Math as a Language for Students
Math as a Language for Students
MATHIS ALANGUAGE
  1 Somanysymbols
      Whyarethere somanysymbolsinmath
       Take 2 3 5 Howdowereadthis twoplusthreeisequalto five
       Nowimagine writingthis a 100times Writinginwordstakesso muchtimeandeffort
Ever difficultwords
                            9 I
         English hungry vs           antepenultimate
Math us fix
   Youhavedonelotsandlotsof                 butnotenoughof             or
                          EQUALITY
              LEARN
  Fgm
        meansequal          whatis writtenontheleftis     equf.iniisinti iifijiived
        If twoobjects wereequal         doingthesame operation to both objectskeepthingsequal
                                                     understandingthisrequireslogic does
                                                                                       thatmakesense
Example Imagine aboxofgrapes               Toweighthegrapes we useoldfashionedscale
   edited
               ighgrapes
                                    go.it
                                              aierthanlkg                      000h.It.sk               sayssame.fi
                                                                                                      go.ofcoursei
 go.la                                                                    go
If we writetheabovesituation usingthelanguagecalled Iinathematics
           x      0                                     1                        2 3                         22 3 2
   If                             then
                                           ff                                       wedidn'tlearnthis
        fixingz                                                       DON'Tworry
                      glory                     ffcx.mg
                      fixing2     gloryZ
     whatiswritten     theleft     what writtenontheright
            of
           opteration
                           ix
                              g              offguyz
                                                    sameoperation
Example Let's
                  say x ytz Then xt3 ytzt3
                                                                                    addition
                                                 x Z
                                                            y   z Z                 subtraction
                                                                      y
                                                 4x         4   ytz       4g42       multiplication
X Ly Z 1212 division
Fc set Cytz FZ
                                                                     needtochoose afont
 Imagine
           youareusingphotoshopillustratorto design a posterand
            selectalltextsandthenchangethefont            butyoulikethefirstonebetter
            sowe select        UNDO or     If
                               firstfont                      font
                                                         second
objectsituation changedobjectsituation
                                                                  undo
                                                                      maynotbe availableformanyoperations
 Inmaththisis a        CENTRAL concept
                                           manyoperations actionscomewith undo or
inverseoperations actions
2 3 addition x 3 subtraction
É 2x multiplication division
                 x      exponentiation          I
                 4                              log X
               sin x                            sin se
Fromthislistweseethat
24 6 43 608 651
                                                 whatpositivenumbersquared is 25
                              25
16 4raisedtowhatpoweris 16
      e1   If 2 6        4 find x
                        2 6 4                                              2 6        4
                6                           6              x2
                    2x    4 6 10                                       1 3    164             2
                                                                                                  3
                2
                    x    12110     52                          3       x     2 3          5
     e2    If 2 6       4 find4k
                                            2 6       4
                                   69                              6
                                                4 6       10
                                   1                                   2
                                        42 21 10           20
    a3     If 3 4 7 find
                                                3 4 7
                                   317                         log
                                            x 4 10937
                                        4                          4
                                                log7 4
Someequationsarenotso straightforward to seethe
                                              steps
    ex4 I asitbutc o find x
19
                   N
                            N
                         NJ I            2Nx N
                   a
                            it      EEI
     Soweneedtomake it bax               looklike         it 2Nx N
     Compare   and     toget                          2N
                                         my
                                                  N
                                              IN E
    Wehavealltheingredientsnow
                         ax     bxtc      0
         af                                                     I
                       xta.gg
                         52         8     0
                                x    x                         dg
               xtzaj sitfxtfa.fm                               14    2
                        a
                                                               I
        Eat                          x        b       4         1 Ea
                                                  2
 Atthispoint youmighthavequestions
      howdoI come        withthis
                   up
           AnsYoudon'thaveto        It istheteacher'sjob
      howdo I rememberthis
                                                                                    getfriedpotato
       CARROTS
                              iif
                             itff.it                            iii iiiis
                                                  When I
                                                           putcarrot intheFryer I getfriedcarrot
