Binomial Theorm
Binomial Theorm
06
Binomial Theorem
Learning Part
Session 1
● Binomial Theorem for Positive Integral Index
● Pascal’s Triangle
Session 2
● General Term
● Middle Terms
● Greatest Term
● Trinomial Expansion
Session 3
● Two Important Theorems
● Divisibility Problems
Session 4
● Use of Complex Numbers in Binomial Theorem
● Multinomial Theorem
● Use of Differentiation
● Use of Integration
● When Each Term is Summation Contains the Product of Two Binomial Coefficients or Square of Binomial
Coefficients
● Binomial Inside Binomial
Practice Part
● JEE Type Examples
● Chapter Exercises
1 = n Cn an + n Cn - 1 an - 1 x + n Cn - 2 an - 2 x + ... + n C0 x n
2
( x 2 + 1) 1 / 3 - , etc., are called binomial
( x 3 + 1) Thus, replacing r by n - r , we are infact writing the binomial
expansion in reverse order.
expressions.
( x + ( x 2 - 1 )) 6 + ( x - ( x 2 - 1 ) 6 . n
1
2
y Example 5. If an = å n
Cr
, find the
Sol. Let (x - 1) = a r =0
n
Then, ( x + a )6 + ( x - a )6 = 2 { 6 C 0 x 6 - 0 a 0 + 6C 2 x 6 - 2 a 2 r
value of å n
Cr
×
+ 6C 4 x 6 - 4 a 4 + 6C 6 x 6 - 6 a 6 } r =0
n
= 2 { x 6 + 15x 4a 2 + 15x 2a 4 + a 6 } r
[from point (2)] Sol. Let P = å n
Cr
…(i)
6 4 2 2 2 2 2 3 r =0
= 2 { x + 15x ( x - 1) + 15x ( x - 1) + ( x - 1) }
[Qa = x 2 - 1 ] Replacing r by (n - r ) in Eq. (i), we get
n
(n - r ) n
(n - r )
= 2(32x 6 - 48x 4 + 18x 2
- 1) P= å n
Cn - r
= å n
Cr
[Q n C r = n C n - r ] …(ii)
r =0 r =0
y Example 3. In the expansion of ( x + a )n , if sum of On adding Eqs. (i) and (ii), we get
odd terms is P and sum of even terms is Q, prove that n
n n
1
(i) P 2 - Q 2 = ( x 2 - a 2 )n
2P = å n
Cr
=n å n
Cr
= nan [given]
r =0 r =0
(ii) 4 PQ = ( x + a ) 2n - ( x - a ) 2n n
\ P= an
Sol. Q ( x + a )n = n C 0 x n - 0a 0 + n C 1 x n - 1 a1 + n C 2 x n - 2 a 2 2
n
+ n C 3 x n - 3 a 3 + ... + ... + n C n x n - n an r n
Hence, å n
Cr
=
2
an
= (n C 0 x n + n C 2 x n - 2 a 2 +n C 4 x n - 4 a 4 + ...) r =0
+ (n C 1 x n - 1 a1 + n C 3 x n - 3 a 3 + n C 5 x n - 5 a 5 + ...)
440 Textbook of Algebra
1 3 3 1
(ii) Since, nC r = nC n - r , we have
1 (1 + 3 ) (3 + 3 ) (3 + 1) 1
n
C 0 = n Cn = 1 Then, 1 4 6 4 1
n n
C1 = Cn - 1 = n are the binomial coefficients in the expansion of ( x + a ) 4 .
n n (n - 1)
C2 = n Cn - 2 =
and so on. y Example 6. Find the number of dissimilar terms
2!
in the expansion of (1 - 3x + 3x 2 - x 3 ) 33 .
(iii) In any term, the suffix of C is equal to the index of a
and the index of x = n - (suffix of C ). Sol. (1 - 3x + 3x 2 - x 3 )33 = [(1 - x )3 ]33 = (1 - x )99
(iv) In each term, sum of the indices of x and a is equal to n. Therefore, number of dissimilar terms in the expansion of
(1 - 3x + 3x 2 - x 3 )3 is 100.
Properties of Binomial Coefficient n
r × nC r
n ænö
(i) C r can also be represented by C (n, r ) or ç ÷ . y Example 7. Find the value of å nC .
èr ø r =1 r -1
n
(ii) n C x = nC y , then either x = y or n = x + y . Cr n -r +1
Sol. Q n
=
Cr -1 r
n!
So, n C r = n C n - r = n
r ! (n - r ) ! r × Cr
\ n
= ( n - r + 1)
n +1 Cr
(iii) n C r + nC r - 1 = Cr -1
n
r × nC r n n n
å nC å ( n - r + 1) = å ( n + 1) - å r
n
Cr n -r +1 \ =
(iv) = r =1 r -1 r =1 r =1 r =1
n r
C r -1
n
(v) n C r =
n
× n -1
Cr - 1
= ( n + 1) å1 - (1 + 2 + 3 + ... + n )
r =1
r
n ( n + 1) n ( n + 1)
= ( n + 1) × n - =
2 2
Pascal’s Triangle y Example 8. Let C r stands for n C r , prove that
Coefficients of binomial expansion can also be easily
determined by Pascal’s triangle. (C 0 + C 1 ) (C 1 + C 2 ) (C 2 + C 3 ) ...(C n -1 + C n )
(x + a)0 1 (n + 1)n
= (C 0C 1C 2 ... C n -1 ).
(x + a)1 1 1 n!
(x + a)2 1 2 1 Sol. LHS = (C 0 + C 1 ) (C 1 + C 2 ) (C 2 + C 3 ) ... (C n - 1 + C n )
n n
(x + a)3 3 3
Õ(C r - 1 + C r ) = Õ(n + 1C r )
1 1 n +1
= [Q n C r + n C r -1 = Cr ]
(x + a)4 1 4 6 4 1 r =1 r =1
( x + a )5 n
æn + 1ö n é n n n -1 ù
1 5 10 10 5 1
= Õ çè r ø
÷ Cr -1 êëQ C r = r × Cr - 1ú
û
Pascal triangle gives the direct binomial coefficients. r =1
n n n
1
For example, = Õ ( n + 1) × Õ r × Õ C r - 1
( x + a ) 4 = 1 × x 4 + 4 × x 3 × a + 6 × x 2a 2 r =1 r =1 r =1
3 4 1
+ 4 × x a + 1× a n
= (n + 1) × × (C 0C 1C 2 ... C n - 1 )
n!
= x 4 + 4 x 3a + 6 x 2a 2 + 4 x a 3 + a 4 (n + 1)n
= (C 0 C 1 C 2 ... C n - 1 ) = RHS
n!
Chap 06 Binomial Theorem 441
3. 3 1/ 2 5
The expansion {x + ( x - 1) } + {x - ( x - 1) } is a polynomial of degree 3 1/ 2 5
4. 6
( 2 + 1) - ( 2 - 1) is equal to 6
n n -1
(n + 1)n - 1
(a) (b)
(n - 1)! (n - 1) !
(n + 1)n (n + 1)n + 1
(c) (d)
n! n!
n+1 n -1
8. If Cr + 1 : nCr : Cr - 1 = 11: 6 : 3, nr is equal to
(a) 20 (b) 30
(c) 0 (d) 50
Session 2
General Term, Middle Terms, Greatest Term,
Trinomial Expansion
6
æ 1 ö Now, in order to find out the coefficient of x 7 , 22 - 3r
Sol. Seventh term, T 7 = T 6 + 1 = 13C 6 ( 4 x )13 - 6 ç - ÷
è 2 xø must be 7,
1 i.e. 22 - 3r = 7
= 13C 6 × 4 7 × x 7 × 6 3
2 ×x \ r =5
= 13C 6 × 28 × x 4 Hence, putting r = 5 in Eq. (i), we get
a6
8 Required coefficient = 11C 5 .
y Example 11. Find the coefficient of x in the b5
10
æ 1ö æ 1 ö
R
expansion of ç x 2 - ÷ . (ii) Here, T R + 1 = 11C R (ax )11 - R ç - 2 ÷
è xø è bx ø
r
æ 1ö R
Sol. Here, Tr = 10C r ( x 2 )10 - r ç - ÷ æ 1ö
+1
è xø = C R (a )11 - R ç - ÷ × x 11 - 3 R
11
è bø
1
= 10C r x 20 - 2r × ( - 1)r × a11 - R
xr = ( - 1)R × 11C R × × x 11 - 3 R …(ii)
10 r 20 - 3r bR
= C r ( - 1) × x ...(i)
Now, in order to find out the coefficient of x - 7 ,
8
Now, in order to find out the coefficient of x , 20 - 3r must 11 - 3R must be - 7.
be 8. i.e., 11 - 3R = - 7 Þ R = 6. Hence, putting R = 6 in Eq.
i.e. 20 - 3r = 8 (ii), we get
\ r =4 Required coefficient
Hence, putting r = 4 in Eq. (i), we get a5 a5
= ( - 1)6 × 11C 6 × = 11C 5 × [Q n C r = n C n - r ]
10 × 9 × 8 × 7 b 6
b 6
Required coefficient = ( - 1)4 × 10C 4 = = 210
1×2×3× 4 Also given, coefficient of x 7 in
11 11
æ 2 1 ö -7 æ 1 ö
y Example 12. Find ç ax + ÷ = coefficient of x in ç ax - ÷
è bx ø è bx 2 ø
(i) the coefficient of x 7 in the expansion of
11 11 a6 a5
æ 2 1ö Þ C5 × = 11C 5 ×
Þ ab = 1
ç ax + ÷ . b5 b6
è bx ø which is the required relation between a and b.
Chap 06 Binomial Theorem 443
y Example 18. Find the number of irrational terms in y Example 20. If a, b , c and d are any four
the expansion of ( 8 5 + 6 2 )100 . consecutive coefficients in the expansion of (1 + x )n ,
Sol. Since, ( 8 5 + 6 2 )100 = (51/ 8 + 21/ 6 )100 then prove that:
\ General term, Tr = 100
C r (51 / 8 )100 - r (21 / 6 )r a c 2b
+1 (i) + = .
= 100
C r (5)(100 - r ) / 8 × (2)r / 6
a+b c + d b + c
2
As, 2 and 5 are coprime. æ b ö ac
(ii) ç ÷ > , if x > 0.
\ Tr + 1 will be rational, if (100 - r ) is a multiple of 8 and r is èb + c ø (a + b ) (c + d )
a multiple of 6.
