0% found this document useful (0 votes)
31 views7 pages

Exercise 3

.

Uploaded by

2022ui23007224
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
31 views7 pages

Exercise 3

.

Uploaded by

2022ui23007224
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

Page # 8 TRIGONOMETRIC EQUATION PH–II

EXERCISE – III HINTS & SOLUTIONS

Sol.4 sin2 = cos3


1 
Sol.1 (a) sin = = sin 
2 4 
 cos   2  = cos 3
2 

 = n + (–1)n , n 
4  
 3 = 2n    2 
2 

(b) tan (x – 1) = 3 = tan
3  
 = 2n + or  = 2n –
2 2

(x – 1) = n + , n 
3 2n  
 = + or  = 2n – , n 
5 10 2

x = n + + 1, n 
3  1 
=  2n   n, 
 2 5

(c) tan  = – 1 = tan  
 4  Sol.5 cot  = tan 8

    
 = n +   = n – , n   tan     = tan 8  8= n – 
 4  4  2  2

2  n 
3   9 = n +  = + ; n 
(d) cosec =  sin  = = sin 2 9 18
3 2 3
 1 
  =  n   ; n 
 = n + (–1)n , n   2 9
3
(e) 2 cot2 = cosec2
 cot2 = cosec2 – cot2 Sol.6 tan2 – (1 + 3 ) tan  + 3 =0
  (tan – 1) (tan – 3 )=0
 cot2 = 1 = cot2  = n ± ; n 
4 4
tan  = 1 or tan  = 3
Sol.2 sin 9 = sin   
9 = 2n +  or 9 = (2n + 1)  – , n   = n + , n  or  = n + ; n 
4 3
 8 = 2n or 10 = (2n + 1)n 
n  Sol.7  (0º, 90º)
 = or  = (2n + 1) ; n  sec2 . cosec2 + 2 cosec2 = 8
4 10
1  2 cos2 
Sol.3 cot + tan  = 2 cosec  =8 diff sin  0
sin2  cos2 
cos  sin  2 cos  0
 + =
sin  cos  sin   1 + 2 cos2  = 8 (1 – cos2) cos2
 8 cos4 – 6 cos2 + 1 = 0
cos2   sin2  2  (4 cos2 – 1) (2 cos2 – 1) = 0
 = If sin  0 & cos 0
sin  cos  sin  2
2
 sin – 2 sin cos  = 0 1  1 
 cos2  =   or cos2  =  
 sin  (1 – 2cos) = 0 2
   2
1  1
 but sin 0 so cos = = cos 1
2 3 cos = or cos =
2 2

 = 2n ± ; n   
3  = or =
3 4

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
TRIGONOMETRIC EQUATION PH–II Page # 9

Sol.8 Sol.10 sin + sin 3 + sin 5 = 0


4 cos2 – 3 = 2 sin ( cos  0) sin 3 + 2sin 3 cos 2 = 0
 4 – 4 sin2 –3 = 2 sin  sin 3 (1 + 2 cos 2) = 0
 4sin2+ 2sin  – 1 = 0 sin 3 = 0 or 1 + 2 cos2 = 0

1  2 
2  4  4(4)(1)  1 5 3 = n cos2 = – = cos  
 sin  = = 2  3 
8 4
n  2 
5 1 ( 5  1) = , n  2 = 2m ±  
sin = or sin  = – 3  3 
4 4

  = m ± m 
  3
 sin = sin or sin  = –  cos 5 
10  
Sol.11 cos + sin  = cos 2 + sin 2
   3 
  = n + (–1)n or sin = sin   1 1
10  10   (cos + sin ) = (cos2 + sin2)
2 2

  3     
 = m + (–1)n   ,m
cos     = cos  2  
 10   4   4 

  
Sol.9 cot  – tan  = 2 2n ±     = 2 
4
1 – tan2 = 2 tan; tan   0  4
tan2 + 2 tan  – 1 = 0  
 2 – = 2n +  –  = 2n, n  I
2 44 4 4
tan = – =–1± 2
2  
& 2 – = 2n –  +
4 4
tan = 2 – 1 or tan  = – ( 2 + 1)
 2n 
 3 = 2n + q=  ,n  
2 3 6
 3
tan  = tan tan = – tan
8 8 Sol.12  (0, )
cos6 + cos4 + cos2 + 1 = 0
2cos5 cos + 2cos2 = 0
   3  2cos [cos5 + cos]
 = n + , n  or = tan  
8  8  cos = 0 or cos2 =0 or cos3 = 0
  
