0% found this document useful (0 votes)
318 views15 pages

Dmitri Mendeleev

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
318 views15 pages

Dmitri Mendeleev

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

Dmitri Mendeleev

Dmitri Ivanovich Mendeleev (/ˌmɛndəlˈeɪəf/ MEN-


dəl-AY-əf;[2][b][a] 8 February [O.S. 27 January] 1834 – Dmitri Mendeleev
ForMemRS
2 February [O.S. 20 January] 1907) was a Russian
chemist known for formulating the periodic law and Дмитрий Менделеев[a]
creating a version of the periodic table of elements. He
used the periodic law not only to correct the then-
accepted properties of some known elements, such as
the valence and atomic weight of uranium, but also to
predict the properties of three elements that were yet to
be discovered (germanium, gallium and scandium).

Early life
Mendeleev was born in the village of Verkhnie
Aremzyani, near Tobolsk in Siberia, to Ivan Pavlovich
Mendeleev (1783–1847) and Maria Dmitrievna
Mendeleeva (née Kornilieva) (1793–1850).[3][4] Ivan
worked as a school principal and a teacher of fine arts,
Born Dmitri Ivanovich Mendeleev
politics and philosophy at the Tambov and Saratov
8 February 1834
gymnasiums.[5] Ivan's father, Pavel Maximovich
Verkhnie Aremzyani, Tobolsk,
Sokolov, was a Russian Orthodox priest from the Tver
Russian Empire
region.[6] As per the tradition of priests of that time,
Pavel's children were given new family names while Died 2 February 1907 (aged 72)
attending the theological seminary,[7] with Ivan getting Saint Petersburg, Russian Empire
the family name Mendeleev after the name of a local Alma mater Saint Petersburg Imperial
landlord.[8] University
Known for Predicting gallium, germanium
Maria Kornilieva came from a well-known family of
and scandium
Tobolsk merchants, founders of the first Siberian
printing house who traced their ancestry to Yakov Periodic table

Korniliev, a 17th-century posad man turned a wealthy Periodic trends


merchant.[9][10] In 1889, a local librarian published an Spouses Feozva Nikitichna Leshcheva
article in the Tobolsk newspaper where he claimed that ​
​(m. 1862; div. 1882)​
Yakov was a baptized Teleut, an ethnic minority
Anna Ivanovna Popova
known as "white Kalmyks" at the time.[11] Since no ​(m. 1882)​
sources were provided and no documented facts of
Awards Davy Medal (1882)
Yakov's life were ever revealed, biographers generally
dismiss it as a myth.[12][13] In 1908, shortly after Faraday Lectureship Prize (1889)
Mendeleev's death, one of his nieces published Family ForMemRS (1892)[1]
Chronicles. Memories about D. I. Mendeleev where Copley Medal (1905)
she voiced "a family legend" about Maria's grandfather Scientific career
who married "a Kyrgyz or Tatar beauty whom he loved
Fields Chemistry
so much that when she died, he also died from
grief".[14] This, however, contradicts the documented Institutions Saint Petersburg State Institute of
family chronicles, and neither of those legends is Technology
supported by Mendeleev's autobiography, his Saint Petersburg Imperial
daughter's or his wife's memoirs.[4][15][16] Yet some University
Western scholars still refer to Mendeleev's supposed
Thesis A Discourse on the Compounds
"Mongol", "Tatar", "Tartarian" or simply "Asian" of Alcohol and Water (https://uplo
ancestry as a fact.[17][18][19][20] ad.wikimedia.org/wikipedia/comm
ons/3/3f/%D0%9C%D0%B5%D
Mendeleev was raised as an Orthodox Christian, his
0%BD%D0%B4%D0%B5%D0%
mother encouraging him to "patiently search divine
BB%D0%B5%D0%B5%D0%B2
and scientific truth".[21] His son Ivan would later
_%D0%94.%D0%98._%D0%A
inform that Mendeleev had departed from the Church
0%D0%B0%D1%81%D1%81%D
and embraced a form of "romanticized deism".[22]
1%83%D0%B6%D0%B4%D0%B
Mendeleev was the youngest of 17 siblings, of whom 5%D0%BD%D0%B8%D0%B5_%
"only 14 stayed alive to be baptized" according to D0%BE_%D1%81%D0%BE%D
Mendeleev's brother Pavel, meaning the others died 0%B5%D0%B4%D0%B8%D0%B
D%D0%B5%D0%BD%D0%B8%
soon after their birth.[5] The exact number of
D0%B8_%D1%81%D0%BF%D
Mendeleev's siblings differs among sources and is still
0%B8%D1%80%D1%82%D0%B
a matter of some historical dispute.[23][c] Unfortunately
0_%D1%81_%D0%B2%D0%B
for the family's financial well-being, his father became
E%D0%B4%D0%BE%D0%B9._
blind and lost his teaching position. His mother was
(1865).pdf) (1865)
forced to work and she restarted her family's
abandoned glass factory. At the age of 13, after the Signature
passing of his father and the destruction of his mother's
factory by fire, Mendeleev attended the Gymnasium in
Tobolsk.