                    f
            iig
                                                                      friedcarrot
             qg
                                                       Fryercarrot
                                                  When I
                                                           putfish intheFryer I getfriedfish
                                                       Fryerfish    friedfish
  FRYER hasaninput and an output FUNCTION almost
 Q Can I putwaterin
                                                    youcan'tputinthefryer
                              No Thereare somethings
        Allthepossiblethingsthefryercanmake RANGE 19
 Q Can I getanythingotherthanfriedpotatowhen I putpotatointhefryer NO
        fryerpotato friedpotato
                          always
          anelementintheDomain is relatedto
        onlyoneelementintheRANGE
 Q Can Igetfriedpotato if I putin somethingelse YES
         geritroenpotato fried
morethanoneelementinthepoman canbe
           relatedtothesameelementintheRANGE
                                                              fffff
                                                                            f   ftp.t
Let'sMIXFIRST    SECONDRULE
                          OFLOGICTO FUNCTIONS
   Rute    Equlit If       potato              fryerpotato
                                    Egg
                 fryer d
                              fryers fryerpotato friedpotato
     Rule 2             inverse     Canweundofunctions
potato
     Whatdowe
                    putinthefryerto get friedpotato             fryer     friedpotato
        Ans potato frozenpotato                                 fryer friedpotato
     Wecanundofunctions butthisinverseoperation isNOT a function
MATHEMATICALFUNCTIONS
1 Characteristics
        hasinputandoutput
         DOMAIN      allpossibleinputs
         RANGE allpossibleoutputs                                                       atdefinition offunction
twoinput oneoutput
2 Nomenclature
                f   A       tanh      f   sncu.ms du
3 Logicandfunctions
      Reequality                       54 212
                                  onepossibleoutpnffffa.se
                                                                        oneinput
                                     for
            NOTEthisruleispossiblebecauseofthedefinition offunctions
   Ruletiverse                          dz
                                                    maynotbe a
                                              f                     function
                                  fan fu
   Example   Forfew     x    finda suchthat f      25         x     5
             So fundo25       5    fundo not afunction
             Let'scheck
                                    3
                                              IS          2
                                                  Icy 3
               so forany          thereis
                                         onlyone x suchthat fix
                         y                                                   y
               so forany          thereis
                                         onlyone x suchthat funding            x
                         y
              fundo
                      is a function
                 Inthiscase fund iscalledtheinversefunction of f f21                4 andwrite f
4 Graph of a function
      Wecanvisualizeanyfunction using a graph
          Ex for 2 3
               glad     FE
                has x2 2
         Q Whyis        thegraph of f
            Whyis   A thegraph of g
            Whyis        thegraph of h
    ofthegraphsof f and
                          g
         a b solutionto f   fca b                so   ab    is onthegraphof f
          carbs solutionto
                               9                            s onthegraphof 9
                 mu t     mu
                                    9,9
                                   cab
    Agraphof a function cannotintersect a verticallinemorethanonce
          a verticalline collectionof allpointswhose x coordinateisthesamenumber C
equationof a verticalline x c
            y f    x     In
     If cabs is onthegraph
       for outputforf
    input                     off              ftp.fffihesraphoft
horizontallinetest
        thegraph
Analyzing
                                          b
Whatisthegeneral shape
                                                                       is zero
                                             axis
        the
Wheredoes
               graphintersectthe y
                              findthepoint xoyo onthegraph         off aid       axis
                               findfco yo
            the
    Wheredoes
                   graph intersectthe                 splintswhose coordinate
                                                                  se          is zero
                                                            equation   y    0
   yintercept yo fco       a    b    É      c
   Scintercept      ax'tbx      c        QUADRATICEQUATION
   yintercept yo fco       a    b    É      c
   Scintercept      ax'tbx      c        QUADRATICEQUATION
             g intercept set
             c intercept
                                                  vaTIoN
                                                                                  fiiij
                                                                           trigonometric   7
                                                                  thispartismissing
nderstanding WHATFUNCTIONS ARE iscrucialbecause incalculus we areinterestedinthe thstep
       Pattern            function
                             r
                                     for              f
         shape
          yintercept yo                                   jiffy
          Scintercept
                          IÉTION
                          fix                                      ME
                                                     exponential
                                                     logarithmic   EI
                                                     trigonometric      7
         tangentlineTIE DIFFERENTIATION     IE
LOPEISVELOCITY
WewillnowstarttolearnHowtofindthetangentlineandWHYwewanttofindthetangentline
Example walkingdowntheroad                tmaf
                                             a
 walkingat 0.5kmh
0.5 y x
2 1 2 slopeoflinearfunction
            3       y 34
 so wehave SLOPE VELOCITY