 1  3 = or  = or 3 = (2k + 1)
 =  2n   , n  or  = m + 2 4 2
 4  2 8
 3  5
= = or = ,
  4 4 6 6
= m – +
2 8
   3 5
= , , , ,
  6 4 2 4 6
 = (2m – 1) +
2 8
Sol.13 cos2x + cos22x + cos23x = 1
1 
 = ((2m – 1) + ) , m  1 cos 2x 1 cos 4 x 1 cos 6 x
4 2  + + =1
2 2 2
cos2x + cos4x + cos6x + 3 = 2
 1 
combined  =  n   n  cos2x + cos4x + cos6x + 1 = 0
 4  2 Previous Q.

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 10 TRIGONOMETRIC EQUATION PH–II

   Sol.16 cosec = cot + 3


x = (2m + 1) , 2x = (2n + 1) , 3x = (2k + 1) , k 
2 2 2
 cosec 2 = cot2 + 2 3 cot + 3
 
m  x = (2n + 1) ,x = (2k + 1) , k   cosec2 – cot2 = 2 3 cot + 3
4 6
verticle line n 
2
 1 = 2 3 cot + 3  cot = –
2 3

 
 tan = – 3  tan = tan   
 3

 
 = n +   
 3
vertical line is induced
so remaining sol. 
 = n – , n 
 3
x = k ± k 
6 but IV quadrant is reject
sol. are Aliter :

  1 cos 
or x = (2m + 1) m , x = (2n + 1) ; = + 3 , sin  0
2 4 sin  sin 

  3 sin  + cos  = 1
n , x =  k   , k 
 6 
3 1 1
sin  + cos  =
2 2 2
Sol.14 sin2  – sin2 (n – 1)  = sin2 n is constant & n  0,1
 sin (n + n – ) sin (n – n + ) = sin2
 sin (2n – ) sin  = sin2
  1
cos     =
 sin = 0 or sin (2n – 1)  – sin = 0  3 2

 2n       2n       
 = m, m  or 2cos  2
 sin 
2
= 0
– = 2m ± , m 
    3 3
2 cos (n) sin (n – 1)  = 0
cos n = 0 or sin (n – 1) = 0 2
 = 2m or  = 2m + m 
3

n = (2k + 1) or (n – 1)  = p k, p,  reject cosec & cot is present. because does
2
not satisfy given equation (in IV quadrant)
( 2k  1)  p
= or  = ; p 
2 n (n  1) Sol.17 5sin + 2 cos = 5

 
Sol.15 10 tan 2(1  tan2 )
3 sin – cos  = 2 2 2
 + =5
2  2 
1 1 1  tan 1  tan

3
sin  – cos  = 2 2
2 2 2
  
  1   10 tan + 2 – 2tan2 = 5 + 5tan2
 sin     = = sin 2 2 2
 6  2 4
 
   7 tan2 – 10 tan +3=0
– = n + (–1)n 2 2
6 4
     
 = n +
 
+ (–1)n ; n    tan  1  7 tan  3  = 0
 2   2 
6 4

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
TRIGONOMETRIC EQUATION PH–II Page # 11

     
 = n + or = n +   tan 3x = – 3 = tan     3x = n –
2 4 2  3 3

  = 2n + , n  n 
2 x= – , n 
3 9
3
or  = 2n + 2 ;  = tan–1 , n 
7 3 7
Sol.21 tan + sin  = ; tan2 + cos2 =
2 4
Sol.18 tan 2 tan  = 1
tan 2 = cot  7
tan2 + 1 – sin2 =
4
  
tan 2 =- tan     2 = n + –
2  2 3
tan2 – sin2 =
4
 
3 = n + 3 = n + 3
2 2
 (tan + sin ) (tan – sin ) =
4

 = (2n + 1) n 
6 3 3
 (tan – sin ) =
2n + 1  3k 2 4
Aliter : 1 – tan 2 tan  = 0
1
 tan 3 = not. defined  tan – sin  =
2
 
3 = n +  = (2n + 1) n  3
2 6 tan  + sin  =
2
2 tan  2 tan = 2
Alter: tan  = 1
1  tan2  tan  = 1
2 tan2 = 1 – tan2 
 = n + , n 
1  4
tan2 =  = n ±
3 6 2 sin  = 1
1
sin  =
Sol.19 tan + tan2 + 3 tan  tan 2 = 3 2

 tan + tan2 = 3 (1 – tan  tan 2) 


