0% found this document useful (0 votes)
24 views20 pages

Practical CG

Uploaded by

sayleebandal528
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views20 pages

Practical CG

Uploaded by

sayleebandal528
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 20

Practical

Computer Graphics Assignment 1

Write C++ program to draw a concave polygon and fill it with desired colour using scan fill algorithm. Apply
the concept of inheritance.

Code:

#include <conio.h>
#include <iostream>
#include <graphics.h>
#include <stdlib.h>
using namespace std;
class point
{
public:
int x,y;
};
class poly
{
private:
point p[20];
int inter[20],x,y;
int v,xmin,ymin,xmax,ymax;
public:
int c;
void read();
void calcs();
void display();
void ints(float);
void sort(int);
};
void poly::read()
{
int i;
cout<<"\n Scan Fill Algorithm ";
cout<<"\n Enter Number Of Vertices Of Polygon: ";
cin>>v;
if(v>2)
{
for(i=0;i<v; i++) //ACCEPT THE VERTICES
{
cout<<"\nEnter co-ordinate no. "<<i+1<<" : ";
cout<<"\n\tx"<<(i+1)<<"=";
cin>>p[i].x;
cout<<"\n\ty"<<(i+1)<<"=";
cin>>p[i].y;
}
p[i].x=p[0].x;
p[i].y=p[0].y;
xmin=xmax=p[0].x;
ymin=ymax=p[0].y;
}
else
cout<<"\n Enter valid no. of vertices.";
}
void poly::calcs()
{
for(int i=0;i<v;i++)
{
if(xmin>p[i].x)
xmin=p[i].x;
if(xmax<p[i].x)
xmax=p[i].x;
if(ymin>p[i].y)
ymin=p[i].y;
if(ymax<p[i].y)
ymax=p[i].y;
}
}
void poly::display()
{
int ch1;
char ch='y';
float s,s2;
do
{
cout<<"\n\nMENU:";
cout<<"\n\n\t1 . Scan line Fill ";
cout<<"\n\n\t2 . Exit ";
cout<<"\n\nEnter your choice:";
cin>>ch1;
switch(ch1)
{
case 1:
s=ymin+0.01;
delay(100);
cleardevice();
while(s<=ymax)
{
ints(s);
sort(s);
s++;
}
break;
case 2:
exit(0);
}
cout<<"Do you want to continue?: ";
cin>>ch;
}while(ch=='y' || ch=='Y');
}
void poly::ints(float z)
{
int x1,x2,y1,y2,temp;
c=0;
for(int i=0;i<v;i++)
{
x1=p[i].x;
y1=p[i].y;
x2=p[i+1].x;
y2=p[i+1].y;
if(y2<y1)
{
temp=x1;
x1=x2;
x2=temp;
temp=y1;
y1=y2;
y2=temp;
}
if(z<=y2&&z>=y1)
{
if((y1-y2)==0)
x=x1;
else
{
x=((x2-x1)*(z-y1))/(y2-y1);
x=x+x1;
}
if(x<=xmax && x>=xmin)
inter[c++]=x;
}
}
}
void poly::sort(int z) // sorting
{
int temp,j,i;
for(i=0;i<v;i++)
{
line(p[i].x,p[i].y,p[i+1].x,p[i+1].y);
}
delay(100);
for(i=0; i<c;i+=2)
{
delay(100);
line(inter[i],z,inter[i+1],z);
}
}
int main() //main
{
int cl;
initwindow(500,600);
cleardevice();
poly x;
x.read();
x.calcs();
cleardevice();
cout<<"\n\tEnter The Color You Want :(In Range 0 To 15 )->"; //selecting color
cin>>cl;
setcolor(cl);
x.display();

closegraph(); //closing graph


getch();
return 0;
}

Input :

Number of Vertices : 4

Cordinates 1st :
x1= 200
y1= 200
Cordinates 2st :
x2= 200
y2= 400

Cordinates 3st :
x3= 400
y3= 200

Cordinates 4st :
x4= 400
y4= 400

Output:
Practical

Computer Graphics Assignment 2

Write C++ program to implement Cohen Southerland line clipping algorithm.