Sol. Let a, b, c and d be the coefficients of the r th, (r + 1)th,
Also, 0 £ r £ 100
(r + 2)th and (r + 3)th terms respectively, in the expansion
\ r = 0, 6, 12, 18, ..., 96
of (1 + x )n . Then,
Now, 100 - r = 4, 10, 16, ... , 100 …(i) -1
Tr = Tr -1+1 = nC r -1 xr
and 100 - r = 0, 8, 16, 24, ... , 100 …(ii)
The common terms in Eqs. (i) and (ii) are 16, 40, 64 and 88. \ a = nC r -1 …(i)
\ r = 84, 60, 36, 12 gives rational terms. Q Tr = nC r x r
+1
\ The number of irrational terms = 101 - 4 = 97
\ b = nC r …(ii)
n r +1
Problems Regarding Three/Four Q Tr +2 = T (r + 1) + 1 = Cr +1 x
4
æ x 3ö Now, on substituting values of n, x and a in Eq. (i), we get
\ T 5 = T 4 +1 = 9C 4 (3x )5 ç - ÷
è 6 ø r £ m + f or r £ m
where, m Î N and 0 < f < 1
9 × 8 × 7 × 6 5 5 x 12 189 17
= ×3 x × 4 = x In the first case,Tm +1 is the greatest term, while in the
1× 2× 3× 4 6 8
second case, Tm and Tm + 1 are the greatest terms and both
5
æ x 3ö are equal (numerically).
and T 6 = T 5 + 1 = 9C 5 (3x )4 ç - ÷
è 6 ø Shortcut Method
x 15 To find the greatest term (numerically) in the expansion of
= - 9C 4 × 34 × x 4 ×
65 (x + a )n .
n
9 × 8 × 7 × 6 4 x 19 21 19 æ xö
=- ×3 × 5 = - x Now, (x + a )n = a n ç1 + ÷
1× 2× 3× 4 6 16 è aø
x
y Example 24. Show that the middle term in the (n + 1)
a
expansion of (1 + x ) 2n is Calculate m=
æ x ö
1 × 3 × 5 ...(2n - 1) n n ç +1 ÷
× 2 x , n being a positive integer. è a ø
n!
Case I If m ÎInteger, then Tm and Tm + 1 are the greatest terms
Sol. The number of terms in the expansion of (1 + x )2n is
and both are equal (numerically).
2n + 1 (odd), its middle term is (n + 1)th term.
Case II If m Ï Integer, then T[m ] + 1 is the greatest term, where
\ Required term = Tn + 1
[ × ] denotes the greatest integer function.
2n ! n (1 × 2 × 3 × 4 . .. (2n -1) × 2n ) n
= 2n C n x n = x = x
n! n! n! n! y Example 25. Find numerically the greatest term in
{1 × 3 × 5 ... (2n - 1)} {2 × 4 × 6... 2n } n the expansion of (2 + 3x ) 9 , when x = 3 / 2.
= x
n! n! Sol. Let Tr be the greatest term in the expansion of
+1
{1 × 3 × 5... (2n - 1)} 2n (1 × 2 × 3... n ) n (2 + 3x )9 , we have
= x
n! n! Tr +1 æ 9 - r + 1 ö 3x æ 10 - r ö 3 3 90 - 9r
=ç ÷ =ç ÷ ´ =
n
{1 × 3 × 5... (2n - 1)} 2 n ! n 1 × 3 × 5... (2n - 1) n n Tr è r ø 2 è r ø 2 2 4r
= x = 2 x
n! n! n! [Q x = 3 / 2]
Tr + 1
\ ³1
Tr
Greatest Term Þ
90 - 9r
³ 1 Þ 90 ³ 13r
If Tr and Tr +1 are the rth and (r + 1) th terms in the 4r
expansion of ( x + a ) n , then 90 12
\ r £ =6
13 13
Tr + 1 n
C r × x n -r × a r æ n - r + 1ö a
= =ç ÷× or r £6
12
Tr n
Cr - 1 × x n -r +1
×a r -1 è r ø x 13
Let numerically, Tr +1 be the greatest term in the above \ Maximum value of r is 6.
expansion. Then, So, greatest term = T 6 + 1 = 9C 6 (2)9 - 6 (3x )6
Tr + 1 æ n - r + 1ö a æ 3ö
6
Tr + 1 ³ Tr or ³1 Þ ç ÷ ³1 = 9C 3 × 23 × ç3 ´ ÷
Tr è r ø x è 2ø
[Qa may be + ve or - ve] 9 × 8 × 7 23 × 312 7 ´ 313
(n + 1) = × =
or r£ …(i) 1 × 2× 3 26 2
æ x ö 9
ç1 + ÷ æ
Aliter Since, (2 + 3x )9 = 29 ç1 +
3x ö
è a ø ÷
è 2 ø
Chap 06 Binomial Theorem 447
æ np ö Þ ( 4t + 1) ( t - 1) = 0
and a 1 - a 3 + a 5 - K = sin ç ÷
è 2 ø \ t = 1, t ¹ -
1
Þ 3 3 x / 2 = 1 = 30
4
Putting x = w and w2 (cube roots of unity) in Eq. (i), we get
3x
a 0 + a 1 w + a 2 w2 + a 3 w 3 + a 4 w 4 + ... = 0 …(iv) \ = 0 or x = 0
2
and a 0 + a 1 w2 + a 2 w 4 + a 3 w 6 + a 4 w 8 + ... = 0 …(v)
y Example 30. Find the values of
On adding Eqs. (ii), (iv) and (v) and then dividing by 3, we 1 1 1
get (i) + + + ...
(n - 1)! (n - 3)! 3! (n - 5)! 5!
a 0 + a 3 + a 6 + ... = 3 n - 1
1 1 1 1
Note
n -1
(ii) + + + ... +
(i) a1 + a4 + a7 + K = a2 + a5 + a8 + K = 3 12! 10! 2! 8 ! 4 ! 12!
(ii) a0 + a4 + a8 + K =
1ì n æ np ö ü Sol. (i) Q 1! = 1
í3 + 1 + 2cos ç ÷ ý
4î è 2 øþ
\ The given series can be written as
(iii) a1 + a5 + a9 + K =
1ì n æ np ö ü
í3 - 1 + 2sinç ÷ ý 1 1 1
4î è 2 øþ + + + ... …(i)
1ì np ü (n - 1)! 1! (n - 3)! 3! (n - 5)! 5!
(iv) a0 + a6 + a12 + K = í3n + 1 + 2n + 1 cos æç ö÷ ý
6î è 3 øþ Q Sum of values of each terms in factorial are equal.
2n 2n
r -1 i.e. (n - 1) + 1 = (n - 3) + 3 = (n - 5) + 5 = ... = n
(v) å r × ar = n × 3n (vi) å( -1) × r × ar = - n
r =1 r =1 From Eq. (i),
1 é n! n! n! ù
y Example 28. Find the sum of coefficients in the n! ê (n - 1)! 1! + (n - 3)! 3! + (n - 5)! 5! + ...ú
ë û
expansion of the binomial ( 5p - 4q )n , where n is a
1 n 2n - 1
positive integer. =( C 1 + n C 3 + n C 5 + ...) =
n! n!
Sol. Putting p = q =1 in (5p - 4q )n , the required sum of coeffi-
(ii) Q 0! = 1
cients = (5 - 4 )n = 1n = 1
\The given series can be written as
y Example 29. In the expansion of ( 3 - x / 4 + 3 5x / 4 )n , if 1
+
1
+
1
+ ... +
1
…(ii)
12!0! 10! 2! 8! 4 ! 0! 12!
the sum of binomial coefficients is 64 and the term
with the greatest binomial coefficient exceeds the third Q Sum of values of each terms in factorial are equal
by (n - 1), find the value of x. i.e., 12 + 0 = 10 + 2 = 8 + 4 = ... = 12
Sol. Given sum of the binomial coefficients in the expansion of 1 é 12! 12! 12! 12! ù
(3- x / 4 + 35 x / 4 )n = 64
From Eq. (ii),
12! ê 12! 0! + 10! 2! + 8! 4 ! + ... + 0! 12! ú
ë û
Then, putting 3- x / 4 = 35 x / 4 = 1 1 12 212 - 1 211
12 12 12
n n 6
= ( C0 + C2 + C 4 + ... + C 12 ) = =
\ (1 + 1) = 64 Þ 2 = 2 12! 12! 12!
\ n =6
y Example 31. Prove that the sum of the coefficients
We know that, middle term has the greatest binomial
in the expansion of (1 + x - 3x 2 ) 2163
coefficients. Here, n = 6
æn ö
is - 1.
\ Middle term = ç + 1÷ th term = 4th term = T 4 Sol. Putting x = 1 in (1 + x - 3x 2 )2163 , the required sum of
è2 ø
coefficients = (1 + 1 - 3)2163 = ( - 1)2163 = - 1
and given that T 4 = ( n - 1) + T 3
Þ T 3 + 1 = ( 6 - 1) + T 2 + 1 y Example 32. If the sum of the coefficients in the
Þ 6C 3 (3- x / 4 )3 (3 5 x / 4 )3 = 5 + 6C 2 (3- x / 4 )4 (3 5 x / 4 )2 expansion of (ax 2 - 2x + 1) 35 is equal to the sum of
Þ 20 × 3 3 x = 5 + 15 × 3 3 x / 2 the coefficients in the expansion of ( x - ay ) 35 , find the
Let 3 3x /2 = t value of a.
\ 20 t 2 = 5 + 15 t Sol. Given, sum of the coefficients in the expansion of
(ax 2 - 2x + 1)35
Þ 4t 2 - 3t - 1 = 0
450 Textbook of Algebra
Putting x = y = 1, we get
Putting x = 1, we get 0 = åar
r =0
(a - 1)35 = (1 - a )35 or a 0 + a1 + a 2 + a 3 + a 4 + a 5 + ... + a 39 + a 40 = 0 …(ii)
Þ (a - 1)35 = - (a - 1)35 Putting x = - 1 in Eq. (i), we get
40
Þ 2 (a - 1)35 = 0 ( - 2)20 = å( - 1)r ar
Þ a -1 = 0 r =0
5. In the expansion of (7 1/ 3
+ 11 )1/ 9 6561
, the number of terms free from radicals is
(a) 715 (b) 725 (c) 730 (d) 750
6. n
If the coefficients of three consecutive terms in the expansion of (1 + x ) are 165, 330 and 462 respectively, the
value of n is
(a) 7 (b) 9 (c) 11 (d) 13
7. If the coefficients of 5th, 6th and 7th terms in the expansion of (1 + x )n are in AP, then n is equal to
(a) 7 only (b) 14 only (c) 7 or 14 (d) None of these
n
æ 1ö
8. If the middle term in the expansion of ç x 2 + ÷ is 924 x 6, the value of n is
è xø
(a) 8 (b) 12 (c) 16 (d) 20
n
æ 2 ö
9. If the sum of the binomial coefficients in the expansion of ç x 2 + 3 ÷ is 243, the term independent of x is equal to
è x ø
(a) 40 (b) 30 (c) 20 (d) 10
10. 2
In the expansion of (1 + x ) (1 + x + x ) ... (1 + x + x + ... + x 2 2n
), the sum of the coefficients is
(a) 1 (b) 2n ! (c) 2n ! + 1 (d) (2n + 1) !
