p. 489 “i I („ - l) b i!: converSes for
b2
1. ( - 4 , 4). 3. R = 0. ,3 .
all jc.
5. [ - 1 , 1). 7. [ - 1 , 1],
9. R = 0. 11. ( - V 3 , V 3 ). Section 14.7, p. 519 IV. is. ________
13. [ - 1 , 1]. 15. ( - i l l - 21 . y = mx ± v b2 + a 2n
I . X + X2 + yJC3 — -^jJC5 — ^ X 6 +
17. [ - 1 , 1). 19. [ - 1 , 1]. 23. r\ + r2.
3 1 . x + j x 3 + -jyjt5 + ji jx 7 + • • •
21. (2, 6). 2 3 . / ? = °°.
R = tt/2. Section 15.4, p. 549
25. R = 0. 27. (0, 2e).
35. ( a ) i ( b ) | . 37. 272. I. (± 2 , 0), (± V T 3 , 0), 2 y = ±3jc,
29. (a) R = 1; (b) R = oo.
e = V T3/2, x = ± 4 V T 3 .
Additional Problems, p. 523
Section 14.3, p. 494 3. (0, ±2), (0, ± V T 3 ), 3y = ±2jc,
1. (a) °o; (b) oo; (c) e.
I. (a) 2 ( —1)”+1 nxn~x, |*| < 1; e = V I3 /2 , y = ± 4 / V l 3 .
5. ( - 1 , 1).
(b) 2 ( - 1)" in + 2)2(” + 1}- xn, \x\ < 1. 5. (0, ±2), (0, ± 2 V 5 ) , 2y = ± x,
. . f* tan 1 1
7. (a) --------- dt\ e = V 5 , y = ± 2 /V S .
1 1+ * ex - 1 Jo t
3. (a) - l „ _ ; ( b ) / W = — 7. (0, ± 1), (0, ± V 2 ) , y = ±jc,
(b) (1 + x) ln (1 + jc) — jc;
if x + 0 ,/ ( 0 ) = 1; e = V 2, V l y = ± x.
9. y 2/9 - x 2/\6 = 1.
x x - i M i - * 4);
(C) ; (d) I I . jc2/9 — y2/36 = 1.
(1 - X)2 (1 - x 2f
13. jc2/36 - y 2/2S = 1.
jc + 4 jc2 + jc3 ... 4 — 3jc
Section 14.4, p. 503 (e) — t( ;— » (f ) 15. jc2/36 - y2/45 = 1.
\-x) (1 - X ) 2' 17. Hyperbola with center (1, - 2 ) and
15(a)* - F l ! + T ^ ! 11. f 2(x) = 2x1(1 - x ) 3. horizontal principal axis.
(b) * + JX4 - j^x1 + • • • ; 15. (a) - j ; (b) 0; (c) 19. Two straight lines 5 ())+ 1) =
± 6 ( jc + 2).
(c) * - -fiX5 + j; x 9 - • • • .
17. 3.14085; 3.14159. C H A P T E R 15 31. ( —~ ? V b 2 + d 2, —~ t
\ d d
Section 14.5, p. 509 Section 15.2, p. 534
1. (a) Circle, center ( 1, 3) and radius Section 15.6, p. 557
1. (a) 9; (b) 13. 3 .1 .6 4 8 7 2 .
5; (b) empty set; (c) point (5, - 1 ) ; 1. 6 = 45°, jc'2 / 4 + y'2 = i 5 ellipse.
5. 0.978148. 7. 0.848048.
r3 r5 r7 (d) circle, center (8, —6) and radius 2; 3. 9 = 30°, / 2 / 2 - *'2/2 = l,
9. sinjc = j c - - + — - — . (e) point ( - 3 , 7); (f) empty set. hyperbola.
3. (a) ( - 2 , - 1 ) , ( - 2 , 0 ) , 3 ) = - 2 ; 5. 9 = 45°, jc'2 = 4 V 2 / , parabola.
13. 1.0833, 1.0981, 1.0985, 1.0986.
(b) (3, 1), (5, 1 ) , * = 1; (c) ( - 2 , 5), I . 9 = 45°, /2 /2 + /2 / 4 = 1, ellipse.
15. 0.000006.
( - 2 , 1),)) = 9; (d) ( - 2 , 1 ) ,( - 5 , 1), 9. 9 = 60°, x '2/3 + / 2/11 = 1, ellipse.
Section 14.6, p. 513 x = 1; (e) ( - 1 , 2 ) , ( - l , f ) , y = i I I . 9 = sin-1 1/V To, jc'2 + 3 /2 = 1,
1. (a) y = 5. b2y = 4hx(b — jc). ellipse.
872 ANSWERS TO ODD-NUMBERED PROBLEMS