Portraits of Maria Dmitrievna Mendeleeva and Ivan Pavlovich Mendeleev (c. early 19th century)

In 1849, his mother took Mendeleev across Russia from Siberia to Moscow with the aim of getting
Mendeleev enrolled at the Moscow University.[8] The university in Moscow did not accept him. The
mother and son continued to Saint Petersburg to the father's alma mater. The now poor Mendeleev family
relocated to Saint Petersburg, where he entered the Main Pedagogical Institute in 1850. After graduation,
he contracted tuberculosis, causing him to move to the Crimean Peninsula on the northern coast of the
Black Sea in 1855. While there, he became a science master of the 1st Simferopol Gymnasium. In 1857,
he returned to Saint Petersburg with fully restored health.

Between 1859 and 1861, he worked on the capillarity of liquids and the workings of the spectroscope in
Heidelberg. Later in 1861, he published a textbook named Organic Chemistry.[26] This won him the
Demidov Prize of the Petersburg Academy of Sciences.[26]

On 4 April 1862, he became engaged to Feozva Nikitichna Leshcheva, and they married on 27 April 1862
at Nikolaev Engineering Institute's church in Saint Petersburg (where he taught).[27]

Mendeleev became a professor at the Saint Petersburg Technological Institute and Saint Petersburg State
University in 1864,[26] and 1865, respectively. In 1865, he became a Doctor of Science for his
dissertation "On the Combinations of Water with Alcohol". He achieved tenure in 1867 at St. Petersburg
University and started to teach inorganic chemistry while succeeding Voskresenskii to this post;[26] by
1871, he had transformed Saint Petersburg into an internationally recognized center for chemistry
research.

Periodic table
In 1863, there were 56 known elements with a new element being
discovered at a rate of approximately one per year. Other scientists
had previously identified periodicity of elements. John Newlands
described a Law of Octaves, noting their periodicity according to
relative atomic weight in 1864, publishing it in 1865. His proposal
identified the potential for new elements such as germanium. The
concept was criticized, and his innovation was not recognized by Mendeleev's 1871 periodic table
the Society of Chemists until 1887. Another person to propose a
periodic table was Lothar Meyer, who published a paper in 1864
describing 28 elements classified by their valence, but with no
predictions of new elements.

After becoming a teacher in 1867, Mendeleev wrote Principles of


Chemistry (Russian: Основы химии, romanized: Osnovy khimii),
which became the definitive textbook of its time. It was published
in two volumes between 1868 and 1870, and Mendeleev wrote it
as he was preparing a textbook for his course.[26] This is when he
Sculpture in honor of Mendeleev
made his most important discovery.[26] As he attempted to classify
and the periodic table, located in
the elements according to their chemical properties, he noticed Bratislava, Slovakia
patterns that led him to postulate his periodic table; he claimed to
have envisioned the complete arrangement of the elements in a
dream:[28][29][30][31][32]

I saw in a dream a table where all elements fell into place as required. Awakening, I
immediately wrote it down on a piece of paper, only in one place did a correction later seem
necessary.
— Mendeleev, as quoted by Inostrantzev[33][34]

Unaware of the earlier work on periodic tables going on in the 1860s, he made the following table:

Cl 35.5 K 39 Ca 40
Br 80 Rb 85 Sr 88

I 127 Cs 133 Ba 137

By adding additional elements following this pattern, Mendeleev developed his extended version of the
periodic table.[35][36] On 6 March 1869, he made a formal presentation to the Russian Chemical Society,
titled The Dependence between the Properties of the Atomic Weights of the Elements, which described
elements according to both atomic weight (now called relative atomic mass) and valence.[37][38] This
presentation stated that

1. The elements, if arranged according to their atomic weight, exhibit an apparent periodicity of
properties.
2. Elements which are similar regarding their chemical properties either have similar atomic
weights (e.g., Pt, Ir, Os) or have their atomic weights increasing regularly (e.g., K, Rb, Cs).
3. The arrangement of the elements in groups of elements in the order of their atomic weights
corresponds to their so-called valencies, as well as, to some extent, to their distinctive
chemical properties; as is apparent among other series in that of Li, Be, B, C, N, O, and F.
4. The elements which are the most widely diffused have small atomic weights.
5. The magnitude of the atomic weight determines the character of the element, just as the
magnitude of the molecule determines the character of a compound body.
6. We must expect the discovery of many yet unknown elements – for example, two elements,
analogous to aluminium and silicon, whose atomic weights would be between 65 and 75.
7. The atomic weight of an element may sometimes be amended by a knowledge of those of
its contiguous elements. Thus the atomic weight of tellurium must lie between 123 and 126,
and cannot be 128. (Tellurium's atomic weight is 127.6, and Mendeleev was incorrect in his
assumption that atomic weight must increase with position within a period.)
8. Certain characteristic properties of elements can be foretold from their atomic weights.
Mendeleev published his periodic table of all known elements and predicted several new elements to
complete the table in a Russian-language journal. Only a few months after, Meyer published a virtually
identical table in a German-language journal.[39][40] Mendeleev has the distinction of accurately
predicting the properties of what he called ekasilicon, ekaaluminium and ekaboron (germanium, gallium
and scandium, respectively).[41][42]

Mendeleev also proposed changes in the properties of some known elements. Prior to his work, uranium
was supposed to have valence 3 and atomic weight about 120. Mendeleev realized that these values did
not fit in his periodic table, and doubled both to valence 6 and atomic weight 240 (close to the modern
value of 238).[43]