Session 3
Two Important Theorems, Divisibility Problems
Two Important Theorems Now, let ( P - Q ) n = f ¢ , where 0 < f ¢ < 1
Theorem 1 If ( P + Q ) n = I + f , where I and n are Also, I + f = (P + Q )n …(i)
positive integers, n being odd and 0 £ f < 1 , then 0 £ f <1 …(ii)
show that ( I + f ) f = k n , where P - Q 2 = k > 0 and f ¢ = (P - Q )n …(iii)
P - Q < 1. and 0 < f ¢ <1 …(iv)
Proof Given, P -Q <1 \ 0 < ( P - Q )n < 1 On adding Eqs. (i) and (iii), we get
Now, let ( P - Q ) n = f ¢, where 0 < f ¢ < 1 I + f + f ¢ = (P + Q )n + (P - Q )n
On subtracting Eq. (iii) from Eq. (i), we get Now, let f ¢ = (8 - 63 )n …(iii)
I + f - f ¢ = ( 125 + 11)2 n + 1 - ( 125 - 11)2 n + 1 0< f ¢<1 …(iv)
I + 0 = 2p , " p Î N = Even integer On adding Eqs. (i) and (iii), we get
[from theorem 1] [ x ] + f + f ¢ = (8 + 63 )n + (8 - 63 )n
\ I = 2p = Even integer [ x ] + 1 = 2p , " p Î N = Even integer
[from theorem 2]
y Example 36. Let R = (6 6 + 14 ) 2n + 1 and f = R - [R ], \ [ x ] = 2p - 1 = Odd integer
where [ × ] denotes the greatest integer function. Find i.e., Integral part of x = Odd integer
the value of Rf , n Î N . Q f + f ¢=1 Þ 1- f = f ¢ …(v)
Sol. (6 6 + 14 )2 n + 1 can be written as ( 216 + 14 )2 n + 1 and LHS = x - x 2 + x [ x ] = x - x ( x - [ x ]) = x - xf
given that f = R - [ R ]
[Q x = [ x ] + f ]
and R = (6 6 + 14 )2 n + 1= ( 216 + 14 )2 n + 1 = x (1 - f ) = x f ¢ [from Eq.(v)]
\ [ R ] + f = ( 216 + 14 )2 n + 1 …(i) = (8 + 63 )n (8 - 63 )n [from Eqs.(i) and (iii)]
0£ f <1 …(ii)
= (64 - 63)n = (1)n = 1 = RHS
Let f ¢ = ( 216 - 14 )2 n + 1 …(iii)
0< f ¢<1 …(iv) Remark
On subtracting Eq. (iii) from Eq. (i), we get Sometimes, students find it difficult to decide whether a problem
2n + 1 2n + 1
is on addition or subtraction. Now, if x = [ x ] + f and 0 < f ¢ < 1
[ R ] + f - f ¢ = ( 216 + 14 ) - ( 216 - 14 ) and if [ x ] + f + f ¢= Integer. Then, addition and if
[ R ] + 0 = 2p , " p Î N = Even integer [from theorem 1] [ x ] + f - f ¢ = Integer, the subtraction and values of (f + f ¢) and
(f - f ¢) are 1and 0, respectively.
\ f - f ¢ = 0 or f = f ¢
Now, Rf = Rf ¢ = ( 216 + 14 )2 n + 1 ( 216 - 14 )2 n + 1
= (216 - 196)2 n + 1 = (20)2 n + 1 Divisibility Problems
y Example 37. If (7 + 4 3 )n = s + t, where n and s are Type I
positive integers and t is a proper fraction, show that (i) ( x n - a n ) is divisible by ( x - a ), " n Î N .
(1 - t ) (s + t ) = 1. (ii) ( x n + a n ) is divisible by ( x + a ), " n ÎOnly odd
Sol. (7 + 4 3 )n can be written as (7 + 48 )n natural numbers.
\ s + t = (7 + 48 )n …(i)
y Example 39. Show that
0<t <1 …(ii)
Now, let t ¢ = (7 - 48 )n …(iii) 19921998 - 19551998 - 1938 1998 + 19011998 is divisible by 1998.
0<t¢<1 …(iv) Sol. Here, n = 1998 (Even)
On adding Eqs. (i) and (iii), we get \ Only result (i) applicable.
s + t + t ¢ = (7 + 48 )n + (7 - 48 )n Let P = 19921998 - 19551998 - 19381998 + 19011998
s + 1 = 2p , " p Î N = Even integer [from theorem 2] = (19921998 - 19551998 ) - (19381998 - 19011998 )
\ t + t ¢ = 1 or 1 - t = t ¢ divisible by (1992 - 1955 ) divisible by (1938 - 1901)
Then, (1 - t ) (s + t ) = t ¢ (s + t ) = (7 - 48 )n (7 + 48 )n i. e. 37 i. e. 37
[from Eqs. (i) and (iii)] \ P is divisible by 37.
= ( 49 - 48) = (1)n = 1
n
Also, P = (19921998 - 19381998 ) - (19551998 - 19011998 )
divisible by (1992 - 1938 ) divisible by (1955 - 1901)
y Example 38. If x = (8 + 3 7 )n , where n is a natural i.e., 54 i.e., 54
number, prove that the integral part of x is an odd \ P is also divisible by 54.
integer and also show that x - x 2 + x [ x ] = 1 , where [ × ] Hence, P is divisible by 37 ´ 54, i.e., 1998.
denotes the greatest integer function. y Example 40. Prove that 2222 5555 + 5555 2222 is
Sol. (8 + 3 7 )n can be written as (8 + 63 )n
divisible by 7.
\ x = [x ] + f
Sol. We have, 22225555 + 55552222
or [ x ] + f = (8 + 63 )n …(i)
0£ f <1 …(ii) = (22225555 + 4 5555 ) + (55552222 - 4 2222 ) - ( 4 5555 - 4 2222 ) …(i)
Chap 06 Binomial Theorem 453
32
Now, 3232 = 32 3m + 1 = 2 5 (3m + 1) = 215m + 5 (i) For last digit
2 3 ( 5m + 1) 5m + 1 5m + 1
= 2 ×2 = 4 ( 8) = 4 ( 7 + 1) 17 256 = 290[ 128 C 0 (290)127 - 128
C 1(290)126
5m + 1
= 4[ C 0 (7 )5m + 1 + 5m + 1
C 1 (7 )5m + 5m + 1C 2 (7 )5m - 1 + 128
C 2 (290)125 - ... -128 C 127 (1)] + 1
+ ... + 5m + 1C 5m (7 ) + 1]
= 290 (k ) + 1, where k is an integer.
= 4 [ 7 ( 5m + 1C 0 (7 )5m + 5m + 1C 1(7 )5m - 1 +... + 5m + 1C 5m ) + 1]
= 4 [7k + 1] , where k is positive integer = 28k + 4 \ Last digit = 0 + 1 = 1
32 (ii) For last two digits,
3232 4
\ = 4k +
7 7 17 256 = (290)2 [ 128C 0 (290)126 - 128
C 1 (290)125 +
Hence, the remainder is 4. 128
C 2 (290)124 - ... + 128
C 126 (1)] - 128
C 127 (290) + 1
128
= 100 m - C 127 (290) + 1, where m is an integer.
How to Find Last Digit, Last Two Digits, 128
= 100 m - C 1 (290) + 1 = 100 m - 128 ´ 290 + 1
Last Three Digits, ... and so on.
= 100 m - 128 ´ (300 - 10) + 1
Ifa, p, n andr are positive integers, thena pn + r is adjust of the
= 100 (m - 384 ) + 1281
form(10k ± 1) m , wherek andm are positive integers. For last = 100 n + 1281, where n is an integer.
digit, take 10 common. For last two digits, take 100 common, \ Last two digits = 00 + 81 = 81
for last three digits, take 1000 common , ... and so on.
(iii) For last three digits,
i.e. (10k ± 1) m = (10k ) m + m C 1 (10k ) m - 1 ( ± 1)
17 256 = (290)3 [ 128C 0 (290)125 - 128
C 1 (290)124
+ m C 2 (10k ) m - 2 ( ± 1) 2 + ... +
128
m
C m - 2 (10k ) 2 ( ± 1) m -2 + m C m - 1 (10k ) ( ± 1) m - 1 + ( ± 1) m + C 2 (290)123 - ... - 128
C 125 (1)]
128
+ C 126 (290)2 - 128
C 127 (290) + 1
For last digit = 10 l + ( ± 1) m
128 2 128
= 1000 m + C 126 (290) - C 127 (290) + 1
For last two digits = 100 m + m C m - 1 (10k ) ( ± 1) m - 1 + ( ± 1) m
where, m is an integer
For last three digits = 1000 n +m C m -2 (10k ) 2 ( ±1) m -2 +m C m -1 128
= 1000 m + C 2 (290)2 - 128
C 1 (290) + 1
m -1 m
(10k ) ( ± 1) + ( ± 1) and so on where l, m, n Î I.
(128) (127 )
= 1000 m + (290)2 - 128 ´ 290 + 1
y Example 46. Find the last two digits of 3 400
. 2
400 2 200 200 200
= 1000 m + (128) (127 ) (290) (145) - (128) (290) + 1
Sol. We have, 3 = (3 ) = (9) = (10 - 1)
= 1000 m + (128) (290) (127 ´ 145 - 1) + 1
200 200 199
= (10) - C 1 (10) + 200C 2 (10)198 - 200
C 3 (10)197
= 1000 m + (128) (290) (18414 ) + 1
200
+ ... + C 198 (10)2 - 200
C 199 (10) + 1 = 1000 m + 683527680 + 1
200
= 100 m - C 199 (10) + 1, where m Î I = 1000 m + 683527000 + 680 + 1
= 100 m - 200
C 1 (10) + 1 = 100 m - 2000 + 1 = 1000 (m + 683527 ) + 681
= 100 (m - 20) + 1 = 100 p + 1, where p is an integer. \ Last three digits = 000 + 681 = 681
n
æ 1ö y Example 50. Find the greater number in 300! and
We know that, 2 £ ç1 + ÷ < 3, n ³ 1, n Î N [Result (i)]
è nø
300 300 .