Additional Problems, p. 558 Section 16.5, p. 582 Section 17.3, p. 605


I. 4p. I. |77<32. 5. / .
77 4 1. (a) V !0 , 13i - 34j, 4i - 13j;
9. 177-(2 + V T 7) ft3. (b) V 5 3 , —36i - 4j, —39i + 14j;
7. 77 + 3V 3. 9 . W £ - V 5
(c) 6, lOi - 33j, —2i - 33j; (d) V 34 ,
C H A PTE R 16 —i + 55j, 20i + 22j.
Additional Problems, p. 583
Section 16.1, p. 563 5. (a) (b) ± M L p i
I. (a) tan 0 = 4; (b) r2 = 36/(4 + 5 X
1. (a) (V 2 , V 2 ); (b) (2, - 2 V 3 ) ; sin2 0); (c) r = 2 cos 0 — 4 sin 0;
(c) (0, 0); (d) ({ V 3, {); (e) (0, - 2 ) ; (d) r = 3/(2 cos 0 — 5 sin 0); (e) r = (c) ± (5i ; (d) ± (24l2~ ? j) .
V 74
(f) (—2 V 2 , 2 V 2 ); (g) ( - 3 , 0); 4 cot 0 csc 0; ( f ) r = 1 + 4 sin 0;
A B
(g) r = 6 sin 20/(sin3 0 + cos3 0). 7. ± 2(12i + 5j).
(h) ( - 3 V 2 , 3 V 2 ); (i) (1, 0); ( j) (0, 0); 9‘ |A| + |B|
(k) (1, V 3 ); (1) (5, 12); (m) ( - 2 V 3 , 2); 3. (a) (V 2 a , / ); (b) the origin and
77 4 13. 0 = 45°.
(n) (0, 3).
2 - V2 3 t7\ / 2 + V 2
3. (1, 0), (1, 277-/5), (1, 477/5), a, — Section 17.4, p. 610
2 4 )’ \ 2 "’ 4
(1, 677/5), (1, 877/5). I . The line through the head of A
7. (x — 2)2 + ( y — 2)2 = 8; circle (c) (a/2, ± / ); (d) (3 V 2 , 77/4),
77 6 w hich is parallel to B.
with center (2, 2) and radius 2 V 2 . (3"\/2, 377/4); (e) the origin and 5. 2ri + j, 2i, V 4 /2 + 1.
9. (a) Line y = 2; (b) line x = 4; ( i 277/3), ( i 477/3); (f) ( ± a , 7 7 / 6 ), 7. i + (312 - 3)j, 6rj,
(c) line y -- —3; (d) line x = —2. ( ± a , —7 7 / 6 ); (g) the origin and
V l + 9(t2 - I)2.
(Sa/5, s i n ' 1 3/5); (h) (4, -77/3);
Section 16.2, p. 567 9. sec2 ?i + sec t tan rj, 2 sec2 t tan t X
(i) ( ± 2 , 7 7 / 2 ); (j) (2, ±77/3), ( —1, 7 7 );
5. (a) r = 5 sec 0; (b) r = —3 csc 0; i + (sec3 t + sec t tan2 r)j,
(k) the origin and (f, ± 7 7 / 3 );
(c) r = 3; (d) r 2 = 9 sec 20; |sec r|V 2 sec2 1 — 1.
(e) r = tan 0 sec 0; (f) r2 = 2 csc 20; ■ ,/2 + V2 77\
(1) the origin and I ----- ------ a, — I, I I. R = { a t 2j + \ 0t + R().
sir>2
sin- 0
(g) r
cos 0 cos 2 0 ' 2 - V2 577 Section 17.5, p. 615