For his predicted three elements, he used the prefixes of eka, dvi, and tri (Sanskrit one, two, three) in their
naming. Mendeleev questioned some of the currently accepted atomic weights (they could be measured
only with a relatively low accuracy at that time), pointing out that they did not correspond to those
suggested by his Periodic Law. He noted that tellurium has a higher atomic weight than iodine, but he
placed them in the right order, incorrectly predicting that the accepted atomic weights at the time were at
fault. He was puzzled about where to put the known lanthanides, and predicted the existence of another
row to the table which were the actinides which were some of the heaviest in atomic weight. Some people
dismissed Mendeleev for predicting that there would be more elements, but he was proven to be correct
when Ga (gallium) and Ge (germanium) were found in 1875 and 1886 respectively, fitting perfectly into
the two missing spaces.[44]

By using Sanskrit prefixes to name "missing" elements, Mendeleev may have recorded his debt to the
Sanskrit grammarians of ancient India, who had created theories of language based on their discovery of
the two-dimensional patterns of speech sounds (exemplified by the Śivasūtras in Pāṇini's Sanskrit
grammar). Mendeleev was a friend and colleague of the Sanskritist Otto von Böhtlingk, who was
preparing the second edition of his book on Pāṇini[45] at about this time, and Mendeleev wished to honor
Pāṇini with his nomenclature.[46][47][48]

The original draft made by Mendeleev would be found years later and published under the name
Tentative System of Elements.[49]

Dmitri Mendeleev is often referred to as the Father of the Periodic Table. He called his table or matrix,
"the Periodic System".[50]

Later life
In 1876, he became
obsessed with Anna
Ivanova Popova and began
courting her; in 1881 he
proposed to her and
threatened suicide if she
refused. His divorce from
Leshcheva was finalized
one month after he had
married Popova (on 2
April)[51] in early 1882.
Even after the divorce,
Mendeleev was technically
a bigamist; the Russian
Orthodox Church required
at least seven years before
lawful remarriage. His Dmitri Mendeleev's second wife,
divorce and the Anna
Dmitri Mendeleev in 1890 surrounding controversy
contributed to his failure to
be admitted to the Russian Academy of Sciences (despite his
international fame by that time). His daughter from his second marriage, Lyubov, became the wife of the
famous Russian poet Alexander Blok. His other children were son Vladimir (a sailor, he took part in the
notable Eastern journey of Nicholas II) and daughter Olga, from his first marriage to Feozva, and son
Ivan and twins from Anna.
Though Mendeleev was widely honored by scientific organizations all over Europe, including (in 1882)
the Davy Medal from the Royal Society of London (which later also awarded him the Copley Medal in
1905),[52] he resigned from Saint Petersburg University on 17 August 1890. He was elected a Foreign
Member of the Royal Society (ForMemRS) in 1892,[1] and in 1893 he was appointed director of the
Bureau of Weights and Measures, a post which he occupied until his death.[52]

Mendeleev also investigated the composition of petroleum, and helped to found the first oil refinery in
Russia. He recognized the importance of petroleum as a feedstock for petrochemicals. He is credited with
a remark that burning petroleum as a fuel "would be akin to firing up a kitchen stove with bank notes".[53]

In 1905, Mendeleev was elected a member of the Royal Swedish


Academy of Sciences. The following year the Nobel Committee
for Chemistry recommended to the Swedish Academy to award
the Nobel Prize in Chemistry for 1906 to Mendeleev for his
discovery of the periodic system. He was also elected an
International Member of the American Philosophical Society.[54]
The Chemistry Section of the Swedish Academy supported this
recommendation. The academy was then supposed to approve the Mendeleev, Alfred Werner, Adolf von
committee's choice, as it has done in almost every case. Baeyer, and other prominent
Unexpectedly, at the full meeting of the academy, a dissenting chemists
member of the Nobel Committee, Peter Klason, proposed the
candidacy of Henri Moissan whom he favored. Svante Arrhenius,
although not a member of the Nobel Committee for Chemistry, had a great deal of influence in the
academy and also pressed for the rejection of Mendeleev, arguing that the periodic system was too old to
acknowledge its discovery in 1906. According to the contemporaries, Arrhenius was motivated by the
grudge he held against Mendeleev for his critique of Arrhenius's dissociation theory. After heated
arguments, the majority of the academy chose Moissan by a margin of one vote.[55] The attempts to
nominate Mendeleev in 1907 were again frustrated by the absolute opposition of Arrhenius.[56]

In 1907, Mendeleev died at the age of 72 in Saint Petersburg from influenza, just 6 days short of his 73rd
birthday. His last words were to his physician: "Doctor, you have science, I have faith," which is possibly
a Jules Verne quote.[57]

Other achievements
Mendeleev made other important contributions to science. The Russian chemist and science historian Lev
Chugaev characterized him as

"a chemist of genius, first-class physicist, a fruitful researcher in the fields of


hydrodynamics, meteorology, geology, certain branches of chemical technology (explosives,
petroleum, and fuels, for example) and other disciplines adjacent to chemistry and physics, a
thorough expert of chemical industry and industry in general, and an original thinker in the
field of economy [...]"[58]

Mendeleev was one of the founders, in 1868, of the Russian Chemical Society. He worked on the theory
and practice of protectionist trade and on agriculture.
In an attempt at a chemical conception of the aether, he put
forward a hypothesis that there existed two inert chemical
elements of lesser atomic weight than hydrogen.[52] Of these two
proposed elements, he thought the lighter to be an all-penetrating,
all-pervasive gas, and the slightly heavier one to be a proposed
element, coronium.