Hence, positive integer just greater than (1 + 0.0001)10000
is 3.
Sol. Since, (100)150 > 3150
y Example 49. Find the greater number is 100100 and Þ (100)150 × (100)150 > 3150 × (100)150
( 300)! . Þ (100)300 > (300)150
n
æn ö (100)300 > 300300
Sol. Using Result (ii), We know that, ç ÷ < n ! or …(i)
è3ø n
Putting n = 300, we get æn ö
Using result (ii), ç ÷ < n !
(100)300 < (300) ! …(i) è3ø
1- f 2
3. If n > 0 is an odd integer and x = ( 2 + 1)n, f = x - [ x ], then is
f
(a) an irrational number (b) a non-integer rational number (c) an odd number (d) an even number
5. (103) 86
- (86) 103
is divisible by
(a) 7 (b) 13 (c) 17 (d) 23
78
2
6. Fractional part of is
31
2 4 8 16
(a) (b) (c) (d)
31 31 31 31
I. Aliter
We know that, ( x + y + z + w )n = {( x + y ) + (z + w )}n
Coefficient of x r in
= ( x + y )n + n C 1 ( x + y )n - 1 (z + w ) Multinomial Expansion
+ n C 2 ( x + y )n - 2 (z + w )2 + ... + n C n (z + w )n If n is a positive integer and a 1 , a 2 , a 3 , ... , a k Î C , then
\ Number of terms in RHS coefficient of x r in the expansion of (a 1 + a 2 x + a 3 x 2
= (n + 1) + n × 2 + (n - 1) × 3 + ... + 1 × (n + 1) k -1 n
+ ... + a k x ) , is
n
= S
r =0
( n - r + 1) ( r + 1)
S n! a a2 a a
a 1 1 a 2 a 3 3 ... a k k
n n n n (a 1 !) (a 2 !) (a 3 !) ... (a k !)
= S (n + 1) + nr - r 2 = (n + 1)r S= 0 1 + n r S= 0 r - r S= 0 r 2
r =0 where, a 1 , a 2 , a 3 , ... , a k are non-negative integers such
n ( n + 1) n ( n + 1) ( 2 n + 1) that a 1 + a 2 + a 3 + ... + a k = n
= ( n + 1) × ( n + 1) + n × -
2 6 and a 2 + 2 a 3 + 3 a 4 + ... + (k - 1) a k = r
( n + 1) ( n + 2) ( n + 3)
= y Example 57. Find the coefficient of x 7 in the
6
II. Aliter expansion of (1 + 3x - 2x 3 )10 .
( x + y + z + w )n = S
n!
x n1 y n 2 z n 3 w n 4 Sol. Coefficient of x 7 in the expansion of (1 + 3x - 2x 3 )10 is
n1 ! n 2 ! n 3 ! n 4 !
= S 10!
(1)a (3)b ( -2)g
where, n1, n 2 , n 3 ,n 4 are non-negative integers subject to the a ! b! g !
condition n1 + n 2 + n 3 + n 4 = n
where, a + b + g = 10 andb + 3g = 7
Hence, number of the distinct terms
The possible values of a , b and g are given below
= Coefficient of x n in ( x 0 + x 1 + x 2 + ... + x n )4
4 a b g
æ1 - x n + 1 ö
= Coefficient of x n in ç ÷ 3 7 0
è 1- x ø
5 4 1
= Coefficient of x n in (1 - x n + 1 )4 (1 - x )- 4
7 1 2
= Coefficient of x n in (1 - x )- 4 [Q x n + 1 > x n ]
7
( n + 3) ( n + 2) ( n + 1) \ Coefficient of x
= n + 3C n = n + 3C 3 =
6 10 ! 10 !
= ( 1) 3 ( 3) 7 ( - 2) 0 + (1)5 (3)4 ( - 2)1
3!7 !0! 5! 4 !1!
Greatest Coefficient in +
10 !
(1)7 (3)1 ( - 2)2
7 !1!2!
Multinomial Expansion = 262440 - 204120 + 4320 = 62640
The greatest coefficient in the expansion of
n!
( x 1 + x 2 + x 3 + ... + x k ) n is
(q !) k -r
((q + 1) !) r
, where q is
Use of Differentiation
the quotient and r is the remainder when n is divided by k i.e. This method applied only when the numericals occur as
k ) n (q the product of the binomial coefficients, if
r (1 + x ) n = C 0 + C 1 x + C 2 x 2 + C 3 x 3 + ... + C n x n
y Example 56. Find the greatest coefficient in the
expansion of (a + b + c + d )15 .
Solution Process
(i) If last term of the series leaving the plus or minus
Sol.Here, n = 15 and k = 4 [Qa, b, c , d are four terms] sign is m, then divide m by n. If q is the quotient and
4 ) 15 (3 r is the remainder.
12 i.e. m = nq + r or n ) m (q
3 nq
\ q = 3 and r = 3 r
15 ! q
Hence, greatest coefficient = Then, replace x by x in the given series and
(3!)1 ( 4 !) 3 multiplying both sides of the expression by x r .
Chap 06 Binomial Theorem 459
(ii) After this, differentiate both sides w.r.t. x and put y Example 59. If (1 + x )n = C 0 + C 1 x + C 2 x 2
= (1 + N ) 2 N = n × 2n - 1 = RHS = S
r =1
( r - 1) × n C r -1 + nC r -1
II. Aliter n +1 n +1
n
= S n × n - 1C r - 2 + rS= 1 n
Cr
LHS = C 1 + 2 C 2 + 3 C 3 + ... + n C n = S r × nC r
r =1
r =1
-1
é n n n -1 ù
n
é n ù êQ C r = . Cr - 2ú
= S r × × n - 1C r
n n n -1 -1
-1 êëQ C r = r × Cr - 1ú ë r -1 û
r =1 r û
n -1 n -1 n -1 n -1
n = n (0 + C0 + C1 + C 2 + ... + Cn - 1)
=n S n - 1C r -1
r =1 + (n C 0 + n C 1 + n C 2 + ... + n C n )
n -1 n -1
=n( C0 + C 1 + n -1C 2 + ... + n -1
C n - 1] = n × 2n - 1 + 2n = (n + 2) × 2n - 1 = RHS
n -1
= n ×2 = RHS
460 Textbook of Algebra
y Example 60. If (1 + x )n = C 0 + C 1 x + C 2 x 2
y Example 61. If (1 + x )n = C 0 + C 1 x + C 2 x 2
n n
= 2n (0 + n -1
C0 + n -1
C1 + n -1
C 2 + ... + n -1
Cn - 1) =n S (r - 1) × n - 1C r - 1 + n rS= 1 n -1C r - 1
r =1
+ ( C 0 + C 1 + C 2 + ... + n C n )
n n n n n
= 2n × 2n - 1 + 2n = (n + 1) × 2n = RHS
=n S (n - 1) × n - 2 C r - 2 + n rS= 1 n - 1C r - 1
r =1
Chap 06 Binomial Theorem 461
n n = n (n - 1) { N C 0 + N C 1 + ... + N C N }
= n ( n - 1) S n - 2 C r - 2 + n rS= 1 n - 1C r -1
r =1 = n (n - 1) 2 N = n (n - 1) 2n - 2 = RHS
n-2 n-2 n-2
= n ( n - 1) ( 0 + C0 + C1 + C2 II. Aliter
+ ... + n-2
C n - 2 ) + n (n - 1 C 0 + n -1
C1 LHS = (1 × 2) C 2 + (2 × 3) C 3 + ... + {(n - 1) × n } C n
n
+ n -1
C 2 + ... + n -1
C n -1 ) = S
r =2
( r - 1) × r × n C r
= n (n - 1) × 2 n - 2 + n × 2 n - 1 = n (n + 1) 2n - 2 = RHS n
= S ( r - 1) × r × n × n - 1 × n - 2C r -2
n 2 r =2 r ( r - 1)
y Example 62. If (1 + x ) = C 0 + C 1 x + C 2 x
n
+ ... + C n x n , prove that (1 × 2) C 2 + (2 × 3) = ( n - 1) n S n - 2 C r -2
r =2
C 3 + K + {(n - 1) × n} C n = n (n - 1) 2n - 2 . n-2 n-2 n-2 n-2
= ( n - 1) n ( C0 + C1 + C 2 + ... + Cn - 2 )
Sol. Here, last term of n-2
= ( n - 1) n × 2 = RHS
(1 × 2) C 2 + (2 × 3) C 3 + ... + {(n - 1) × n } C n is (n - 1)n C n
i.e. (n - 1) n
y Example 63. If
[start with greater factor here greater factor is n] and last
(1 + x )n = C 0 + C 1 x + C 2 x 2 + C 3 x 3 + ... + C n x n , prove
term with positive sign, then n = n × 1 + 0
or n ) n (1 that C 0 - 2C 1 + 3C 2 - 4C 3 + ... + ( - 1)n (n + 1) C n = 0.