2 cos 0 a, ]; (m) the origin and I. (a) —2/(1 + 4x)3/2; (b) cosx;
(h) r =
tan2 6 — 1 ' (c) 2x3/(2x4 - 2 x 2 + 1)3/2;
( ± a , 77/4), ( ± a , 377/4).
9. (1, 277/3) and (1, 4 t7/3); - j . (d) - \\/2 e ~ '- , (e) - 4 t 2/ ( 4 t A + 1)3/2.
15. Larger angle = 277/3.
1 I. r = a sin 20. 3. (a) 1; (b) ^ 5 5/46 1/2; (c) none.
17. ja [ (4 + 4t72)3/2 - 8],
13. x 3 = y 2(2a — x). 5. If (as usual) 5 increases on the
2 1. V 3 - J77.
15. (x — a )(x 2 + y2) = b2x 2. circle in the counterclockwise
25. j a 2(3 V ^ - 7 7 ).
direction, then k as calculated from (4)
Section 16.3, p. 573
has the wrong sign on the upper half­
1. 9 = r2 + 16 — 8r cos (0 — / ).
77 6
C H A P T E R 17 circle, because s increases in the
3. r = 10 cos 0.
direction of decreasing x. Change the
5. r = 4 V 3 cos ( 0 - 77/3). Section 17.1, p. 590 sign o f this result to get 1/a on both
7. r = a ( l + cos 0). 1. (a) x + y = 2; (b) 2x — y = —4. halves of the circle.
9. (a) V 5 a , V 3 a\ (b) { V 5 a, { V 3 a. 3. x + y = 3. 7. ( ~ { l n 2, } V 2 ), f V 3 .
I I. r = ¢7 7 /( 1 + e sin 0). 5. x — 1 = ( y — 3)2. 9. f a at 0 = 7 7 / 4 .
13. e = i \5.e = i 7. x 2 — j 2 = 1. 9. y = 1 — 2x2. I I . 4 a sin {0.
I I . No; the second is part o f the first.
17. ± V e 2 - 1.
13. (c) 45°. Section 17.6, p. 619
ep
19. (a) 15. x = a cos 0 + aO sin 0, y = 3. ( —aco sin iot)i + (aw cos cot)j,
a sin 0 — aO cos 0. ( —a(o2 cos cot)i + ( —aco2 sin cot)j, aco,
Tty_
21. (a) x = y cot 0, aco2.
2a' Section 17.2, p. 599
5. ( —e l sin t + e' cos t)i + (e1 cos t +
(b) r - —— 0 csc 0. . V 2ay - y 2 e 1 sin r)j, ( —2el sin r)i + (2e‘ cos t)j,
77
I. a sin 1 ------ ----- — =
a V 2 e r, V 2 e r, V i e '.
Section 16.4, p. 579 V 2 ay — y 2 + x. 41 . 2 t2 - 2 . 4(1 - t2) .
c 32 2 1 "I--- — --~ j , “ T ' . ..-,1 +
5. ■ 7. 6a. t2 + 1 t2 + \ (t2 + I)2
11. (a) 4 7 7 a 2; (b) 4772a2. I I . x = 2b cos 0 + b cos 20, y = 8 1
-j, 2, 0, 4/(f2 + 1).
17. V 2 . 2b sin 0 — b sin 20; -ya. ( t2 + 1) 2
ANSWERS TO ODD-NUMBERED PROBLEMS 873