Code:

#include<iostream>
#include<stdlib.h>
#include<math.h>
#include<graphics.h>
#include<dos.h>
using namespace std;
class Coordinate
{
public:
int x,y;
char code[4];
};
class Lineclip
{
public:
Coordinate PT;
void drawwindow();
void drawline(Coordinate p1,Coordinate p2);
Coordinate setcode(Coordinate p);
int visibility(Coordinate p1,Coordinate p2);
Coordinate resetendpt(Coordinate p1,Coordinate p2);
};
int main()
{
Lineclip lc;
int gd = DETECT,v,gm;
Coordinate p1,p2,p3,p4,ptemp;

cout<<"\n Enter x1 and y1\n";


cin>>p1.x>>p1.y;
cout<<"\n Enter x2 and y2\n";
cin>>p2.x>>p2.y;

initgraph(&gd,&gm,"");
lc.drawwindow();
delay(2000);

lc.drawline (p1,p2);
delay(2000);
cleardevice();

delay(2000);
p1=lc.setcode(p1);
p2=lc.setcode(p2);
v=lc.visibility(p1,p2);
delay(2000);

switch(v)
{
case 0: lc.drawwindow();
delay(2000);
lc.drawline(p1,p2);
break;
case 1:lc.drawwindow();
delay(2000);
break;
case 2:p3=lc.resetendpt(p1,p2);
p4=lc.resetendpt(p2,p1);
lc.drawwindow();
delay(2000);
lc.drawline(p3,p4);
break;

}
delay(2000);
closegraph();
}

void Lineclip::drawwindow()
{
line(150,100,450,100);
line(450,100,450,350);
line(450,350,150,350);
line(150,350,150,100);

void Lineclip::drawline(Coordinate p1,Coordinate p2)


{
line(p1.x,p1.y,p2.x,p2.y);
}

Coordinate Lineclip::setcode(Coordinate p)

{
Coordinate ptemp;

if(p.y<100)
ptemp.code[0]='1';
else
ptemp.code[0]='0';

if(p.y>350)
ptemp.code[1]='1';
else
ptemp.code[1]='0';

if(p.x>450)
ptemp.code[2]='1';
else
ptemp.code[2]='0';
if(p.x<150)
ptemp.code[3]='1';
else
ptemp.code[3]='0';

ptemp.x=p.x;
ptemp.y=p.y;

return(ptemp);

};

int Lineclip:: visibility(Coordinate p1,Coordinate p2)


{
int i,flag=0;

for(i=0;i<4;i++)
{
if(p1.code[i]!='0' || (p2.code[i]=='1'))
flag='0';
}

if(flag==0)
return(0);

for(i=0;i<4;i++)
{
if(p1.code[i]==p2.code[i] && (p2.code[i]=='1'))
flag='0';
}

if(flag==0)
return(1);

return(2);
}

Coordinate Lineclip::resetendpt(Coordinate p1,Coordinate p2)


{
Coordinate temp;
int x,y,i;
float m,k;

if(p1.code[3]=='1')
x=150;
if(p1.code[2]=='1')
x=450;
if((p1.code[3]=='1') || (p1.code[2])=='1')
{

m=(float)(p2.y-p1.y)/(p2.x-p1.x);
k=(p1.y+(m*(x-p1.x)));
temp.y=k;
temp.x=x;

for(i=0;i<4;i++)
temp.code[i]=p1.code[i];

if(temp.y<=350 && temp.y>=100)


return (temp);
}

if(p1.code[0]=='1')
y=100;
if(p1.code[1]=='1')
y=350;
if((p1.code[1]=='1') || (p1.code[1]=='1'))
{
m=(float)(p2.y-p1.y)/(p2.x-p1.x);
k=(float)p1.x+(float)(y-p1.y)/m;
temp.x=k;
temp.y=y;

for(i=0;i<4;i++)
temp.code[i]=p1.code[i];

return(temp);

}
else
return(p1);

Input :

X1 , Y1:
100
200

X2, Y2 :
500
100
Output:
Practical

Computer Graphics Assignment 3

Write C++ program to draw the following pattern. Use DDA and Bresenham‘s Line drawing

algorithm. Apply concept of encapsulation.