 = n + (–1)n , n 
6
tan   tan 2
 = 3 { 1 – tan2 tan  0}
(1  tan  tan 2) Sol.22 a tan  + bsec = c
 b sec = c – a tan 
 tan 3 = 3  3 = n =  b2 sec2 = c2 + a2 tan2 – 2 ac tan 
3
 b2 + b2 tan = c2 + a2 tan – 2ac tan
 1  tan 
 =  n   ; n 
 3 3  (a2 – b2) tan2 – 2ac tan  + c2 – b2 = 0
tan 

   2  2ac c2  b2
Sol.20 tan x . tan  x   ; tan x   = 3 tan + tan =
a2  b2
& tan . tan  =
a2  b2
 3   3 

     tan   tan  2ac / a 2  b 2


 tan x . tan   x  tan     3  x   = 3  tan ( + ) = =
1  tan  tan  1  (c 2  b 2 ) /(a 2  b2 )
3    

    2ac 2ac
 tanx tanx   x  tan   x  = – 3 = 2 2 2 2 =
3  3  a b c b a  c2
2

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 12 TRIGONOMETRIC EQUATION PH–II

Sol.23 a cos 2 + b sin 2 = c  4 (sinx + cosx) + (sin2x + 1) + 3 = 0


 b sin 2 = c – a cos2  4 (sinx + cosx) + (sinx + cos x)2 + 3 = 0
 b2 sin22 = c2 +a2cos22 – 2ac cos 2 Let sinx + cos x = t
 b2 – b2 cos22 = c2 + a2 cos22 – 2ac cos 2  4t + t2 + 3 = 0  t2 + 4t + 3 = 0
 (a2 + b2) cos22 – 2ac cos 2  (t + 1) (t + 3) = 0  sin x + cos x = –1
or sin x + cosx  –3 – 2 t 2
+ (c2 – b2) = 0
cos   1
 cos  x   = –
 4  2
2ac c 2  b2
cos2 + cos2 = & cos2 . cos2 =
a2  b 2 a2  b 2  3
x– = 2n ± n 
4 4
2ac
2cos2 – 1 + 2 cos2 – 1 =
a  b2
2
 x = 2n +  x = 2n –

n 
2
1  2ac  2  x = (2n + 1) n 
cos2 + cos2 =  
2  a 2  b2  But x  n

a2  ac  b2 Sol.26 2sinx = 3x2 + 2x + 3


= 2 2
a b In R.H.S. D = 4 – 36 = – 32
D 8
 min value of RHS = =
  4. 3 3
Sol.24 (sin2 + 3 cos 2)2 – 5 = cos  6  2  Max. value of L.H.S. = 2
L.H.S.  R.H.S.  No solution
2 vx R
  3 1   
 2 2 cos 2  2 sin 2 – 5 = cos   2  x 
    6 

 4 t2 – 5 = t  4t2 – t – 5 = 0 Sol.27 2 + 7 tan2 = 3.25 sec2 0º <  < 360º


325
   7(1 + tan2) – 5 = sec2
 (t + 1) (4t – 5) = 0 {let cos   2  = t 100
6 
13
 7 sec2 – 5 = sec2
 2  = –1 or cos   2   5
    4
 cos 
6 6 4
     28 sec2 – 20 = 13 sec2  15 sec2 = 20
   4
 –   2  = 2n +   2 = 2n + +  sec2 =
6  6 3

7 
= , n  [0, 2]  = 2n ±
12 6
 =30º, 150º, 210º, 330º
7 19
at n = 0  = & at n = 1   =
12 12
1 1
 log5 (sin x)  log15 cos x
Sol.28 51/2 + 52 = 152
x
sec 2
2  5 + 5 . 5log5 sin x = 3 5 = 15log15 cos x
Sol.25 1 + 2 cosecx = – (cosec x  0 x  n
2 sinx > 0 & cosx > 0
 x in Ist quadrant
sin x  2 1
 = 1 + sin x =
sin x x  3 cosx
2 cos 2
2
3 1 1
 (sinx + 2) (1 + cos x) + sin x = 0  cos x – sinx =
 2sinx + 2 cosx + sin x cosx + 2 = 0 2 2 2

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
TRIGONOMETRIC EQUATION PH–II Page # 13

 2 cos4 cos 2 + (2cos22 – 1) = 0


    
 cos  x   = cos or x + = 2n ±  2cos4 cos2 + cos4 = 0
 6  3 6 3  cos4 [2cos2 + 1] = 0