-n Sol. Numerical value of last term of
0 C 0 - 2C 1 + 3C 2 - 4C 3 + ... + ( - 1)n (n + 1) C n is
Here, q = 1 and r = 0 (n + 1) C n i.e., (n + 1), then
The given series is n + 1 = n × 1 + 1 or n ) n + 1 (1
(1 + x )n = C 0 + C 1 x + C 2 x 2
+ C3 x 3
+ ... + C n x n -n
Differentiating on both sides w.r.t. x , we get 1
n (1 + x )n -1 = 0 + C 1 + 2C 2 x + 3C 3 x 2 + ... + n C n x n -1 Here, q = 1 and r = 1
The given series is
Again, differentiating on both sides w.r.t. x, we get
(1 + x )n = C 0 + C 1x + C 2 x 2 + C 3 x 3
+... + C n x n
n (n - 1) (1 + x )n - 2 = 0 + 0 + (1 × 2) C 2 + (2 × 3) C 3 x
On multiplying both sides by x, we get
+ ... + {(n - 1) × n } C n x n - 2
x (1 + x )n = C 0 x + C 1x 2
+ C2 x 3
+ C3 x 4
+ ... + C n x n + 1
Putting x = 1, we get
On differentiating both sides w.r.t. x, we get
n (n - 1) (1 + 1)n - 2 = (1 × 2) C 2 + (2 × 3) C 3
x × n (1 + x )n -1 + (1 + x )n × 1 = C 0 + 2C 1x + 3C 2 x 2
+ ... + {(n - 1) n } × C n
+ 4 C 3 x 3 + ... + (n + 1) C n x n
or (1 × 2) C 2 + (2 × 3) C 3 + ... + {(n - 1) n } × C n = n (n - 1) 2n - 2
Putting x = - 1, we get
I. Aliter 0 = C 0 - 2C 1 + 3C 2 - 4C 3 + ... + ( - 1)n (n + 1) C n
LHS = (1 × 2)C 2 + (2 × 3)C 3 + (3 × 4)C 4
or C 0 - 2C 1 + 3C 2 - 4C 3 + ... + ( - 1)n (n + 1) C n = 0
+ ... + {(n - 1) n } × C n
n ( n - 1) n ( n - 1) ( n - 2) I. Aliter
= (1 × 2) + (2 × 3)
1 ×2 1 ×2 ×3 LHS = C 0 - 2C 1 + 3C 2 - 4C 3 + ... + ( -1)n (n + 1) C n
n ( n - 1) ( n - 2) ( n - 3) = C 0 - (C 1 + C 1 ) + (C 2 + 2C 2 ) - ( C 3 + 3C 3 )
+ (3 × 4 )
1 ×2 ×3 × 4 + ... + ( -1)n {C n + n C n }
+ ... + (n - 1) n × 1
= {C 0 - C 1 + C 2 - C 3 + ... + ( - 1)n C n }
ì ( n - 2) ( n - 2) ( n - 3) ü
= n (n - 1) í1 + + + ... + 1ý + { - C 1 + 2C 2 - 3C 3 + ... + ( - 1)n n C n }
î 1 1 × 2 þ
ì n ( n - 1) n (n - 1)(n - 2)ü
Now, in bracket, let n - 2 = N , then ï -n + 2 × -3 ï
= (1 - 1)n + í 1 ×2 1 ×2 ×3 ý
ì N N ( N - 1) ü ï + ... + ( -1)n × n ï
= n (n - 1) í1 + + + ... + 1ý î þ
î 1 2! þ
462 Textbook of Algebra
= 0 - n ( 1 - 1) N
= 0 - 0 = 0 = RHS = S ( - 1)r - 1 × r × nC r
r =1
n
II. Aliter é n ù
LHS = C 0 - 2 C 1 + 3 C 2 - 4 C 3 + ... + ( - 1) (n + 1) C n n = S ( - 1)r - 1 × n × n - 1C r - 1 n n -1
êëQ C r = r × Cr - 1ú
r =1 û
n n n
= S ( -1)r (r + 1) n C r = r S= 0 ( - 1)r [r × n C r + n Cr ] =n S ( - 1)r - 1 × n - 1C r - 1
r =1
r =0
n
é n ù = n (1 - 1)n - 1 = 0 = RHS
= S ( -1)r [n ×n -1 C r -1 +n C r ]
r =0
n n -1
êëQ C r = r × C r -1 úû
y Example 65. If (1 + x ) n = C 0 + C 1 x + C 2 x 2
n n
=n S
r =0
( - 1)r × n - 1 C r -1 + S
r =0
( - 1)r × n C r + C 3 x 3 +... + C n x n
, prove that
n n C 0 - 3 C 1 + 5 C 2 - ... + ( -1)n (2n + 1) C n = 0.
= -n
r =0
S ( - 1) r -1
× n -1
Cr -1 + S
r =0
r
( - 1) × C r n
Sol. The numerical value of last term of
= - n (1 - 1)n - 1 + (1 - 1)n = 0 + 0 = 0 = RHS C 0 - 3C 1 + 5C 2 - ... + ( - 1)n (2n + 1) C n is (2n + 1) C n
i.e. (2n + 1)
y Example 64. If (1 + x )n = C 0 + C 1 x + C 2 x 2
and 2n + 1 = 2 × n + 1 or n ) 2n + 1 ( 2
+ C 3 x 3 +... + C n x n , prove that - 2n
C 1 - 2 C 2 + 3 C 3 - ... + ( - 1)n - 1 n C n = 0. 1
Here, q = 2 and r = 1
Sol. Numerical value of last term of
The given series is
C 1 - 2C 2 + 3C 3 - ... + ( - 1)n -1 n C n is nC n i.e., n, then 2 3
(1 + x )n = C 0 + C 1x + C 2 x + C3 x + ... + C n x n now,
and n = n × 1 + 0 or n ) n (1
replacing x by x 2 , then we get
-n
(1 + x 2 )n = C 0 + C 1x 2
+ C 2x 4
+ ... + C n x 2n
1
Here, q = 1 and r = 0 On multiplying both sides by x , we get
The given series is x (1 + x 2 )n = C 0 x + C 1x 3 + C 2 x 5 + ... + C n x 2n + 1
2 3
(1 + x )n = C 0 + C 1x + C 2 x + C3 x + ... + C n x n On differentiating both sides w.r.t. x , we get
On differentiating both sides w.r.t. x, we get x × n (1 + x 2 )n -1 2x + (1 + x 2 )n × 1 = C 0 + 3C 1x 2
n (1 + x )n -1 = 0 + C 1 + 2C 2 x + 3C 3 x 2
+ ... + n C n x n -1 + 5C 2 x 4 + ... + (2n + 1) C n x 2n
1
= (1 - 1)n - 2 × 0 [from Example 64] é C x 2
C2 x 3
Cn x n + 1 ù
Þ = êC 0 x + 1 + + ... + ú
= 0 = RHS ë 2 3 n +1 û0
II. Aliter
2 n +1 - 1 C C C
n
LHS = C 0 - 3C 1 + 5C 2 - ... + ( -1) (2n + 1) C n Þ = C 0 + 1 + 2 + ... + n
n +1 2 3 n +1
n n
= S ( - 1)r (2r + 1) n C r
r =1
= S ( - 1)r [2r × n C r
r =1
+ nC r ] or C 0 +
C1 C 2
+
C
+ ... + n =
2n + 1 - 1
2 3 n +1 n +1
n n
= 2 S n × n - 1C r -1 + S ( - 1)r × n C r I. Aliter
r =1 r =1
C1 C 2 C
= 2n (1 - 1)n - 1 + (1 - 1)n = 0 + 0 = 0 = RHS LHS = C 0 + + + ... + n
2 3 n +1
n n ( n - 1) 1
=1+ + + ... +
1 ×2 1 ×2 ×3 n +1
Use of Integration 1 é (n + 1)n (n + 1) n (n - 1) ù
= êë(n + 1) + 1 × 2 + + ... + 1ú
This method is applied only when the numericals occur as n +1 1 ×2 ×3 û
the denominator of the binomial coefficient. Put n + 1 = N , then
1 é N ( N - 1) N ( N - 1) ( N - 2) ù
LHS = êN + + + ... + 1ú
Solution Process N ë 2 ! 3 ! û
If (1 + x ) n = C 0 + C 1 x + C 2 x 2 + C 3 x 3 + ... + C n x n , =
1 N
[ C 1 + N C 2 + N C 3 + ... + N C N ]
then integrate both sides between the suitable limits N
which gives the required series. 1 2N - 1 2n + 1 - 1
= [(1 + 1)N - 1] = = = RHS
1. If the sum contains C 0 , C 1 , C 2 , . . . , C n are all positive N N n +1
signs, then integrate between limits 0 to 1. II. Aliter
n
2. If the sum contains alternate signs (i.e., +, –), then
+ ... + n = S
C1 C 2 C Cr
LHS = C 0 + +
integrate between limits –1 to 0. 2 3 n +1 r=0r +1
3. If the sum contains odd coefficients (i.e., n n n n +1
Cr + 1 é n + 1C r +1 n C r ù
C 0 , C 2 , C 4 , . . .), then integrate between –1 to +1. = S Cr
= S êQ = ú
r =0 ( r + 1) r = 0 ( n + 1) êë n +1 r + 1 úû
4. If the sum contains even coefficients (i.e.,
n
C 1 , C 3 , C 5 , . . .), then subtracting (2) from (1) and then =
1
S n +1
Cr +1
dividing by 2. ( n + 1) r = 0
5. If in denominator of binomial coefficient product of 1 n +1 n +1 n +1
= ( C1 + C2 + C3
two numericals, then integrate two times first times ( n + 1)
taken limits between 0 to x and second times take n +1
+ ... + Cn + 1)
suitable limits.
1 2n + 1 - 1
y Example 66. If (1 + x ) = C 0 + C 1 x n = (2n + 1 - 1) = = RHS
n +1 n +1
+ C 2 x 2+ ... + C n x n , prove that
y Example 67. If (1 + x )n = C 0 + C 1 x + C 2 x 2
C C C 2 n +1 - 1
C 0 + 1 + 2 + ... + n = . + C 3 x 3+ ... + C n x n , prove that
2 3 n+1 n+1 C C C 1
Sol. Q(1 + x )n = C 0 + C 1x + C 2 x 2 + ... + C n x n …(i)
C 0 - 1 + 2 - ... + ( - 1)n n = .
2 3 n+ 1 n+1
Integrating both sides of Eq. (i) within limits 0 to 1, then we get Sol. Q(1 + x )n = C 0 + C 1x + C 2 x 2 + ... + C n x n …(i)
1 1
ò0 ò0
n 2 n
(1 + x ) dx = (C 0 + C 1x + C 2 x + ... + C n x ) dx Integrating on both sides of Eq. (i) within limits - 1 to 0,
1 then we get
é (1 + x )n + 1 ù 0 0
ò-1(1 + x ) ò- 1(C 0 + C 1x + C 2 x
n 2
ê ú dx = + ... + C n x n ) dx
ë n + 1 û0
464 Textbook of Algebra
0 0 1
é (1 + x )n ù é C1 x 2
C2 x 3 C x n +1 ù = ( n + 1C 1 - n + 1C 2 + n + 1C 3 - ... + ( - 1)n × n + 1C n + 1 )
Þê ú = êC 0 x + + +...+ n ú ( n + 1)
ë n + 1 û -1 ë 2 3 n + 1 û- 1
=
1
{ n + 1C 0 - ( n + 1C 0 - n + 1C 1 + n + 1C 2 - n + 1C 3
( n + 1)
1-0 æ C C C ö + ... + ( - 1)n + 1 n + 1C n + 1 )}
Þ = 0 - ç - C 0 + 1 - 2 + ... + ( - 1)n +1 n ÷
n +1 è 2 3 n + 1ø 1 1 1
= [ 1 - (1 - 1)n + 1 ] = [1 - 0] = = RHS
1 C C Cn ( n + 1) ( n + 1) n +1
Þ = C 0 - 1 + 2 - ... + ( - 1)n + 2
n +1 2 3 n +1
y Example 68. If (1 + x )n = C 0 + C 1 x + C 2 x 2
1 C C Cn
Þ = C 0 - 1 + 2 - ... + ( - 1)n + C 3 x 3 +... + C n x n , prove that
n +1 2 3 n +1
[Q ( - 1)n + 2 = ( - 1)n ( - 1)2 = ( - 1)n ] C0 C2 C4 2n
+ + + ... = .