9. an = 0 when t = 0, an = - 1 when Section 18.4, p. 651 13. p = 4. 15. p = 6 cos ¢).


t = 77/2. I. (a) T; (b) F; (c) T; (d) T; (e) F; 17. p2 sin2 (f) + p cos 4> = A.
1 1. v > 30V 2. (f) T; (g) F; (h) F.
3. They are parallel.
Section 17.7, p. 626 C H A P T E R 19
5. (a) x = 2 + /, y = — 1 + At, z =
/ 4 tt2V «3 \ —3 — 2/; (b) x = 2 + 3/, y = —1 — t, Section 19.1, p. 669
1. Since M = ^ 2 j ’ determine

z = - 3 + 6/; (c) x = 2 + 2/, y = I . The entire plane except the line


the ratio a2IT 2 for any particular
- 1 - 2 t , z = - 3 + 51. y = 2jc.
planet ( for instance, the earth) and
7. (a) jc = 2 + 31, y = —3/, z = 3 — 2/; 3. The first and third quadrants,
proceed with the arithmetic.
(b) jc = 4 + At, y = 2, z = ~ 1• including the axes.
A dditional Problem s, p. 627 9 .(1 ,1 ,1 ) . 11. 6. 5. The part of the plane above the line
I. 3a2/2. 13. 2jc — v — z + 2 = 0. y = 3x.
3. (a) 57T2a 3; (b) ™ira2. 17. 8 / V 2 T. 19.(9,0,0). 7. All o f jcyz-space except the origin.
o, 862 y] x - 2 _ y + 1 = _z_ 9. The solid sphere jc2 + y 2 + z2 < 16.
5. 8b + ----- .
a 17 -2 —7 ’ I I . All o f jcyz-space for which z > 0
I I . Smallest radius = 9 /(7 ^ 2 8 ), at 23. The second plane. except the planes z = 77, 377,. . . .
t = iV f. 25. Ax + 3y + Az + 2 = 0. 25. Away from the origin.
29. (a) ^ (b) 0. 27. In the positive x, negative y,
13. Approximately 5.94 X 1027 g.
positive z direction.
Section 18.5, p. 656
C H A PT E R 18 I. Parabolic cylinder. Section 19.2, p. 674
Section 18.1, p. 635 5. Plane. I. 2, 3.
1. Faces: x = 1, y = 4, z = 5. Edges: 9. jc2 + (z — a )2 = a2 . 3. - 6 y 2/(3x + l)2, Ay/(3x + 1).
x = 1, y = 4; y = 4, z = 5; x = 1, I I. (a) z = e ~ <
'x2+y2)\ (b) x 2 + z 2 = 5. 2x sin y, x 2 cos y.
z = 5. e " 2?2. 7. tan 2 y + 3y sec2 3x, 2 x sec2 2 y +
3. 64. 13. (a) y = x 2 + z2; (b) 9(x2 + z2) + tan 3x.
5. (a) The yz-plane and the xz-plane Ay2 = 36; (c) z = 4 — jc2 — y 2\ (d) jc = 9. —3 sin (3x —y), sin (3x — y).
taken together; (b) all three coordinate y 2 + z2. I I . ex sin y, ex cos y.
planes taken together. 15. (jc - 2z)2 + ( y - 3 z )2 - 13. 2ey/x, ey ln x2.
7. (0 ,4 ,0 ) . 6( jc — 2z) = 0. 15. 2 x y 5z7, 5x2y4z7, 7x2y 5z6.
9. x 2 + y2 + (z ~ I ) 2 = 49 or x 2 + 17. l n A £ , - £
Section 18.6, p. 660 z y z
y 2 + z2 = 14z.
I. Ellipsoid. 19. (a) y = 3, z = 8x + 1; (b) x = 2,
I 1. (a) The sphere with center
3. Circular paraboloid. z = 6y - 1.
( —1, 3, 5) and radius 3; (b) the point
5. Hyperboloid of two sheets. 3 1. f ( x , y) = 3jcy2 - x 2 cos y + 2 y.
(5, - 1 , 3); (c) the empty set; (d) the
7. Hyperbolic paraboloid.
point ( —1, 7, 3); (e) the sphere with
9. Hyperboloid of two sheets. Section 19.3, p. 678
center (2, —3, 0) and radius
I I. Ellipsoid. 1. Z - 25 = 20(x — 1) + 40( y — 2).
15. f .
13. Hyperbolic paraboloid. 3. z = 4x + 5y.
17. j(7 i + 5j + 4k). 15. (6, - 2 , 2), (3, 4, - 2 ) . 5. z - 1 = 6(x - 3) - 8 (y - 2).
19. |(A + B + C + D). 7. z — 1 = y.
17. (a) A (k) = Trab ^1 - j>
Section 18.2, p. 639 9. lOx + 13y + 13z = 75.
3. (a) 60°; (b) 45°; (c) 90°. (b) jTrabc. 13. xox/a2 + yoy/b2 + zoz/c2 = 1.
7. No. 13. 2i — k; 23. Hyperbolic paraboloid. 15. 60°. 17. The origin.
19. Two; 45° and 135°. 19. h (l + a )/V a .
Section 18.7, p. 663
21. c(z\ ~ Z2 )•
1. (a) (2 V 2 , u/4, 1); Section 19.5, p. 685
Section 18.3, p. 646 (b) (2, -77-/3, 7); (c) (2 V 3 , tt/6, 2); I. (a) 8i + 4j + 2k; (b) 2i; (c) f(i +
I . (a) 14i + 7j; (b) 3i - 3j; (c) 2i - (d) (3 V 5 , ta n “ ‘ 2, 5). 2j - 2k); (d) } ( - i + 2j + fk ).
14j - 22k; (d) k. 3. (a) (2 V 2 , 77-/6, tt/4); (b) ( 2 V 2 , 3. (a) 3, - j ; (b) V 3 , i + j + k;
3. 2 V 6 . 5 7 7 / 6 , —77/4); (c) (2, 7 7 / 4 , 7 7 / 4 ); (c) 2 V T 9 , i + 3j + 3k; (d) 3<?2,
5. Assuming that their tails coincide, (d) (2,77/6, -77/2). i + 2j + 2k.
all three vectors lie in a plane. 5. r2 + z2 = 16. 7. r2 = z2. 5. ±(i + j — 2 k )/V 6 .
I I . (b) 11/VT07. 9. r = 2 sin 6. 11. r = 3. 7. 56/V 2 T ; i + j + 2k; 4 /V 6 .
874 ANSWERS TO ODD-NUMBERED PROBLEMS