Mendeleev devoted much study and made important contributions


to the determination of the nature of such indefinite compounds as
solutions.

In another department of physical chemistry, he investigated the


expansion of liquids with heat, and devised a formula similar to
Gay-Lussac's law of the uniformity of the expansion of gases,
while in 1861 he anticipated Thomas Andrews' conception of the
critical temperature of gases by defining the absolute boiling-point
Portrait of Dmitri Mendeleev by Ivan
of a substance as the temperature at which cohesion and heat of Kramskoi (1878)
vaporization become equal to zero and the liquid changes to vapor,
irrespective of the pressure and volume.[52]

Mendeleev is given credit for the introduction of the metric system to the
Russian Empire.[59]

He invented pyrocollodion, a kind of smokeless powder based on


nitrocellulose. This work had been commissioned by the Russian Navy,
which however did not adopt its use. In 1892 Mendeleev organized its
manufacture.

Mendeleev studied the origins of petroleum origin; he concluded that Mendeleev Medal
hydrocarbons are abiogenic and form deep within the earth – see
Abiogenic petroleum origin. He wrote: "The capital fact to note is that
petroleum was born in the depths of the earth, and it is only there that we must seek its origin."[60]

Activities beyond chemistry


Beginning in the 1870s, he published widely beyond chemistry, looking at aspects of Russian industry,
and technical issues in agricultural productivity. He explored demographic issues, sponsored studies of
the Arctic Sea, tried to measure the efficacy of chemical fertilizers, and promoted the merchant navy.[61]
He was especially active in improving the Russian petroleum industry, making detailed comparisons with
the more advanced industry in Pennsylvania.[62] Although not well-grounded in economics, he had
observed industry throughout his European travels, and in 1891 he helped convince the Ministry of
Finance to impose temporary tariffs with the aim of fostering Russian infant industries.[63]

In 1890 he resigned his professorship at St. Petersburg University following a dispute with officials at the
Ministry of Education over the treatment of university students.[64] In 1892 he was appointed director of
Russia's Central Bureau of Weights and Measures, and led the way to standardize fundamental prototypes
and measurement procedures. He set up an inspection system, and introduced the metric system to
Russia.[65][66]

He debated against the scientific claims of spiritualism, arguing that metaphysical idealism was no more
than ignorant superstition. He bemoaned the widespread acceptance of spiritualism in Russian culture,
and its negative effects on the study of science.[67]

Vodka myth
A very popular Russian story credits Mendeleev with setting the 40% standard strength of vodka. For
example, Russian Standard vodka advertises: "In 1894, Dmitri Mendeleev, the greatest scientist in all
Russia, received the decree to set the Imperial quality standard for Russian vodka and the 'Russian
Standard' was born"[68] Others cite "the highest quality of Russian vodka approved by the royal
government commission headed by Mendeleev in 1894".[69]

In fact, the 40% standard was already introduced by the Russian government in 1843, when Mendeleev
was nine years old.[69] It is true that Mendeleev in 1892 became head of the Archive of Weights and
Measures in Saint Petersburg, and evolved it into a government bureau the following year, but that
institution was charged with standardising Russian trade weights and measuring instruments, not setting
any production quality standards. Also, Mendeleev's 1865 doctoral dissertation was entitled "A Discourse
on the combination of alcohol and water", but it only discussed medical-strength alcohol concentrations
over 70%, and he never wrote anything about vodka.[69][70]

Commemoration
A number of places and objects are associated with the name and
achievements of the scientist.

In Saint Petersburg his name was given to D. I. Mendeleev


Institute for Metrology, the National Metrology Institute,[71]
dealing with establishing and supporting national and worldwide
standards for precise measurements. Next to it there is a
monument to him that consists of his sitting statue and a depiction
of his periodic table on the wall of the establishment.

In the Twelve Collegia building, now being the centre of Saint


Petersburg State University and in Mendeleev's time – Head
Pedagogical Institute – there is Dmitry Mendeleev's Memorial
Museum Apartment[72] with his archives. The street in front of
Portrait of Mendeleev by Ilya Repin,
these is named after him as Mendeleevskaya liniya (Mendeleev 1885
Line).

In Moscow, there is the D. Mendeleyev University of Chemical Technology of Russia.[73]

Mendelevium, which is a synthetic chemical element with the symbol Md (formerly Mv) and the atomic
number 101, was named after Mendeleev. It is a metallic radioactive transuranic element in the actinide
series, usually synthesized by bombarding einsteinium with alpha particles.
The mineral mendeleevite-Ce, Cs6(Ce22Ca6)(Si70O175)(OH,F)14(H2O)21, was named in Mendeleev's
honor in 2010.[74] The related species mendeleevite-Nd,
[75]
Cs6[(Nd,REE)23Ca7](Si70O175)(OH,F)19(H2O)16, was described in 2015.

A large lunar impact crater Mendeleev, that is located on the far side of the Moon, also bears the name of
the scientist.