           distance
       g
                                                           Whenwerewemovingthefastest
                                                                 b
                                                           Howdoweknowthat
                                                                thegraphisthe steepest
                      a     b     c           sitime
                                                                                sheisthehighest
Weareusingourlogicandintuitiontoanswerthisproblem
   butwehave nomathematicalreason
                                problem wecanonlycalculateslopesforlines
IDEA usetangentlines
                                                  Slopeofthetangentline
                                                       close
                                                  really       totheslopeofthecurve.IM
goodapfroximation ofthevelocity
wecancalulatethis if wecanfindthetangentline
FINDINGTHETANGENTLINE
                   yourpositionevery 1
        checks                           second
sowecanfindyourspeed distangffeled
                                                                       d
                      t
                                              If wewantto updateourspeedmoreoften
                                                  checkmoreoften 0.5sec 0.1sec0.01sec
              to
                                                  thesmallerthetimeinterval thebetter
et'sapplythisideato our problem         Pee
Fiat time b a
As bgetscloserto a
             iffff.fr                 b b
                                                          linegetsclosertothetangentline
   Thismeans       as   bgetscloserto a
        theslopeofthelinegetscloserto theslopeofthetangentline
    Q Howclosecan b getto a b a             smaller is better
Whynot b a or b a o
            problem slope
                                  ff        so the denominator becomes
    Q Canwesolvethisproblem
            weneedto learn LIMITS
IMITS
 Suppose   I draw a graphbuthide a smallportionof it
                                  f
                                               Canyouguesstheequationoffish
                                                       it lookslike aline withslope7 and   yintercept   2
                                                  Somaybe y fix      oct2
Let'suncover a littlemore
                                 f
so it seems wewereright
hegraphwas
                                               Answer       fix
                                               Originalguess      gas oct2
12 undefined
                                                             2 2 4
                                                       92
Butwenotice fix
     Let'sunderstandhowcancelingworksin afraction
            Example   9 32
               Wewillstartfrom andmakeit
                             32.1     sinceanynonzeronumbermultiplied
                                                                       by1 is itself
                                 33 sinceanynonzeronumberdividedbyitself is 1
96
9.1
                                      3
               Or we canalsosee                   p
                                      at      b
                                      6 aa Gb
yggfgq.gg
                                                              reciprocal
             Inbothexplanations we are mdyyingbythe                        ofthenumberwe arecanceling
noingback                                             or dividingbythenumber
             fix                 whenwecancel
                                                  by       2 wearedividingbyso 2                  Ah
                                      Q Whatif        x 2 Thenwe are dividingby0
 EA      0 999       0.9   1
 welearnthisinschools but are wesurethisis true                     0.999 isnever1 butequalto 1
       0.999     is a waytosay 1      withoutactuallysayingit
1 0.999 2 0
ACKTOTANGENTLINES
                             fila
                                     ftp.fff
xy fixs x         x
          3y
         fcxs mxtn sc
          ay
      fixs x2            2
IT   x          fix
          functionwith
                                        tangentlinetothegraphof f at
                               slopeofthe
schangetheidea a littlebit
Ya Ya
slopeofthetangentlineto f at sea
               time                                                  if fiif fi
                                                                             fu
                                                                       Lp
RIVATIVES
  fish   fastest
day wewillcalculate derivatives andhopetofigureoutsomerules
  y f ld    x
                        REVIEW
y fa x
y fsd JOSEPH
                            You
   y gas
  fc   fqtatdf.it                             f a _fqt.at    zf
                                                         t
                                                             tryst
                I       1                            dayide
                                                   Hmo 2x da      2x
him ftp.hatdfjh
                    ᵗ
                        i
       iiiiiiiiiiiiiii.it
                                     i            iiiiiiiiii.fi
                                                   ftp
                                                               iii
                                                          iiiiiiii
                                                             dffd fjng9atdI9I
         ficsi false                               fix gca
           1 2x
ficn    fjy.IE            e            s   ftp.f tdffe
       Lp                                   e
       Iii                                 ftp.IL an
       L It                                       Cities
             it   tfiiifif                    fffi
                                           liff.fi
       L
              t
                          t.ci
                          ftp.fxc.it
                                            Iii      ffife iy
                                                       t.ci     a
       L
       ficas                                fellas         2x
 gatf.mg          dsf9
       Lp
       ftp        f d.s
L I
       ff.fi
       ffffffff
       L II It
        fix                   12
                                      HOMEWORK 1
1. f (x) = 3x 8
2. f (x) = x3   3x
            1
3. f (x) =
          2x + 1
          p
4. f (x) = x3 3x
2                                                HOMEWORK 1
Answers.