Section 19.6, p. 691 sin 2 a


•5. 1 ' f* / ( x , y) dy dx. 37. jM a 2 ( 1 — ~ 2 a
1. 0.
3. - 9 (t2 + 9)/(t2 - 9)2. in x
5. At3 + Atu2, Au3 + 4f2w. n { f ( x , y) dy dx. Section 20.5, p. 735
1. £ . 3. 2abc/TT.
Section 19.7, p. 695 I9 ' /0 io 2x3 d y d x = j. 5. 24. 7. 4 tt.
I. (3, 5), a minimum. 9. § .
3. (1, 2), a minimum; (—1, 2), a 2 L 1' {02 ( 5 - 2 x - y ) d x d y = 5.
saddle point. "■ io U y f ( X ' y ' z) dz-
C2 f4 x -x * „
5. (—1, -2 ) and (-2 , 8), both saddle
points.
23- L L 2 ^ * = 1 - 13. a 4 / 8 .
fVl - y2 - ;
25. jabc. 27. 4.
7. (0, 0), a saddle point; (—1, -1 ), a - /:-Vl ->2 -
maximum. dx dy dz.
/ ( x , y, z)
13. 2, 4, 6. 15. 1/(21abc). Section 20.2, p., 722 17. 4. 19.
17. j. 19. V l4 . 1. f. 3. a 2. 21. j77abc. 23.
21 . x/6 + y/6 + zJ3 = 1. 5. 1 - e~ a. 7/. -3 . 27. fM a2.
Q 625
23. 3V3/2. y. 12. 11.“ .
1 40 , 3 Section 20.6, p. 738
27. Base of rectangle = (2 —V3)P; 13. f . 15. j77.
1. 77/2 .
height of rectangle = {(3 —V3)P; 17. \( b 3 - a3). 3. x = y = 0, z = ih .
height of triangle = j(2 \/3 - 3)P
Section 20.3, p. 726 5. \M (2 a 2 + 3^2).
Section 19.8, p. 701 1. M = a3; x = y = ija. 7. joM(a2 + Ah2).
1 / 128 —_ 20 — a
1. {. 3. M = x = y = 0. 9. x = y = 0, z. = ja .
3. Comer in first quadrant is 11. f(8 - 3V 3)77a3.
5 . M = f a 3; 3c = -^ 7ra, y = 0.
(V 2 , j V 2 ) . 13. 77/32. 15. a 3/3.
7. M = 77; X = (7T2 — 4)/77, y = 77/8. 17. f a 3(377 - 4).
5. 2r = h. 7. f, j.
9. yMa2. 11. zM a2.
9. x2/3 + y2/12 + e /2 1 = 1. 19. \M a 2. 21. jM a 2.
II. jr. 13. a3. 13. iM a 2.
23. j77a3(l —cos a).
17. (a) \d \N a 2 + b2 + c2. Section 20.4, p. 730
Section 20.7, p. 743
I . 7 7 CL2. 3. i(477 - 3 V 3 )a 2.
Section 19.9, p. 707 1. 5- f 77a5( f —cos a + j cos3 a)
5. a 2. 7. j( 3 V 3 - 77)a2.
7. W = C[X + C2- yMa2[f —j cos a (1 + cos a)].
9. 7 ( 8 + 77)a2.
I I . j ( 9 V 3 - 277)a2. 3. 2772a 3. 5. l l a A ~ b*
Section 19.10, p. 713 a 3 — b3
1. 3x/y. 13. ij(9 V 3 + 877). c877an+5
3. (1 —sin y)/(x cos y — 1). 7. f a a 3.
15. |77a4. 3(n + 5 )'
5. (ye*? - 2 y 2)/(Axy — xe*y). f i n il f3 13. |77a3.
7. 3z/(z ~ 1), 2z/(l - z). 17. \ z r d r dd.
J - tt/2 JO
q xyz cos xz + y sin xz r 7r/4 ftan 0 sec 0 is- «■ "=£ r r ** *■®
1 - x 2y cos xz
x sin xz
' J 0 Jo
z r dr d6.
p2 sin cp dO d(/> dp\
f n l4 n
1 — x 2y cos xz 21. z r d r dd. (b) M = 477 f j f?f(p) dp.
Jo Jo

11. 23. (a) y77[a3 — (a2 — b2)3n}\ 19. 7 7 GmSa sin 2 a.