The Russian Academy of Sciences has occasionally awarded a Mendeleev Golden Medal since 1965.[76]

On 8 February 2016, Google celebrated Dmitri Mendeleev's 182nd Birthday with a doodle.[77]

Works
Менделеев Д. И. Периодический закон (DjVu) (http://runivers.ru/bookreader/book144952/
#page/3/mode/1up). Т. 1. // Собрание сочинений в 3 томах — М.: Издательство
Академии наук СССР — via Runivers
Менделеев Д. И. Растворы (DjVu) (http://runivers.ru/bookreader/book144957/#page/3/mod
e/1up). Т. 2. (DjVu)]. Т. 2. // Собрание сочинений в 3 томах — М.: Издательство
Академии наук СССР — via Runivers
Менделеев Д. И. Периодический закон. Дополнительные материалы (DjVu) (http://runiv
ers.ru/bookreader/book144965/#page/3/mode/1up). Т. 3. // Собрание сочинений в 3
томах — М.: Издательство Академии наук СССР — via Runivers
Менделеев Д. И. Ещё о расширении жидкостей (Ответ профессору Авенариусу) (http
s://nn.mi.ras.ru/?bi=125). — СПб.: Тип. В. Демакова, 1884. — 18 с.
Менделеев Д. И. Об опытах над упругостью газов (https://nn.mi.ras.ru/?bi=127).
Сообщение Д. И. Менделеева в Императорском Русском техническом обществе — 21
янв. 1881 г. — СПб., 1881. — 22 с.
Менделеев, Д. (1994) [1906]. Савинкин, А.Е. (ed.). К познанию России (https://www.rp-ne
t.ru/pdf/rvs/vypusk-7.pdf) (PDF). Российский военный сборник (in Russian). Vol. 7.
Москва: ГА ВС. pp. 174–231.
Менделеев Д. И. Дополнения к познанию России (https://nn.mi.ras.ru/?bi=146).
Посмертное издание. СПб.: А. С. Суворин, 1907. — 109 с. + I л. портрет.
Менделеев Д. И. Изоморфизм в связи с другими отношениями кристаллической
формы к составу (https://nn.mi.ras.ru/?bi=446). Диссертация, представленная при
окончании курса в Главном педагогическом институте студентом Д. Менделеевым. —
СПб., 1856. — 234 с.
Менделеев Д. И. О сопротивлении жидкостей и о воздухоплавании (http://e-heritage.ru/r
as/view/publication/general.html?id=42069948): Вып. 1. — СПб.: Тип. В. Демакова,
1880. — 80 с.: табл.
Менделеев Д. И. Заветные мысли (1905)
Менделеев Д. И. Попытка химического понимания мирового эфира (1902)
54 articles for the Brockhaus and Efron Encyclopedic Dictionary

See also
List of Russian chemists
Mendeleev's predicted elements
Periodic systems of small molecules

Notes
a. Before the 1917 reform of Russian orthography, his name was written Дмитрій Ивановичъ
Менделѣевъ
b. Russian: Дмитрий Иванович Менделеев, romanized: Dmitriy Ivanovich Mendeleyev; IPA:
[ˈdmʲitrʲɪj ɪˈvanəvʲɪtɕ mʲɪnʲdʲɪˈlʲejɪf] ⓘ

c. When the Princeton historian of science Michael Gordin reviewed this article as part of an
analysis of the accuracy of Wikipedia for the 14 December 2005 issue of Nature, he cited as
one of Wikipedia's errors that "They say Mendeleev is the 14th child. He is the 14th
surviving child of 17 total. 14 is right out." However in a January 2006 article in The New
York Times, it was noted that in Gordin's own 2004 biography of Mendeleev, he also had the
Russian chemist listed as the 17th child, and quoted Gordin's response to this as being:
"That's curious. I believe that is a typographical error in my book. Mendeleyev was the final
child, that is certain, and the number the reliable sources have is 13." Gordin's book
specifically says that Mendeleev's mother bore her husband "seventeen children, of whom
eight survived to young adulthood", with Mendeleev being the youngest.[24][25]