1. f (x) = 3x      8
                                              f (x + dx) f (x)
                               f 0 (x) = lim
                                          dx!0        dx
                                              (3(x + dx) 8) (3x 8)
                                       = lim
                                         dx!0              dx
                                              3x + 3 dx 8 3x + 8
                                       = lim
                                         dx!0            dx
                                              3 dx
                                       = lim
                                         dx!0 dx
                                       = lim 3
                                          dx!0
                                       =3
2. f (x) = x3     3x
                              f (x + dx)         f (x)
                f 0 (x) = lim
                         dx!0         dx
                              ((x + dx)3   3(x + dx)) (x3 3x)
                       = lim
                         dx!0                  dx
                              x3 + 3x2 dx + 3x dx2 + dx3 3x 3 dx           x3 + 3x
                       = lim
                         dx!0                        dx
                                 2           2     3
                              3x dx + 3x dx + dx      3 dx
                       = lim
                         dx!0              dx
                              dx(3x + 3x dx + dx2 3)
                                    2
                       = lim
                         dx!0             dx
                       = lim (3x + 3x dx + dx2 3)
                                 2
                            dx!0
                              2
                       = 3x        3
               1
3. f (x) =                                                                   .
                                                                 =
             2x + 1
                        0           f (x + dx)           f (x)
                       f (x) = lim
                               dx!0         dx
                                              1            1
                                          2(x+dx)+1      2x+1
                              = lim
                                             ✓ dx
                                   dx!0
                                                                    ◆
                                      1           1            1
                              = lim
                                dx!0 dx
                                        ⇣
                                           2(x + dx) + 1 2x + 1        =
                                                                                 .
                                                                                         i
                                                                             ⌘- d ( 2(xtdx)
                                                                                     *
                                     1        1      2x+1    1     2(x+dx)+1
                              = lim dx 2(x+dx)+1 · 2x+1 2x+1 · 2(x+dx)+1
                                dx!0
                                     1
                                        ⇣
                                                2x+1            2(x+dx)+1
                                                                             a
                                                                                         x
                                                                              ⌘ * (2cxtdx2        ,
                                                                                                  *
                                      1    2x + 1 2x 2 dx 1
                              = lim
                                dx!0 dx    (2(x + dx) + 1)(2x + 1)
                                         ✓                          ◆
                                      1               2 dx
                              = lim
                                dx!0 dx    (2(x + dx) + 1)(2x + 1)
                                                HOMEWORK 1                                           3
                                                2
                             = lim
                               dx!0 (2(x + dx) + 1)(2x + 1)
                                     2
                             =
                                 (2x + 1)2
             p
4. f (x) =       x3   3x
                               f (x + dx) f (x)
                  f 0 (x) = lim
                          dx!0
                               p        dx
                                                            p
                                   (x + dx)3 3(x + dx)         x3 3x
                        = lim
                          dx!0
                               p                 dx        p
                                                 p                           p
                                        3
                                  (x+dx) 3(x+dx)   x3 3x     (x+dx)3 3(x+dx)+ x3                3x
                        = lim              dx
                                                         · p       3
                                                                             p
                                                                               3
                           dx!0                                          (x+dx)   3(x+dx)+ x    3x
                                  ((x+dx)3   3(x+dx))   (x3   3x)                  1
                        = lim                   dx
                                                                    ·p                   p
                           dx!0                                          (x+dx)3 3(x+dx)+ x3 3x
                              2                                            1
                        = (3x
                           ,
                                      3) · lim p                                     p
                                         dx!0      (x +   dx)3       3(x + dx) +         x3    3x
                                  2
                          3x          3
                        = p
                         2 x3         3x
OREDERIVATIVES
focus x
f.cas FC
 f.cn I
 god F
fiw f.mg        fjfe            f              fI