C1 C 2 C 1 1 3 5 n+1
Hence, C 0 - + - ... + ( - 1)n n = 2 3
2 3 n +1 n + 1 Sol. Q (1 + x )n = C 0 + C 1x + C 2 x + C3 x
I. Aliter + C 4 x 4 +... + C n x n …(i)
C1 C 2 C
LHS = C 0 - + - ... + ( - 1)n n Integrating on both sides of Eq. (i) within limits - 1 to 1,
2 3 n +1 then we get
n n ( n - 1) 1 1 1 1
=1- + - ... + ( - 1)n = ò- 1 (1 + x ) ò-1(C 0 + C 1x + C 2 x
n 2 3 4
dx = + C3 x + C4 x
2 1 ×2 ×3 n + 1 ( n + 1)
( n + 1) n ( n + 1) n ( n - 1) + ... + C n x n ) dx
é ù
êë (n + 1) - 1 × 2 + - ... + ( - 1)n ú 1 1
1 ×2 ×3 û ò-1(C 0 + C 2 x + C 4 x 4 + ...)dx + ò (C 1x + C 3 x
2 3
= + ...)dx
-1
Put n + 1 = N , we get 1
= 2 ò (C 0 + C 2 x 2
+ C 4 x 4 + ...) dx + 0
é N ( N - 1) N ( N - 1) ( N - 2) ù 0
1 N - +
= ê 1 ×2 1 ×2 ×3 ú [by property of definite integral]
Nê N -1 ú
[since, second integral contains odd function]
ë - ... + ( - 1) û
1 1
1 N -1
é (1 + x )n + 1 ù éæ C2 x 3
C4 x 5 öù
= [ C 1 - N C 2 + N C 3 - ... + ( - 1)N ] ê ú = 2 ê çC 0 x + + + ...÷ ú
N ë n + 1 û -1 ëê è 3 5 ø úû 0
1 N
2n + 1
= - [ - N C 1 + N C 2 - N C 3 + ... + ( - 1) N C N ] æ C C ö
N Þ = 2 çC 0 + 2 + 4 + ...÷
n +1 è 3 5 ø
1 N C2 C4 2n
= - [ C 0 - N C1 + N C 2 - N C 3 or C 0 + + +K=
N 3 5 n +1
N
+ ... + ( - 1)N C N - NC 0 ] I. Aliter
1 1 1 C2 C4
=- [(1 - 1)N _ N C 0 ] = - [0 - 1] = LHS = C 0 + + + ...
N N N 3 5
n ( n - 1) n ( n - 1) ( n - 2) ( n - 3)
=
1
= RHS =1+ + + ...
n +1 1 ×2 ×3 1 ×2 ×3 × 4 ×5
1 ì n + 1 (n + 1)n (n - 1)
II. Aliter = í +
n
( n + 1) î 1 1 ×2 ×3
( - 1)r × C r
- ... + ( - 1)n n = S
C1 C 2 C
LHS = C 0 - + (n + 1)n (n - 1) (n - 2) (n - 3) ü
2 3 n +1 r = 0 r + 1 + + ...ý
n
1 ×2 ×3 × 4 ×5 þ
r
× nC r
= S ( - 1) =
1
{ n + 1C1 + n +1
C3 + n +1
C 5 + ...}
r =0 r +1
n +1
n +1 é n +1
Cr ù
n n
Cr C r +1
= S ( - 1)r ×
+1
êQ = ú =
1
[sum of even binomial coefficients of (1 + x )n + 1]
r =0 ( n + 1) êë n + 1 r + 1 úû
( n + 1)
n
=
1
S ( - 1)r × n + 1C r +1 =
2n + 1 - 1
=
2n
= RHS
( n + 1) r = 0 n +1 n +1
Chap 06 Binomial Theorem 465
C0 C2 C4 Put n + 1 = N , then
II. Aliter LHS = + + + ...
1 3 5 1 é N ( N - 1) N ( N - 1) ( N - 2) ( N - 3)
LHS = +
Case I If n is odd say n = 2m + 1, " m ÎW , then N êë 2! 4!
m 2 m +1 m 2m + 2
C 2r + 1 N ( N - 1)( N - 2) ( N - 3) ( N - 4 ) ( N - 5) ù
LHS = S C 2r
= S + + ...ú
r =0 2r + 1 r =0 (2m + 1) 6! û
é 2 m +1C 2r 2m+ 2
+1ù
C 2r 1 N
êQ = ú = [ C 2 + N C 4 + N C 6 + ... ]
2r + 1 2m +1 N
êë úû
1
1 2n = [ ( N C 0 + N C 2 + N C 4 + N C 6 + ...) - N C 0 ]
= ×22 m + 2 -1 = = RHS N
(2m + 1) n +1
1 -1 2n - 1
[Qn = 2m + 1] = [2 N - 1] = = RHS
N n +1
Case II If n is even say n = 2m, " m Î N , then
II. Aliter
m 2m m 2 m +1
C 2r C 2r
LHS = S = S +1
LHS =
C1 C 3 C 5
+ + + ...
r =0 2r + 1 r =0 (2m + 1) 2 4 6
é 2 m +1
C 2r 2m
C 2r ù Case I If n is odd say n = 2m + 1 , " m ÎW , then
+1
êQ = ú m 2 m +1 m 2m+2
2m + 1 2r + 1 úû C2r C 2r
êë LHS = S +1
= S +2
r =0 2r + 2 r =0 (2m + 2)
22 m + 1 - 1 2n
= = = RHS [Qn = 2m ] é 2m+2
C 2r +2
2 m +1
C 2r +1ù
2m + 1 n +1 êQ = ú
êë 2m + 2 2r + 2 úû
y Example 69. If (1 + x )n = C 0 + C 1 x + C 2 x 2+ C 3 x 3
1 2 m +2 2 m +2 2 m +2
= ( C2 + C 4 + ... + C2 m + 2)
C C C 2n - 1 ( 2m + 2)
+... + C n x n , prove that 1 + 3 + 5 + ... = .
2 4 6 n+1 1 2n - 1
= × ( 22 m + 2 - 1 - 2 m +1
C0) = [Q2m + 1 = n ]
Sol. We know that, from Examples (66) and (67) ( 2m + 2) n +1
C1 C 2 C 3 C 4 C 5 2n + 1 - 1 = RHS
C0 + + + + + + ... = …(i)
2 3 4 5 6 n +1 Case II If n is even say n = 2m, " m Î N , then
m -1 2m m -1 2 m +1
C1 C 2 C 3 C 4 C 5 1 C 2r C 2r
and C 0 -
2
+
3
-
4
+
5
-
6
+ ... =
n +1
…(ii) LHS = S +1
= S +2
r =0 (2r + 2) r =0 (2m + 1)
On subtracting Eq. (ii) from Eq. (i), we get é 2 m +1
+1ù
2m
C 2r +2 C 2r
n +1 êQ = ú
æC C C ö 2 -2 2m + 1 2r + 2
2 ç 1 + 3 + 5 + ...÷ = êë úû
è2 4 6 ø n +1 m -1
On dividing each sides by 2, we get =
1
S 2 m + 1C 2 r + 2
(2m + 1) r = 0
C1 C 3 C 5 2n - 1 1
+ + + ... = = ( 2 m +1C 2 + 2 m +1C 4 + 2 m +1
C6
2 4 6 n +1 (2m + 1)
2 m +1
C1 C 3 C 5 + ... + C2 n )
I. Aliter LHS = + + + ...
2 4 6 1
= × ( 22 m + 1 - 1 - 2m +1
C0)
n n ( n - 1) ( n - 2) ( 2m + 1)
= +
1 ×2 1 ×2 ×3 × 4 2n - 1
= = RHS [Qn = 2m ]
n ( n - 1) ( n - 2) ( n - 3) ( n - 4 ) n +1
+ + ...
1 ×2 ×3 × 4 ×5 ×6
1 é ( n + 1) n ( n + 1) n ( n - 1) ( n - 2) y Example 70. If (1 + x )n = C 0 + C 1 x
= +
n + 1 êë 1 × 2 1 ×2 ×3 × 4 + C 2 x 2+ ... + C n x n , prove that
n +1
( n + 1) n ( n - 1) ( n - 2) ( n - 3) ( n - 4 ) ù C 1 33 C 2 3 4 C 3 3n +1 C n 4 - 1
+ + ...ú 3C 0 + 3 2 + + + ... + = .
1 ×2 ×3 × 4 ×5 ×6 û 2 3 4 n+1 n+1
466 Textbook of Algebra
2 3 n
Sol. Q (1 + x )n = C 0 + C 1x + C 2 x + C3 x +... + C n x n …(i)
=
1
S n +1
Cr +1 × 3r +1
22 23 24 2n + 2 C n
Hence, C0 + C1 + C 2 + ... + When Each Term in Summation Contains
1 ×2 2 ×3 3× 4 ( n + 1) ( n + 2)
3 n+2
- 2n - 5
the Product of Two Binomial Coefficients
=
( n + 1) ( n + 2) or Square of Binomial Coefficients
I. Aliter Solution Process
22 23 24 2n + 2 C n
LHS = C0 + C1 + C2 + K + 1. If difference of the lower suffixes of binomial
1 ×2 2 ×3 3× 4 ( n + 1) ( n + 2) coefficients in each term is same.
22 23 24 n ( n - 1) 2n + 2 × 1 i.e. n
C 0 n C 2 + n C 1 × n C 3 + n C 2 × n C 4 + ...
= ( 1) + ×n + + ... +
1 ×2 2 ×3 3× 4 1 ×2 (n + 1) (n + 2)
Here, 2 - 0 = 3 - 1 = 4 - 2 = .... = 2
1 ì ( n + 2) ( n + 1) 2 ( n + 2) ( n + 1) n 3
= í 2 + 2 Case I If each term of series is positive, then
( n + 1) ( n + 2) î 1 ×2 1 ×2 ×3
(1 + x ) n = C 0 + C 1 x + C 2 x 2 + ... + C n x n …(i)
( n + 2) ( n + 1) n ( n - 1) 4 ü
+ 2 + ... + 2n + 2 ý
1 ×2 ×3 × 4 þ Interchanging 1 and x , we get
Put n + 2 = N , then we get ( x + 1) n = C 0 x n + C 1 x n - 1 + C 2 x n -2
+... + C n …(ii)
1 ì N ( N - 1) 2 N ( N - 1) ( N - 2) 3 Then, multiplying Eqs. (i) and (ii) and equate the
= í 2 + 2
N ( N - 1) î 1 × 2 1 ×2 ×3 coefficients of suitable power of x on both sides.