References

Citations
1. "Fellows of the Royal Society" (https://web.archive.org/web/20150316060617/https://royalso
ciety.org/about-us/fellowship/fellows/). London: Royal Society. Archived from the original (htt
ps://royalsociety.org/about-us/fellowship/fellows/) on 16 March 2015.
2. "Mendeleev" (http://dictionary.reference.com/browse/mendeleev). Random House Webster's
Unabridged Dictionary.
3. Rao, C N R; Rao, Indumati (2015). Lives and Times of Great Pioneers in Chemistry:
(Lavoisier to Sanger). World Scientific. p. 119. ISBN 978-9814689076.
4. Maria Mendeleeva (1951). D. I. Mendeleev's Archive: Autobiographical Writings. Collection
of Documents. Volume 1 // Biographical notes about D. I. Mendeleev (written by me – D.
Mendeleev), p. 13 (https://books.google.com/books?id=_vnODAAAQBAJ&pg=PA13). –
Leningrad: D. I. Mendeleev's Museum-Archive, 207 pages (in Russian)
5. Maria Mendeleeva (1951). D. I. Mendeleev's Archive: Autobiographical Writings. Collection
of Documents. Volume 1 // From a family tree documented in 1880 by brother Pavel
Ivanovich, p. 11 (https://books.google.com/books?id=_vnODAAAQBAJ&pg=PA11).
Leningrad: D. I. Mendeleev's Museum-Archive, 207 pages (in Russian)
6. Dmitriy Mendeleev: A Short CV, and A Story of Life (http://www.mendcomm.org/Mendeleev.a
spx) Archived (https://web.archive.org/web/20170825073835/http://www.mendcomm.org/Me
ndeleev.aspx) 25 August 2017 at the Wayback Machine, mendcomm.org
7. Удомельские корни Дмитрия Ивановича Менделеева (1834–1907) (http://starina.library.tv
er.ru/us-35-1.htm) Archived (https://web.archive.org/web/20070908083404/http://starina.libr
ary.tver.ru/us-35-1.htm) 8 September 2007 at the Wayback Machine, starina.library.tver.ru
8. Larcher, Alf (21 June 2019). "A mother's love: Maria Dmitrievna Mendeleeva" (https://web.ar
chive.org/web/20190826191740/http://chemaust.raci.org.au/article/julyaugust-2019/mothe
r%E2%80%99s-love-maria-dmitrievna-mendeleeva.html). Chemistry in Australia magazine.
Royal Australian Chemical Institute. ISSN 1839-2539 (https://search.worldcat.org/issn/1839-
2539). Archived from the original (https://chemaust.raci.org.au/article/julyaugust-2019/mothe
r%E2%80%99s-love-maria-dmitrievna-mendeleeva.html) on 26 August 2019. Retrieved
20 October 2019.
9. Yuri Mandrika (2004). Tobolsk Governorate Vedomosti: Staff and Authors. Anthology of
Tobolsk Journalism of the late XIX – early XX centuries in 2 Books // From the interview with
Maria Mendeleeva, born Kornilieva, p. 351. Tumen: Mandr i Ka, 624 pages
10. Elena Konovalova (2006). A Book of the Tobolsk Governance. 1790–1917 (http://www.spsl.n
sc.ru/fulltext/GPNTB/051_gpntb.pdf). Novosibirsk: State Public Scientific Technological
Library, p. 15 (in Russian) ISBN 5945601160
11. Yuri Mandrika (2004). Tobolsk Governorate Vedomosti: Staff and Authors. Anthology of
Tobolsk Journalism of the late XIX – early XX centuries in 2 Books // The Kornilievs, Tobolsk
Manufacturers article by Stepan Mameev, p. 314. – Tumen: Mandr i Ka, 624 pages
12. Eugenie Babaev (2009). "Mendelievia. Part 3 (http://www.chem.msu.ru/rus/mendeleevia/05_
family/05_02.pdf)" article from the Chemistry and Life – 21st Century journal at the MSU
Faculty of Chemistry website (in Russian)
13. Alexei Storonkin, Roman Dobrotyn (1984). D. I. Mendeleev's Life and Work Chronicles.
Leningrad: Nauka, 539 pages, p. 25
14. Nadezhda Gubkina (1908). Family Chronicles. Memories about D. I. Mendeleev (https://boo
ks.google.com/books?id=3ukhBwAAQBAJ&pg=PT2). Saint Petersburg, 252 pages
15. "Dmitri Ivanovich Mendeleev comes from indigenous Russian people", p. 5 // Olga
Tritogova-Mendeleeva (1947). Mendeleev and His Family. Moscow: Academy of Sciences
Publishing House, 104 pages
16. Anna Mendeleeva (1928). Mendeleev in Life. Moscow: M. and S. Sabashnikov Publishing
House, 194 pages
17. Loren R. Graham, Science in Russia and the Soviet Union: A Short History, Cambridge
University Press (1993), p. 45
18. Isaac Asimov, Asimov on Chemistry, Anchoor Books (1975), p. 101
19. Leslie Alan Horvitz, Eureka!: Scientific Breakthroughs that Changed the World, John Wiley &
Sons (2002), p. 45
20. Lennard Bickel, The deadly element: the story of uranium, Stein and Day (1979), p. 22
21. Hiebert, Ray Eldon; Hiebert, Roselyn (1975). Atomic Pioneers: From ancient Greece to the
19th century. U.S. Atomic Energy Commission. Division of Technical Information. p. 25.
22. Gordin, Michael D. (2004). A Well-ordered Thing: Dmitrii Mendeleev and the Shadow of the
Periodic Table (https://archive.org/details/wellorderedthing00gord/page/229). Basic Books.
pp. 229–230 (https://archive.org/details/wellorderedthing00gord/page/229). ISBN 978-
0465027750. "Mendeleev seemed to have very few theological commitments. This was not
for lack of exposure. His upbringing was actually heavily religious, and his mother – by far