                                      ftp.facxtd
L L
             iiiiiii
                  sina.is
         3i                            ms               Edit
                                      Lp               fioEdi
                                      ficx
               feI
  f c _ftp.fecxtd               ghafyggutdsy.is
         f.i EIF
                                    iiiiiiiii.ie
                                                                      i
    iiiiiiiiiii
                       iiiii           O           t         fi tfn
         finsE fi0 f        a        fiio     twafFo          atfn
         fiw.at 3a Za                 this             Iff
UNPROBLEM
                                                    You                   TH
                                                                     yd
                                           r
                L3       far 13 a      F
                Faz           13 a
                                           g Faz
                                3a a
                                           14mar
                1 as a 3 a
                     1 3a
                                           1 92
                     a
      derivative  ofa
 1,4
 E    2x
  3   3   2
pattern
POWERRULE INTEGERS
Xn noont
                              xn
              d    ftp.t
                                        ÉkÉÉ
                              ÉÉ
                         ÉfÉf
                  jIIInIfff
                          E        xnkdxk w
                   ftp
                              i ii      cnn.m.LY
                         11
                   non1
youarenotusedto
                    summation not        i thenyoucanwritethe       summationout
                              xn
            d     ftp.t                   IuseBinomialtheorem
                                  den
                     EmEI
                       andi               di                        xnkdock an
                  ftp 8                        1
                                                   xjd.it
                              x    di    I an2dgt           xnkdock
                   ftp
                                    2          t      i sentdocke
                  fig                    Ida
                         9an1 I xn2dec                xnkdocke
                   nona
combinedwiththe sumrule hasfastgen      hem fin gca
                   thederivativeofany polynomialfunctions
     wecaneasilyfind
    fix 24 3 2        2
    f   x   24       32   2
                3
            4       3.2   0
            4 3 bx
                                   HOMEWORK 2
Use various rules of derivatives to calculate the derivatives of the following functions.
1. f (x) = 3x 8
2. f (x) = x3 3x
3. f (x) = x sin x
Answers.
1. f (x) = 3x     8                                                                                                                             '
                                                                                                              '
                                                        0
                                                    f (x) = (3x                   8)   0                    f x= ( 34- 8 )
                                                                                                                                                     '
                                                                              0
                                                                  = (3x)               (8)0
                                                                  = 3 · (x)0 (8)0
                                                                                                                      =
                                                                                                                           (
                                                                                                                           3 π7         -
                                                                                                                                               (8)
                                                                                                                                                                  .
2. f (x) = x3    3x
                                                    f 0 (x) = (x3                 3x)0
                                                                                                                           :
                                                                  = (x3 )0            (3x)0                           3x           3
                                                                  = 3x2           3 · (x)0
                                                                  = 3x2           3·1
                                                                          2
                                                                  = 3x            3
                                                                                                                     , sinx +                       x ( sinx)
                                                        = (x)0 · sin x + x · (sin x)0                         λ   x)
                                                                                                                                                         .
                                                        = 1 · sin x + x · cos x
                                                                                                                                            +
                                                        = sin x + x · cos x                                   =        .
                                                                                                                               sinx                 x cosx   .
                                                                                                                                                                 cosx
                                                                                                                                   sinxt            x
                                                                                                                                                         .