Code :

#include <iostream>
# include <graphics.h>
# include <stdlib.h>
using namespace std;
class dcircle
{
private: int x0, y0;
public:
dcircle()
{
x0=0;
y0=0;
}
void setoff(int xx, int yy)
{
x0=xx;
y0=yy;
}
void drawc(int x1, int y1, int r)
{
float d;
int x,y;
x=0;
y=r;
d=3-2*r;
do
{
putpixel(x1+x0+x, y0+y-y1, 15);
putpixel(x1+x0+y, y0+x-y1,15);
putpixel(x1+x0+y, y0-x-y1,15);
putpixel(x1+x0+x,y0-y-y1,15);
putpixel(x1+x0-x,y0-y-y1,15);
putpixel(x1+x0-y, y0-x-y1,15);
putpixel(x1+x0-y, y0+x-y1,15);
putpixel(x1+x0-x, y0+y-y1,15);
if (d<=0)
{
d = d+4*x+6;
}
else
{
d=d+4*(x-y)+10;
y=y-1;
}
x=x+1;
}
while(x<y);
}
};

class pt
{
protected: int xco, yco,color;
public:
pt()
{
xco=0,yco=0,color=15;
}
void setco(int x, int y)
{
xco=x;
yco=y;
}
void setcolor(int c)
{
color=c;
}
void draw()
{
putpixel(xco,yco,color);
}
};
class dline:public pt
{
private: int x2, y2;
public:
dline():pt()
{
x2=0;
y2=0;
}
void setline(int x, int y, int xx, int yy)
{
pt::setco(x,y);
x2=xx;
y2=yy;
}
void drawl( int colour)
{
float x,y,dx,dy,length;
int i;
pt::setcolor(colour);
dx= abs(x2-xco);
dy=abs(y2-yco);
if(dx>=dy)
{
length= dx;
}
else
{
length= dy;
}
dx=(x2-xco)/length;
dy=(y2-yco)/length;
x=xco+0.5;
y=yco+0.5;
i=1;
while(i<=length)
{
pt::setco(x,y);
pt::draw();
x=x+dx;
y=y+dy;
i=i+1;
}
pt::setco(x,y);
pt::draw();
}
};
int main()
{
int gd=DETECT, gm;
initgraph(&gd, &gm, NULL);
int x,y,r, x1, x2, y1, y2, xmax, ymax, xmid, ymid, n, i;
dcircle c;
cout<<"\nenter coordinates of centre of circle : ";
cout<<"\n enter the value of x : ";
cin>>x;
cout<<"\nenter the value of y : ";
cin>>y;
cout<<"\nenter the value of radius : ";
cin>>r;
xmax= getmaxx();
ymax=getmaxy();
xmid=xmax/2;
ymid=ymax/2;
setcolor(1);
c.setoff(xmid,ymid);
line(xmid, 0, xmid, ymax);
line(0,ymid,xmax,ymid);
setcolor(15);
c.drawc(x,y,r);
pt p1;
p1.setco(100,100);
p1.setcolor(14);
dline l;
l.setline(x1+xmid, ymid-y1, x2+xmid, ymid-y2);
cout<<"Enter Total Number of lines : ";
cin>>n;
for(i=0;i<n;i++)
{
cout<<"Enter co-ordinates of point x1 : ";
cin>>x1;
cout<<"enter coordinates of point y1 : ";
cin>>y1;
cout<<"Enter co-ordinates of point x2 : ";
cin>>x2;
cout<<"enter coordinates of point y2 : ";
cin>>y2;
l.setline(x1+xmid, ymid-y1, x2+xmid, ymid-y2);
l.drawl(15);
}
cout<<"\nEnter coordinates of centre of circle : ";
cout<<"\n Enter the value of x : ";
cin>>x;
cout<<"\nEnter the value of y : ";
cin>>y;
cout<<"\nEnter the value of radius : ";
cin>>r;
setcolor(5);
c.drawc(x,y,r);
getch();
delay(200);
closegraph();
return 0;
}

Input :

Value Of X : 100
Value Of Y : 70
Value Of R : 30

Next Inputs In Image Given Below.