  1
x = 2n + or x = 2n – (reject)  cos4 =0 or cos 2 = –
6 2 2

 2
In general, x = 2n + , n   4 = 2n or 2 = 2n ±
6 3

 3 5 7  2
Sol.29 sin + sin 5 = sin 3 0  = , , , = ,
8 8 8 8 3 3
2 sin 3 cos 2 = sin 3
sin3 (2cos2 – 1) = 0  3  5 2 7
= , , , , ,
1 8 8 3 8 3 8
sin 3 = 0 or cos =
2

 5 7 x x
sin 3 = 0 or 2 = , , Sol.32 2 + tanx . cot + cotx . tan =0
3 3 3 2 2

 2  5 7
 = 0, , ,   = , ,  [0, ] x x
3 3 6 6 6 tan x tan  2 x  2n
 2 + 2
x + tan x = 0
x 
  2 5 tan  , x  ( 2n  1)
 = 0, , , , & 2 2 2
6 3 3 6

x x
Sol.30 2 sin11x + cos3x + 3 sin3x = 0 2 tan tan x  tan2 x  tan2  x
tan  0
 2 2 =0  2
x  tan x 0
tan tan x
1 3 2
 cos3x + sin 3x = – sin11x
1x
2 2
2
 x x
 
 sin  3 x   = sin (–11x)   tan x  tan x  = 0  tanx = –tan
6  2 2

  x  x
 3x + = 2n + (–11x)  tanx = tan     x = n +   
6  2  2

 3x 2n
or 3x + = (2n + 1) – (–11)x  = n x =
6 2 3
  2
 14x = 2n – –8x + = 2n +  3
6 6

n  5
 x= – , n  –8x = 2n + x
7 84 6

n 5
x= – , n 
4 48
2
3
1 reject all sol. at 2n
Sol.31 cos . cos 2 . cos3 =
4
2
 2 cos2 . 2 cos cos 3 = 1 x = 2n ± , n 
 2cos2 [cos4 + cos2] = 1 3

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com
Page # 14 TRIGONOMETRIC EQUATION PH–II

Sol.33 13  18 tan x = 6 tanx – 3 –2 < x < 2  


 cos 6x = cos   2 x 
 13 – 18 tan x = 9 (4tan2x
– 4 tan x + 1)  2 
 2
13 – 18 tanx = 36 tan x – 36 tanx + 9
 36 tan2x – 18 tanx – 4 = 0  
 cos6x = cos   2x 
 18 tan2x – 9 tanx – 2 = 0 2 
 (3 tanx – 2) (6 tanx + 1) = 0
 
1 2  6x = 2n ±   2x 
 tanx = – or tanx = 2 
6 3
 R.H.S. = (–ve)  
 6x = 2n + –2x or 6x = 2n – + 2x
Not possible  (LHS) = (+ve) 2 2

2   
tanx = = tan   8x = 2n + or 4x = 2n –
3 2 2
x = n +  n  n 
x = ,  + , – 2 + , –  +  x = + or x = –
4 16 2 8
2
where tan  =
3
  3  
min  , =
 16 8  16
1
Sol.34 cot 3 x  sin2 x  + 3 cos x  sin x  2
4 Sol.36 3 sin2A = sin2B
 3sin22A = sin22B
sin 3 x 2
= –  3 – 3 cos22A = 1 – cos22B
2 2
 ( 3 cos2A)2 – (cos2B)2 = 2
3 cosx + sinx  2
( 3 cos2A)2 – (cos2B)2 = 2
but 3 cosx + sinx  [–2, 2]
( 3 cos2A + cos2B) ( 3 cos2A – cos2B) = 2 ... (i)
 3 cosx + sinx = 2
3 1
& 3 sin2A + sin2B =
  2
cos  x   = 1
 6
 3 (1 – cos2A) + (1 – cos2B) = 3 –1

– 3 cos 2A – cos2B = –2


 
x– =0  x=
6 6  3 cos2A + cos 2B = 2 ....(ii)
check
by (i) & (ii)  3 cos2A – cos2B = 1 ...(iii)
1 1 1 1
0  + 22 = – 3
4 4 2 2 by (ii) & (iii) cos2A = 2A = 30º A = 15º
2

satisfy at x = 1
6 & cos2B = 2B = 60ºB = 30º
2

Sol.35 1 sin 2x – 2 cos3x = 0


 1 + sin2x = 2 cos23x
 1 + sin2x = 1 + cos 6x

394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com

You might also like