                                = (x   2
                                               2x             0
                                                            4) sin x + (x          2
                                                                                            2x      4)(sin x)     0        ( Cosx )             =    -
                                                                                                                                                             sinx
                 : 24          4) Cosx
            (x
                           -
'
                       (   sinx)
                                               =
                                                    cosx
                       Co a)                                sinx
                       $                    =       -
DERIVATIVERULES
siderates
         uniting
    c.fm      c fleas                                                 Fh
    fix gas fix cguns fin cgon fin g's
    xn n xn foranyinteger
   fish 3 4          34 x2
    fa     34 x 2
                            10
         34          x2
                            y
         31 4 t x 2
         3 43         2 3
         12 3
DIFFERENT NAMESFORDERIVATIVES
Theideaforfindingtheslopeofthetangentline
                                            f       tangentline
                                                                  y fca   x a   fca
                Ya
                                                          a       b
                                     at         3
       Choose    b closeto a
       Findtheslopeofthelinebetweentwopoints                afca and b f b
Letbgoreallycloseto a
Whatistheslopemeasuring
slope
          whatischangingprice
                                  y
          whatwearemeasuringpriceagainst numberofapples            x
                 418
                  17         3    s
                                       3perapple
                 48
                  17         54   5
                                           2perapple
                                              f
                                                      tangentline
                                                                       y fca   x a   fca
          Ya
                       t               a          3
                                                          dec
                                                                 Ta
                                                                           dy
                                                                          dx
                                                               small changein x
                                                            very
                                                         dy verysmall changein y
             f   x   slopeofthe
                              tangentline             rateofchange         If 1 64
THREEDIFFERENTNAMESOFTHEDERIVATIVEOF
                                                      y fun
        fix theslopeofthetangentlineto fix
        If   measuring thechangein
                                      y intermsof changein x
        If x    measuring thechangein f intermsof changein x
          Ca theslopeofthetangentlineto fix                                       Josephsfavor.it
                                           f
                                                  tangentline
                                                                  y fca    x a   fca
        Ya
                                                                      finds
                                                                I
                                                            a       atdx
                                                      dsc      small changein x
                                                            very
                                                       If      small changein f
                                                            very
fix x f x 2x df 2xdo
                          f   areaof
                                   thesquare                 df
                         df changein area                                                       ssmall wecanignore
       the
   Using         idea sin         diff
  Whatis sin0         It isthe height ofthepointontheunitcirclemadebytheangle 0
                                             1 unitcircle
sino
10 1
   so d fˢ     measuresthe
                         changein height     ofthepoint interms ofthechangeintheangle
                        1 unitcircle
                           1
                           Fo
                                 is
                                       p
                                                   doing
                                                            7
                                                                 do
                                                                oct
                                                                                        "   "
                                                  disino
                                                           8 do
                                                           7
                         sinx cosse
                                                   cos0
                                                                fˢ
      thedefinition
  Using
                        1 unitcircle                       si         htano        f    c
                                                   10
                                                                                ton θ
                  sino
                                                       sino 0 tano
                           10          1
                                                        isfofff.si o            costo
                                                       1251          coso
                                                   tf.iq I          ftp.sifsfigcoso         ftp
                                                                 figsif     1     11
  I          I   c
fine
           fistdoÉt
           fine            fi
           fine
  d      m.si sin
                 iai
                               ˢ
                                       i
            sinx      fi                   figcos x ftp.sina
         sinx.o cosx 1
        cosx
Howaboutcosx
 has fix g x
   has      4td h
                  day finglas
       fingfatdagut
        fjyofextdasgcxtdso         fasgcxtdztfcxsgcxtdas flng.us
        Yg
               feudal
                           f       gotdoes fix gated gun
        ftp.fextdjfw.fiogextda                     finefix   ftp9cxtd 9
        f ingas foisg a
         PRODUCTRULE
        +
2
                                               HOMEWORK 3
Use various rules of derivatives to calculate the derivatives of the following functions.