Output:
Practical

Computer Graphics Assignment 5

Write C++ Program To Generate Fractal Patterns By Using Koch Curves

Code :

#include <iostream>
#include <math.h>
#include <graphics.h>
using namespace std;
class kochCurve
{
public:
void koch(int it,int x1,int y1,int x5,int y5)
{
int x2,y2,x3,y3,x4,y4;
int dx,dy;
if (it==0)
{
line(x1,y1,x5,y5);
}
else
{
delay(10);
dx=(x5-x1)/3;
dy=(y5-y1)/3;
x2=x1+dx;
y2=y1+dy;
x3=(int)(0.5*(x1+x5)+sqrt(3)*(y1-y5)/6);
y3=(int)(0.5*(y1+y5)+sqrt(3)*(x5-x1)/6);
x4=2*dx+x1;
y4=2*dy+y1;
koch(it-1,x1,y1,x2,y2);
koch(it-1,x2,y2,x3,y3);
koch(it-1,x3,y3,x4,y4);
koch(it-1,x4,y4,x5,y5);
}
}
};
int main()
{
kochCurve k;
int it;
cout<<"Enter Number Of Iterations : "<<endl;
cin>>it;
int gd=DETECT,gm;
initgraph(&gd,&gm,NULL);
k.koch(it,150,20,20,280);
k.koch(it,280,280,150,20);
k.koch(it,20,280,280,280);
getch();
closegraph();
return 0;
}

Output:
Practical

Computer Graphics Assignment 4

Write C++ program to draw 2-D object and perform following basic transformation

a) Scaling

b) Translation

c) Rotation

Apply the concept of operator overloading.

Code :

#include<iostream>
#include<graphics.h>
#include<math.h>
using namespace std;
class transform
{
public:
int m,a[20][20],c[20][20];
int i,j,k;
public:

void object();
void accept();
void operator *(float b[20][20])
{
for(int i=0;i<m;i++)
{
for(int j=0;j<m;j++)
{
c[i][j]=0;
for(int k=0;k<m;k++)
{
c[i][j]=c[i][j]+(a[i][k]*b[k][j]);
}
}
}
}
};
void transform::object()
{
int gd,gm;
gd=DETECT;
initgraph(&gd,&gm,NULL);
line(300,0,300,600);
line(0,300,600,300);
for( i=0;i<m-1;i++)
{
line(300+a[i][0],300-a[i][1],300+a[i+1][0],300-a[i+1][1]);
}
line(300+a[0][0],300-a[0][1],300+a[i][0],300-a[i][1]);
for( i=0;i<m-1;i++)
{

line(300+c[i][0],300-c[i][1],300+c[i+1][0],300-c[i+1][1]);
}
line(300+c[0][0],300-c[0][1],300+c[i][0],300-c[i][1]);
int temp;
cout << "Press 1 to continue";
cin >> temp;
closegraph();
}
void transform::accept()
{
cout<<"\n";
cout<<"Enter the Number Of Edges:";
cin>>m;
cout<<"\nEnter The Coordinates :";
for(int i=0;i<m;i++)
{
for(int j=0;j<3;j++)
{
if(j>=2)
a[i][j]=1;
else
cin>>a[i][j];
}
}
}
int main()
{
int ch,tx,ty,sx,sy;
float deg,theta,b[20][20];
transform t;
t.accept();

cout<<"\nEnter your choice";


cout<<"\n1.Translation"
"\n2.Scaling"
"\n3.Rotation";
cin>>ch;
switch(ch)
{
case 1: cout<<"\nTRANSLATION OPERATION\n";
cout<<"Enter value for tx and ty:";
cin>>tx>>ty;
b[0][0]=b[2][2]=b[1][1]=1;
b[0][1]=b[0][2]=b[1][0]=b[1][2]=0;
b[2][0]=tx;
b[2][1]=ty;
t * b;

t.object();
break;
case 2: cout<<"\nSCALING OPERATION\n";
cout<<"Enter value for sx,sy:";
cin>>sx>>sy;
b[0][0]=sx;
b[1][1]=sy;
b[0][1]=b[0][2]=b[1][0]=b[1][2]=0;
b[2][0]=b[2][1]=0;
b[2][2] = 1;
t * b;
t.object();
break;
case 3: cout<<"\nROTATION OPERATION\n";
cout<<"Enter value for angle:";
cin>>deg;
theta=deg*(3.14/100);
b[0][0]=b[1][1]=cos(theta);
b[0][1]=sin(theta);
b[1][0]=sin(-theta);
b[0][2]=b[1][2]=b[2][0]=b[2][1]=0;
b[2][2]=1;
t * b;
t.object();
break;
default:
cout<<"\nInvalid choice";

getch();

return 0;
}

Input :

Provided In Image Given Below

Output :
For Tranlation :
For Scaling :

For Rotation :

You might also like