N ( N - 1) ( N - 2) ( N - 3) 4 ü 1
+ 2 + ... + 2N ý Replacing x by in Eq. (i), then we get
1 ×2 ×3 × 4 þ x
1 n
= { N C 2 ( 2) 2 + N C 3 ( 2) 3 + N C 4 ( 2) 4 æ 1ö C1 C2 C
N ( N - 1) ç1 + ÷ = C 0 + + + ... + n …(iii)
+ ... + N C N (2)N ] è xø x x 2
xn
1 Then, multiplying Eqs. (i) and (iii) and equate the
= { N C 0 + N C 1(2) + N C 2 (2)2 + N C 3 (2)3
N ( N - 1) coefficients of suitable power of x on both sides.
+ N C 4 (2)4 + ... + N C N (2)N - N C 0 - N C 1 (2)]
y Example 72. If (1 + x )n = C 0 + C 1 x + C 2 x 2
1
= {(1 + 2)N - 1 - 2N } + C 3 x 3 +... + C n x n , prove that
N ( N - 1)
3n + 2 - 1 - 2 (n + 2) 3n + 2 - 2n - 5 C 0C r + C 1C r +1 + C 2 C r + 2 + ... + C n - r C n
= = = RHS 2n !
( n + 2) ( n + 1) ( n + 1) ( n + 2) = .
(n - r )! (n + r )!
II. Aliter
22 23 24 2 n + 2× C n Sol. Here, differences of lower suffixes of binomial coefficients
LHS = ×C 0 + ×C1 + × C 2 + ... + in each term is r .
1 ×2 2 ×3 3× 4 ( n + 1) ( n + 2)
n +1
i.e., r - 0 = r + 1 - 1 = r + 2 - 2 = .... = n - (n - r ) = r
2r + 1 n
= S × Cr -1
Given,
r =1 r ( r + 1) (1 + x )n = C 0 + C 1x + C 2 x 2 + ... + C n - r x n - r + ... + C n x n
n +1 r +1
× n + 2 Cr é n+2 n
Cr - 1 ù
= S2 +1
êQ
Cr + 1
= ú Now,
…(i)
r =1 ( n + 1) ( n + 2) êë ( n + 1 ) ( n + 2 ) r ( r + 1) úû
n +1 ( x + 1)n = C 0 x n + C 1 x n - 1 + C 2 x n - 2 + ... + C r x n - r
=
1
S n + 2 C r + 1 × 2r + 1 + Cr +1x
n - r -1
+ Cr x n -r -2
+ ... + C n …(ii)
( n + 1) ( n + 2) r = 1 +2
(3 n + 2 - 2n - 5) + Cr +2 x n -r -2
+ ... + C n ) …(iii)
= = RHS
( n + 1) ( n + 2)
468 Textbook of Algebra
2n 2n 2n
But Eq. (iii) is an identity, therefore the constant term in æ 1ö 2n C1 2n C 2 C 2n
RHS = constant term in LHS. and ç1 - ÷ = C0 - + - ... + …(ii)
è xø x x2 x 2n
2 2 2 2 2n ! {1 × 3 × 5... (2n - 1)} n
Þ C 0 + C 1 + C 2 + ... + C n = = 2 On multiplying Eqs. (i) and (ii), we get
n !n ! n!
( x 2 - 1) 2 n 2n 2n 2n
Case II If terms of the series alternately positive and 2n
=( C0 + C 1x + C 2 x 2 + ... + 2n
C 2n x 2n
)
x
negative, then 2n 2n 2n
2n C1 C2 C 2n
n
(1 - x ) = C 0 - C 1 x + C 2 x 2
- ... + ( -1) C n x n n
…(i) ´( C0 - + 2
- ... + ) …(iii)
x x x 2n
n -1 n -2
and ( x + 1) n = C 0 x n + C 1 x + C2 x + ... + C n …(ii) Now, constant term in RHS
Then, multiplying Eqs. (i) and (ii) and equate the = ( 2 n C 0 )2 - ( 2 n C 1 )2 + ( 2 n C 2 )2 - ... + ( 2 n C 2n )2
coefficient of suitable power of x on both sides. ( x 2 - 1) 2 n
Constant term in LHS = Constant term in
Or x 2n
1
Replacing x by in Eq. (i), we get = Coefficient of x 2n
in ( x - 1)2 2n
x
n = Coefficient of x 2 n in (1 - x 2 )2 n
æ 1ö C1 C2 C
ç1 - ÷ = C 0 - + - ... + ( - 1) n n ...(iii) 2n 2n
è x ø x x 2
xn = C n ( - 1)n = ( - 1)n × Cn
Then, multiplying Eqs. (i) and (iii) and equate the But Eq. (iii) is an identity, therefore the constant term in
RHS = constant term in LHS.
coefficient of suitable power of x on both sides. 2n
Þ( C 0 )2 - ( 2n
C 1 )2 + ( 2n
C 2 )2 - ... + ( 2n
C 2 n )2
y Example 74. Prove that = ( - 1)n × 2n
Cn
( 2n C 0 ) 2 - ( 2n C1 ) 2 +( 2n C 2 ) 2 - ... + ( 2n C 2n ) 2 = (- 1)n × 2n
Cn .
y Example 75. If (1 + x )n = C 0 + C 1 x
Sol. Since, (1 - x )2 n = 2n
C0 - 2n
C1 x + 2n
C2 x 2
Now, coefficient of x 2 n in RHS …(iii) On multiplying Eqs. (i) and (ii), we get
2n 2 2n 2 2n
= ( C 0 ) - ( C 1 ) + ( C 2 ) - ... + ( C 2 n ) 2 2n 2 (1 - x 2 )n = {C 0 - C 1x + C 2 x 2
- ... + ( -1)n C n x n }
´ ( C 0 x n + C 1 x n - 1 + C 2 x n - 2 +... + C n ) …(iii)
Now, LHS can also be written as (1 - x 2 )2 n .
\ General term in LHS, Tr = 2n
C r ( - x 2 )r Now, coefficient of x n in RHS
+1
2n = C 02 - C 12 + C 22 - ... + ( - 1)n C n2
Putting r = n , we get Tn + 1 = ( - 1)n × Cn x 2n
General term in LHS = Tr +1 =
n
C r ( - x 2 ) r = n C r ( -1)r x 2r
Þ Coefficient of x 2 n in LHS = ( - 1)n × 2n
Cn
Putting 2r = n , we get r = n / 2
But Eq. (iii) is an identity, therefore coefficient of x 2 n in
\ T (n / 2 ) + 1 = n C n / 2 ( - 1)n / 2 x n
RHS = coefficient of x 2 n in LHS
\ Coefficient of x n in LHS = n C n / 2 ( - 1)n / 2
2n 2 2n 2 2n 2 2n 2
Þ ( C 0 ) - ( C 1 ) + ( C 2 ) - ... + ( C 2 n ) n!
= ( - 1)n / 2 ×
2n
= ( - 1)n × Cn ( n / 2) ! ( n / 2) !
Aliter ì0, if n is odd
ï éQ æ odd ö ! = ¥ ù
Since, (1 + x )2 n = =í ê çè 2 ÷ø
2n 2n 2n
C0 + C 1x + C 2x 2 n ! ú
( - 1)n / 2 , if n is even ë û
+ ... + 2n
C 2 n x 2 n …(i) ï ( n / 2) ! ( n / 2) !
î
470 Textbook of Algebra
But Eq. (iii) is an identity, therefore coefficient of x n in RHS 2. If sum of the lower suffixes of binomial
= coefficient of x n in LHS. coefficients in each term is same.
Þ C 02 - C 12 + C 22 - ... + ( - 1)n C n2 i.e., C 0 C n + C 1 C n - 1 + C 2 C n - 2 + ... + C n C 0
ì0 , if n is odd Here, 0 + n = 1 + (n - 1) = 2 + (n - 2 ) = ... = n + 0 = n
ï
=í n! Case I If each term of series is positive, then
( - 1)n / 2 , if n is even
ï ( / 2 ) ! ( n / 2) ! 2
î n (1 + x ) n = C 0 + C 1 x + C 2 x +... + C n x n
…(i)
Now, for n = 10, 2
10 !
and (1 + x ) n = C 0 + C 1 x + C 2 x +... + C n x n
…(ii)
C 02 - C 12 + C 22 - ... + C 10
2
= ( - 1)10 / 2 = - 252
5!5! Then, multiplying Eqs. (i) and (ii) and equate the
[Q10 is even] coefficient of suitable power of x on both sides.
and from n = 11, y Example 76. Prove that
m +n
C 02 - C 12 + C 22 - ... - C 11
2
=0 [Q11 is odd] Cr = m Cr + m Cr -1 n C1 + m
C r -2 n C 2 + ... + n C r
Aliter if r < m , r < n and m, n, r are positive integers.
n 2 n
Since, (1 + x ) = C 0 + C 1x + C 2 x +... + C n x …(i) Sol. Here, sum of lower suffixes of binomial coefficients in
each term is r .