1. f (x) = sin(x3 )
                      σ
2. f (x) = (tan x)4
          sin x                                -                    :
                                                                    * - ' sinx
                                                                      *
                                                                                                             - 2x 3inx
3. f (x) = 2 where x 6= 0
                                                                                               xx
           x
                                                                                        =            .   x
                                                                                                             2
                                                                          x
                                                        (   ←
                                           )
4. f (x) = (sin(cos x))2
                      t                                                                     sx
                                                                                    =               4- .
- 2
                                                                                                                 gin☆
                                                                                            ^
CosU .
                                                                                                             3
                                  2                     3
                           3x         .
                                           (03 x.
                                                                              cosxca           ,
                                                                                                   f( x) = n       uR
                                           2                3
                                                                              sincios   x] )   = V f ( x)         √
= 3x ( oEx ,
                                                         4
    2     .
              tanx    =
                          u   .
                                      f ( x)   =
                                                        u
                                                                .
                              =
                              eKu
                                           "
"
                                                                          3
                              .           sectx         ×
                                                            4 tomx)
                                                                                      Hu
                          f ( x)      =
                                           sin                 u   .        ∞
                  )
        u    =
                 x
                      ,
                                                                                                  =       cos u      .
                                                                                                                                 2
                                          2
                                                                   HOMEWORK 3                                        :       3x      .
                                                                                                                                         cosu
                              =   3x
                                                                                                                         @
                                                                                                                         ∴
                                               .
                                                                                                                             =
                                                                                                                                 x
Use various rules of derivatives to calculate the derivatives of the following functions.
1. f (x) = sin(x3 )
□
4. f (x) = (sin(cos x))2
                                                                                                  2
                          u
                              =
                                  ( os x               .
                                                                   f   ( x)   =
                                                                                  sinu)
                      [   V = sin u            .
                                                                   fcx)       =
                                                                                  √
= ! -
                                      cose
                                          9 in ,
                                                           .
                                                                   ↓
                                   -
                                               2V              .
                                                                   cosu
                                                                                  o
                                                                                      -   sinx
                                   =      2        .
                                                           sinu         .
                                                                            cosu          -
                                                                                                  Sinx
                                  =
                                      2    .
                                                       sin         .
                                                                       cosxo cos cosx
                                                                                              .            -
                                                                                                               sinx
                              =       -
                                           2 sin losx                   .                 .
                                                                                              ( os    .
                                                                                                          cosx
                                                                                                                 .
                                                                                                                         sinx
2                                               HOMEWORK 3
Answers.
1. f (x) = sin(x3 )
                           du
      Let u = x3 so that   dx
                                = 3x2 . Then we have
                                                                                    3
                                            0     d                         U= x        :
                                         f (x) =     (sin(x3 ))
                                                 dx
                                                  d
                                               =
                                                 dx
                                                     (sin u)
                                                                                    3x
                                                                                    =       ?
                                                         du
                                               = cos u ·
                                                         dx
                                               = 3x cos(x3 ).
                                                    2
                                                                         fcxl   =   sinu        .
                                                   d
                                        f 0 (x) =     ((tan x)4 )
                                                  dx
                                                   d 4
                                                =     (u )
                                                  dx
                                                         du
                                                = 4u3 ·
                                                         dx
                                                = 4 tan3 x sec2 x
           sin x
3. f (x) = 2 where x 6= 0.
            x
      Use the quotient rule:
                                          (sin x)0 (x2 ) (sin x)(x2 )0
                                f 0 (x) =
                                                      (x2 )2
                                          cos x(x2 ) sin x(2x)
                                        =
                                                     x4
                                          x cos x 2 sin x
                                        =
                                                  x3
4. f (x) = (sin(cos x))2
      Use chain rule multiple times: Let
                                        u = cos x
                                        v = sin(cos x) = sin u.