19
(b) j77(a2 - b2)312 = { 77h3. 21. 2irGm 8.
25. x = fa , y = 0. Section 20.8, p. 747
C H A P T E R 20
27. x = 0, y = a. I. 3VT4. 3. 77a2V 3 .
Section 20.1, p. 717 5 IT

1. The triangle bounded by x = 0, 5. 277 V6. 7. a 2(77 — 2).


29. j77a3.
y = \ , y = x. 9. | t7(5V 5 - 1).
3 1. -j77<24b; x = y = 0 , z = \a 2b.
3. 4 5. 98. II. jira 2( 5 V 5 - 1).
7. 7 7 / 8 . 9. -r. / 1 - ln 2 \ 15. ^ [ 3 V l 0 + ln (3 + VlO)].
35. M a2
11. 77. 13. t In 2. I In 2 j’ 1 7 . 2 a 2. 1 9 . |( 2 0 - 3 t 7 ) .
ANSWERS TO ODD-NUMBERED PROBLEMS 875

C H A PT E R 21 Section 21.4, p. 778 Section A.14, p. 832


1. (a) 0; (b) 0; (c) 2; (d) ez sin x; 3. C if X =£ |/C77, D if X = f&77.
Section 21.1, p. 757
8. (e) Hr.
1. (a) - 2 ; (b) - 3» (C) - 4 . c y1277-(25. A P P E N D IX B
3. 47Tdbc. 5.
3. 0.
7. (a) f; (b) § ; (c) t ; <:d) # . Section B .l, p. 848
7. 2 l y - + f \ r ) .
2 , , , 9!. 22!. , , 52!
9. (a) 0; (b) 0; (c) 3'
11. (a) 36; (b) 18. (a) 4 ! ’ ^ 16!’ (C) 5!47! ’
11. f for all paths.
13. 20VT 15. 47ra5. 3. 720; 120. 5. 2880.
13. 7 7 for both paths.
105 17. y for both integrals. 7. 9 • 9! = 3,265,920.
15. 2 • 9. 140,400,000. 11. 120; 60; 325.
19. -1277.
19. 0 along all paths. 13. 20,160. 15. 2 (3 !3!) = 72.
21. 0. Section 21.5, p. 783 17. 210. 19. 378.
5. 77. 7. - 1 . 21. 4200. 23. 8820.
Section 21.2, p. 763
9. 477. 11. 1877. 25. 211,680.
9. 0. 11. 6.
13. -877. 15. 0. 13
13. e. 15. 12. 27. 4 ‘ = 5148; 13 12
,5
APPENDIX A 3 7 4 4 .'
Section 21.3, p. 769
l 29. 286. 31. 84.
1. 12• 3. 2 ln 4 - Section A.9, p. 815 n
3 33.
5. 2- 7. 1. 5. 2 V x - 2 ln (1 + V x ). 2
1 3
9. 6' 11. 10' 7. 2 V x — 3 V x + b V x — 35. (a) 349,440x"; (b) -4 8 9 ,8 8 8 x 4;
1 6 ln (Vx + 1). (c) —2002a wb21.
13,• 2• 15. 3 77(22.
3 2 19. 2. 9. 2 V x — 2 tan -1 V x. Section B.2, p. 854
17 . g77^.
11. fx 3/4 — a V x + 4 tan-1 Vx. 1. (a) n(n + 1); (b) n(4n + 1); (c) 4«2;
21 , j3a 1.
2 23. xy3.
13. 2 V x + 2 - 2 tan-1 V x + 2. (d) 3n2; (e) { n(5n + 1).
25 . - x2 + y2-
27.. x sin y + y cos; x. Section A .12, p. 824 V- (a) n n — 2; (b) l — v2"*'
2n
31 . 277. 3. (a) k ^ 3; (b) all k\ (c) all k. n > 0.

You might also like