1
Replacing x by - , then we get i.e. r = r - 1 + 1 = r - 2 + 2 = ... = r = r
x
Since,
n
æ 1ö C1 C 2 C
+ 2 - ... + ( - 1)n nn (1 + x )m = mC 0 + mC 1 x +... + mC r - 2 x r - 2 + mC r - 1 x r -1
ç1 - ÷ = C 0 - …(ii)
è x ø x x x m r m
+ C r x + ... + C m x …(i) m
Sol. Given, (1 + x )n = C 0 + C 1x + C 2 x 2 +... + C n - 2 x n - 2 On multiplying Eqs. (i) and (ii), then we get
n (1 + x )2n - 1 = ( C 1 + 2C 2 x + 3C 3 x 2 +... + n C n x n -1 )
+ Cn - 1 x n - 1 + Cn x n …(i)
and (1 - x )n = C 0 - C 1x + C 2 x 2 - ... + ( - 1)n C n x n …(ii) ´ (C 0 x n + C 1 x n - 1 + C 2 x n - 2 + C 3 x n - 3 +... + C n ) …(iii)
3 n
= S (2n ) + S (2n ) = (n + 1) × 2n + (n + 1) × 2n
+ C 3 x +... + C n x , prove that j =0 i =0
= 2 (n + 1) 2n = (n + 1) 2n +1
C 0 × 2n C n - C 1 × 2n -1C n + C 2 × 2n - 2
Cn - C 3 × 2n - 3
C n + ... +
n n n n n n
( - 1)n C n × n C n = 1 (ii) S S (i + j )C i C j
i =0 j =0
= S S i Ci C j
i =0 j =0
+ S S j Ci C j
i =0 j =0
2n -1 2n - 2
Sol. LHS = C 0 × 2n
Cn - C1 × Cn + C 2 × C n - C 3 × 2n - 3 C n n æ n ö n æ n ö
+ ... + ( - 1)n C n × nC n = S i C i çç j S= 0 C j ÷÷ + j S= 0 j C j ççi S= 0 C i ÷÷
i =0
= Coefficient of x n in è ø è ø
Chap 06 Binomial Theorem 473
=
n
S i C i (2 n ) + j S= 0 j C j (2 n )
n
(vii) SS (i × j ) C i C j
i =0 0 £i < j £n
n n æ n n ö
= 2n S i n C i + 2n j S= 0 j n C j çS S C i ÷÷ - S S C i
i =0 çi = 0 j =0
è ø i = j
n n Sol. (i) SS Ci =
2
= 2n S i × × n - 1C i - 1 + 2 n S
n n 0 £i < j £n
j × × n - 1C j - 1
i =0 i j =0 j n n
n n ( n + 1) S C i - i S= 0 C i
= n × 2n S n - 1C i - 1 + n × 2 n j S= 0 n - 1C j - 1
i =0
=
i =0
2
= n × 2n - 1
n -1
= n × 2 n × 2n -1 + n × 2 n × 2 n - 1
(ii) SS j Ci = S
r =0
n
Cr
2n - 1 2n 0 £i < j £n
= n × 2× 2 = n ×2
{(r + 1) + (r + 2) + (r + 3) + ... + n }
Case II When i and j are dependent. n -1
( n - r ) ( n + r + 1)
In this summation, when i < j is equal to the sum of the = S n
Cr ×
terms when i > j, if a i and a j are symmetrical. So, in this r =0 2
case n -1
n n =
1
S n C r (n 2 - r 2 + n - r )
S S ai a j
i=0 j =0
= SS ai a j + S S ai a j 2r=0
0 £i < j £n i=j n -1 n -1 n -1
(n + n ) S n C r - S r × n C r - S r 2 × nC r
1 2 1 1
+ SS ai a j =
2 r =0 2r=0 2 r=0
0 £ j <i £n
1 1
=2 SS ai a j + S S ai a j = (n 2 + n ) (2n - 1) - × n × (2n - 1 - 1)
2 2
0 £i < j £n i=j
1
n n - × n [(n - 1) (2n - 2 - 1) + 2n - 1 - 1]
S S ai a j - S S ai a j
i=0 j =0
2
Þ SS ai a j =
i=j = n ( 3n + 1) × 2 n-3
0 £i < j £n 2
When a i and a j are not symmetrical, we find the sum by Remark
Here, j and Ci are not symmetrical.
listing all the terms.
Corollary I
n n (iii) Here, i ¹ j i.e., i > j or i < j
S S n C i n C j - SS n
Ci × nC j But C i and C j are symmetrical.
SS
0 £i < j £n
n
Ci nC j =
i=0 j =0 i=j
\ S S Ci C j =2 SS Ci C j
2 i ¹ j 0 £i < j £n
n
(2 n ) 2 - S (n Ci )2
2 2n - 2n C n 2n !
æ 22n - 2n C n ö
=2ç
i=0 ÷ [from corollary I]
= = = 2 2n - 1 - è 2 ø
2 2 2 (n !) 2
= 2 2n - 2n
Cn
y Example 84. If (1 + x )n = C 0 + C 1 x (iv) SS Ci C j = SS Ci C j + S S Ci C j
+ C 2 x +... + C n x n , find the values of the following.
2 0 £i £ j £n 0 £i < j £n i = j
1 2n
(i) SS Ci (ii) SS j Ci =
2
(2 - 2n
Cn ) + 2n
C n [from corollary I]
0 £i < j £n 0 £i < j £n
1
= (22n + 2n
(iii) S S Ci C j (iv) SS Ci C j 2
Cn )
i¹j 0 £i £ j £n
(v) SS (C i ± C j )2 = SS (C i2 + C 2j ± 2 C i C j )
(v) SS (C i ± C j ) 2 0 £i < j £n 0 £i < j £n
0 £i < j £n = SS (C i2 + C 2j ) ± 2 SS Ci C j
0 £i < j £n 0 £i < j £n
(vi) SS (i + j ) C i C j
Q SS ( C i2 + C 2j )
0 £i < j £n
0 £i < j £n
474 Textbook of Algebra
n n
S S (C i2 + C 2j ) - 2 i S= 0 C i2
n
Let P= SS (i + j ) C i C j ...(i)
0 £i < j £n
i =0 j =0
=
2 Replacing i by n - i and j by n - j in Eq. (i), then we
n æ n n ö get
S ç S C i 2 + j S= 0 C 2j ÷÷ - 2 × 2nC n
i =0 ç j =0 P= SS (n - i + n - j ) C n - i C n - j
è ø 0 £i < j £n
=
2 [Q sum of binomial expansion does not
n
change if we replace r byn - r ]
S ( ( n + 1) C i +
2 2n
Cn ) - 2 × Cn 2n
=
i =0
P= SS (2n - i - j ) C i C j
2 0 £i < j £n
n n
[Q n C r = n C n - r ] …(ii)
( n + 1) S C i 2 + 2nC n i S= 0 1 - 2 × 2nC n
i =0
= On adding Eqs. (i) and (ii), we get
2
(n + 1) × 2n C n + 2n C n × (n + 1) - 2 × 2n
Cn 2P = 2n SS Ci C j
= 0 £i < j £n
2
= n × 2n C n or P =n SS Ci C j =
n 2n
(2 - 2n
Cn )
\ SS (C i ± C j ) = n × 2 2n
C n ± (2 2n
- 2n
Cn )
0 £i < j £n 2
0 £i < j £n [from corollary I]
[from corollary 1] (vii) SS (i × j ) C i C j = SS (i n C i ) ( j × n C j )
= ( n m 1) 2n
C n ± 22n ; SS (i + j )C i C j
0 £i < j £n 0 £i < j £n
0 £i < j £n = n2 SS n -1
Ci - 1 n -1
Cj -1
0 £i < j £n
Remark
SS ( Ci + Cj ) = n × 2n
= n2 ê
é 22 (n - 1) - 2n - 2 C n -1 ù
0£ i < j £ n ú [from corollary I]
êë 2 úû
(vi) SS (i + j )C i C j
æ 1 ö
0 £i < j £n = n 2 ç2 2n - 3 - × 2n - 2 C n - 1 ÷
è 2 ø
Chap 06 Binomial Theorem 475
3. If (1 + x + x 2 + x 3 )5 = a 0 + a1x + a 2x 2
+ ... + a15 x 15, then a10 equals
(a) 99 (b) 100 (c) 101 (d) 110
4. Coefficient of x 15 3
in (1 + x + x + x ) is 4 n
5 5 5 3
(a) S nC5 - r × nC3r
r =0
(b) S n C5r
r =0
(c) S n C2r
r =0
(d) S n C3 - r × n C5r
r =0
n
æ 1ö
5. The number of terms in the expansion of ç x 2 + 1 + 2 ÷ , n Î N is
è x ø
n +2 n +3 2 n +1 3n + 1
(a) C2 (b) C2 (c) C2 n (d) C3 n
6. If (1+ x ) 10
= a 0 + a1x + a 2 x + ...+ a10 x , then (a 0 - a 2 + a4 - a 6 + a 8 - a10 ) + (a1 - a 3 + a 5 - a 7 + a 9 )2 is equal to
2 10 2
7. If (1+ x )n = C0 + C1x + C2 x 2 + C3 x 3
+ ...+ Cn x n, n being even the value of
C0 + (C0 + C1 ) + (C0 + C1 + C2 ) + ... + (C0 + C1 + C2 + ... + Cn - 1 ) is equal to
(a) n × 2n (b) n × 2n - 1 (c) n × 2n - 2 (d) n × 2n - 3
C0 C C C Cn
8. The value of - 1 + 2 - 3 + ... + ( - 1)n is
1× 3 2 × 3 3 × 3 4 × 3 (n + 1) × 3
3 n+1 1
(a) (b) (c) (d) None of these
n+ 1 3 3 (n + 1)
æ50ö æ50ö æ50ö æ50ö æ50ö æ50ö æn ö
9. The value of ç ÷ ç ÷ + ç ÷ ç ÷ + ... + ç ÷ ç ÷ , where nCr = ç ÷ , is
è 0ø è 1ø è 1ø è 2ø è49ø è50ø è rø
2
æ 100ö æ 100ö æ 50ö æ 50ö
(a) ç ÷ (b) ç ÷ (c) ç ÷ (d) ç ÷
è 50 ø è 51 ø è 25ø è 25ø
æ 10 10 ö æ 10 10
C ö
13. çç S Cr ÷÷ çç S ( - 1)m mm ÷÷ is equal to
èr = 0 ø è m = 0 2 ø
(a) 1 (b) 2 5 (c) 2 10 (d) 2 20
then
n
<x<
n+1
.
(ii) S r 2 × Cr × pr × q n - r
r =0
= n 2 p2 + npq
n+1 n
18 If (1 + x )n = C0 + C1 x + C2 x 2
+ ... + Cn x n, then
7 (a) The coefficient of x n - 1 in the expansion of
2n + 1 - 1
n n
( x - 1) ( x - 2 ) ( x - 3) ... ( x - n ) = - (1 + 2 + 3 + ... + n ) (i) S r × Cr = n × 2 n -1 (ii) S Cr
=
n (n + 1) r =0 r =0 r +1 n+1
=- = - n + 1C2 n n
2
(iii) S r 2 × Cr = n (n + 1) 2 n - 2 (iv) S (-1)r × r × Cr =0
(b) The coefficient of x n - 1 in the expansion of r =0 r =0
n r
( x + 1) ( x + 2 ) ( x + 3) K ( x + n )
n (n + 1) n + 1 (v) S (-1) Cr =
1
= (1 + 2 + 3 + K + n ) = = C2 r =0 r +1 n+1
2 n
8 The number of terms in the expansion of (vi) S (-1)r Cr
r =0
= 1+
1 1
+ +K+
1
r 2 3 n
ìn + 2
ïï 2 , if n is even n
n
( x + a) + ( x - a) = ín
(vii) S (- 1)r × r 2 × Cr =0
ï n + 1 , if n is odd r =0
ïî 2 n