the dominating force in his youth – was exceptionally devout. One of his sisters even joined
a fanatical religious sect for a time. Despite, or perhaps because of, this background,
Mendeleev withheld comment on religious affairs for most of his life, reserving his few words
for anti-clerical witticisms ... Mendeleev's son Ivan later vehemently denied claims that his
father was devoutly Orthodox: "I have also heard the view of my father's 'church religiosity' –
and I must reject this categorically. From his earliest years Father practically split from the
church – and if he tolerated certain simple everyday rites, then only as an innocent national
tradition, similar to Easter cakes, which he didn't consider worth fighting against." ...
Mendeleev's opposition to traditional Orthodoxy was not due to either atheism or scientific
materialism. Rather, he held to a form of romanticized deism."
23. Johnson, George (3 January 2006). "The Nitpicking of the Masses vs. the Authority of the
Experts" (https://www.nytimes.com/2006/01/03/science/03comm.html). The New York
Times. Retrieved 14 March 2011.
24. Johnson, George (3 January 2006). "The Nitpicking of the Masses vs. the Authority of the
Experts" (https://www.nytimes.com/2006/01/03/science/03comm.html). The New York
Times.
25. Gordin, Michael (22 December 2005). "Supplementary information to accompany Nature
news article "Internet encyclopaedias go head to head" (Nature 438, 900–901; 2005)" (htt
p://blogs.nature.com/wp/nascent/supplementary_information.pdf) (PDF). Blogs.Nature.com.
p. 178 – via 2004.
26. Heilbron 2003, p. 509.
27. "Семья Д.И.Менделеева" (https://web.archive.org/web/20100922084854/http://www.rustes
t.spb.ru/site/9/4/index.html). Rustest.spb.ru. Archived from the original (http://www.rustest.sp
b.ru/site/9/4/index.html) on 22 September 2010. Retrieved 13 March 2010.
28. John B. Arden (1998). "Science, Theology and Consciousness", Praeger Frederick A. p. 59:
"The initial expression of the commonly used chemical periodic table was reportedly
envisioned in a dream. In 1869, Dmitri Mendeleev claimed to have had a dream in which he
envisioned a table in which all the chemical elements were arranged according to their
atomic weight."
29. John Kotz, Paul Treichel, Gabriela Weaver (2005). "Chemistry and Chemical Reactivity,"
Cengage Learning. p. 333
30. Gerard I. Nierenberg (1986). "The art of creative thinking", Simon & Schuster, p. 201: Dmitri
Mendeleev's solution for the arrangement of the elements that came to him in a dream.
31. Helen Palmer (1998). "Inner Knowing: Consciousness, Creativity, Insight, and Intuition". J.P.
Tarcher/Putnam. p. 113: "The sewing machine, for instance, invented by Elias Howe, was
developed from material appearing in a dream, as was Dmitri Mendeleev's periodic table of
elements"
32. Simon S. Godfrey (2003). Dreams & Reality. Trafford Publishing. Chapter 2.: "The Russian
chemist, Dmitri Mendeleev (1834–1907), described a dream in which he saw the periodic
table of elements in its complete form." ISBN 1412011434
33. "The Soviet Review Translations (http://digitalcollections.library.cmu.edu/awweb/awarchive?t
ype=file&item=33706) Archived (https://web.archive.org/web/20140418233759/http://digitalc
ollections.library.cmu.edu/awweb/awarchive?type=file&item=33706) 18 April 2014 at the
Wayback Machine" Summer 1967. Vol. VIII, No. 2, M.E. Sharpe, Incorporated, p. 38
34. Myron E. Sharpe, (1967). "Soviet Psychology". Volume 5, p. 30.
35. "A brief history of the development of the period table (http://www.wou.edu/las/physci/ch412/
perhist.htm)", wou.edu
36. "Mendeleev and the Periodic Table (http://www.chemsheets.co.uk/GCSEPeriod07.doc)"
Archived (https://web.archive.org/web/20110912072801/http://www.chemsheets.co.uk/GCS
EPeriod07.doc) 12 September 2011 at the Wayback Machine, chemsheets.co.uk
37. Seaborg, Glenn T (1994). "The Periodic Table: Tortuous path to man-made elements" (http
s://books.google.com/books?id=573sCgAAQBAJ&pg=PA179). Modern Alchemy: Selected
Papers of Glenn T Seaborg. World Scientific. p. 179. ISBN 978-9814502993. Retrieved
5 March 2016.
38. Pfennig, Brian W. (2015). Principles of Inorganic Chemistry (https://books.google.com/book
s?id=pxX1BgAAQBAJ&pg=PA109). Wiley. p. 109. ISBN 978-1118859025. Retrieved
4 March 2016.
39. Nye, Mary Jo (2016). "Speaking in Tongues: Science's centuries-long hunt for a common
language" (https://www.sciencehistory.org/distillations/magazine/speaking-in-tongues).
Distillations. 2 (1): 40–43. Retrieved 22 March 2018.
40. Gordin, Michael D. (2015). Scientific Babel: How Science Was Done Before and After
Global English. Chicago: University of Chicago Press. ISBN 978-0226000299.
41. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2007). "Rediscovery of the
elements: The Periodic Table" (http://www.chem.unt.edu/~jimm/REDISCOVERY%207-09-20