    Then we have
                   du
                      = sin x,
                   dx
                   dv    d                   du
                      =    (sin u) = cos u ·    =             cos(cos x) · sin x,
                   dx   dx                   dx
    Therefore,
                                        d
                           f 0 (x) =        (sin(cos x))2
                                       dx
                                        d 2
                                     =    (v )
                                       dx
                                            dv
                                     = 2v ·
                                            dx
                                     = 2 sin(cos x) · cos(cos x) · sin x.
eviewn
  Differentiation to
                    gettheslopeofthetangentline
           bestapproximationofrateofchange as x changes a littlebithowmuch is f changing
                                                                         4     fix
  Approximation   ofchangein f          df fix doc
  Rulesofdifferentiation sofar                                     siderules
sina cos X
                                ustfasgi
cnn.SI
                       i
                                2km
       Josephiswalking at
                                       h EverytimeJosephwalks1km heearns 5
         I           Josephwalked
             m moneyJosephearnedbywalking
     wdependson            mdepends on w
dw 2dt dm5dw dm 10 dt
12 few 5 10
If 10 52 fE
 mother
      example     Forfins x2           glow sinx   let him g fin g x2 sin x2
 Whatis him
                  If   as x changes a littlebithowmuch is hchanging
     ne
                                   d
    line
                       f
                                                          t line
                                                                         44
    line                                                   line                  ftp.nqcoudu
                                 gf
 dlsinus    cosudu.ua                du
 2xdocdcsincx3
            coscx32xdsc
                                                                     )
       sins          42                             a(
                                                           9   inx            x
                   24                                                =   2u
                                                                              dU
                                                                              Ix
                   2u
                   2sinxcosx
      sin3x          sinu                 u 3x
                                           3
               cosuff
                   cos u
cos3 3
3cos3x
43 2 1 44 a 43 2 1
                    443 4                 8,4 12 2 2
                    4143 2 17    12 2 2
Goalfind Ccosx
   sincatbs
    sinacosbtcosasinbsincxtIS
               sinxficosx.si                cosse
                        sinus                          1
                     COsu
                     cos     E
                     cosxcosE sinxs.in
                        sink
f               sinx                             u sinx
                u1                              dy cosse
           14 2
t.tt
               un                                 u   fu
          1.4 2 9                                III'd
                fix
          f
f          fun.fm
               fin   ge for gig
      fix             for 92
                     t
          fi
                 gIs9
                                       )
QUOTIENTRULE             (
                                  gi9
                                       3 432
     II
                                      3 1
                         7        1
    Han
                                            r
                                  Ej
                 os
                             II
                seek
                                           QUIZ 3
For the following questions, you may use any derivative rules we found in class, unless
stated otherwise in the question.
                  f g                                      1     nx 1      net
        fig
         f      cf                                        sins cosx
       fg f'g fg                     rule
                               product                    Cosa      sink
RACTICE
1 fix x sinx
 2    fix Fccos a
  3    for
  4 for       I
  5 fois tan 1        2
answer
2xcos I 2 3sinx
              Iiiiii
                         Ctann'c1tc
   4 CI                                 Is.Igxcetcosas
                         seixctt             sin
                                    1
                             4,95
    s.at D                   c  anuiu
                             seczu.fr
                             sec
                                                         ji
                                   e
hainruleisveryusefulforfindingnew derivativerules
POWERRULE
          y      x                                                  y fca      x
                                                                                    Laa
          eye            c                                         ya xb
      291         1                                               yoga          d
                          113
                                                                  ayatfy bxb1
                 I.sc                                                          g
                                                                                   xbeyea
                              findfy fin                                      baxbicxkya
   y fu
                fI x                                                          baxbesct.ua
        y                    113
          y      x                                                            baxb.it cras
          Cy3            x                                                   basket b
                                                                                       1
      35 1 1                                                                  tax
          It                                                  x      x          if n        xn non
                 Is                                                     rulefor
                                                         Nowwecanusepower                    neQrationalnumbers
                     x
 1   fix
 2   fix cost
 3   fin
  4 few        xI
                    In
                        IF        Csina
     3
         CIT                        LET
                    2xMAIL.EE                            u x ty   If   32
                    2 23           EU
                       7
                    2 23             I
                       1
                    2 23
                       1            att 3 2
                         2x         235
                         4K          34
                                    34
                              I
                         I
                         S
  4 1 55            Tu                         U xtE
                                                           11     E    1   15   1t
In fi
2 7