18/Hexagon%20Articles/periodic%20table.pdf) (PDF). The Hexagon: 23–29. Retrieved
30 December 2019.
42. Weeks, Mary Elvira (1956). The discovery of the elements (https://archive.org/details/discov
eryoftheel002045mbp) (6th ed.). Easton, PA: Journal of Chemical Education.
43. Scerri, Eric (2019). The Periodic Table: Its Story and Its Significance (https://books.google.c
om/books?id=tSa3DwAAQBAJ&q=mendeleev+uranium+120&pg=PA142) (2nd ed.). Oxford
University Press. pp. 142–143. ISBN 978-0190914363. Retrieved 13 December 2019.
44. Emsley, John (2001). Nature's Building Blocks (https://archive.org/details/naturesbuildingb0
000emsl/page/521). Oxford University Press. pp. 521–522 (https://archive.org/details/nature
sbuildingb0000emsl/page/521). ISBN 978-0198503408.
45. Otto Böhtlingk, Panini's Grammatik: Herausgegeben, Ubersetzt, Erlautert und MIT
Verschiedenen Indices Versehe. St. Petersburg, 1839–40.
46. Kiparsky, Paul. "Economy and the construction of the Sivasutras". In M.M. Deshpande and
S. Bhate (eds.), Paninian Studies. Ann Arbor, Michigan, 1991.
47. Kak, Subhash (2004). "Mendeleev and the Periodic Table of Elements". Sandhan. 4 (2):
115–123. arXiv:physics/0411080 (https://arxiv.org/abs/physics/0411080).
Bibcode:2004physics..11080K (https://ui.adsabs.harvard.edu/abs/2004physics..11080K).
48. "The Grammar of the Elements" (https://www.americanscientist.org/article/the-grammar-of-t
he-elements). American Scientist. 4 October 2019. Retrieved 19 October 2019.
49. "The Soviet Review Translations (http://digitalcollections.library.cmu.edu/awweb/awarchive?t
ype=file&item=33706) Archived (https://web.archive.org/web/20140418233759/http://digitalc
ollections.library.cmu.edu/awweb/awarchive?type=file&item=33706) 18 April 2014 at the
Wayback Machine". Summer 1967. Vol. VIII, No. 2, M.E. Sharpe, Incorporated, p. 39
50. "Dmitri Mendeleev" (https://web.archive.org/web/20180705003658/http://www.rsc.org/educa
tion/teachers/resources/periodictable/pre16/develop/mendeleev.htm). RSC Education.
Archived from the original (http://www.rsc.org/education/teachers/resources/periodictable/pr
e16/develop/mendeleev.htm) on 5 July 2018. Retrieved 23 February 2021.
51. "Менделеев обвенчался за взятку" (http://gazeta.ua/index.php?id=157545&lang=ru).
Gazeta.ua. 10 April 2007. Retrieved 13 March 2010.
52. One or more of the preceding sentences incorporates text from a publication now in the
public domain: Chisholm, Hugh, ed. (1911). "Mendeléeff, Dmitri Ivanovich". Encyclopædia
Britannica. Vol. 18 (11th ed.). Cambridge University Press. p. 115.
53. John W. Moore; Conrad L. Stanitski; Peter C. Jurs (2007). Chemistry: The Molecular
Science, Volume 1 (https://books.google.com/books?id=BO9ocnho9P4C&pg=PA546).
Thomson Brooks/Cole. ISBN 978-0495115984. Retrieved 6 September 2011.
54. "APS Member History" (https://search.amphilsoc.org/memhist/search?creator=Dmitry+Mend
eleyev&title=&subject=&subdiv=&mem=&year=&year-max=&dead=&keyword=&smode=adv
anced). search.amphilsoc.org. Retrieved 17 January 2024.
55. Gribbin, J (2002). The Scientists: A History of Science Told Through the Lives of Its Greatest
Inventors. New York: Random House. p. 378. Bibcode:2003shst.book.....G (https://ui.adsab
s.harvard.edu/abs/2003shst.book.....G). ISBN 978-0812967883.
56. Friedman, Robert M. (2001). The politics of excellence: behind the Nobel Prize in science (h
ttps://archive.org/details/politicsofexcell00robe/page/32). New York: Times Books. pp. 32–34
(https://archive.org/details/politicsofexcell00robe/page/32). ISBN 978-0716731030.
57. Last and Near-Last Words of the Famous, Infamous and Those In-Between (https://books.g
oogle.com/books?id=s8xwDQAAQBAJ&q=You+have+science&pg=PT460) By Joseph W.
Lewis Jr. M.D.
58. Чугаев, Лев Александрович (1988) [1924]. Dmitriĭ Ivanovich Mendeleev: Zhiznʹ i
dei͡atelʹnostʹ Дмитрий Иванович Менделеев: жизнь и деятельность (https://books.google.
com/books?id=6KYgAQAAIAAJ) (in Russian) (reprint ed.). Leningrad: Nauchnoe khimiko-
tekhnicheskoe izdatelʹstvo. Retrieved 23 August 2024. Гениальный химик, первоклассный
физик, плодотворный исследователь в области гидродинамики, метеорологии,
геологии, в различных отделах химической технологии и других, сопредельных с
химией и физикой дисциплинах, глубокий знаток химической промышленности и
промышленности вообще, особенно русской, оригинальный мыслитель в области
учения о народном хозяйстве, государственный ум, которому, к сожалению, не
суждено было стать государственным человеком, но который видел и понимал задачи
и будущность России лучше представителей нашей официальной власти.
59. Rodgers, Glen E. (3 December 2019). Traveling with the Atom: A Scientific Guide to Europe
and Beyond (https://books.google.com/books?id=8kbCDwAAQBAJ). Royal Society of
Chemistry. p. 465. ISBN 9781788017022. Retrieved 23 August 2024. "Mendeleev is given
credit for the introduction of the metric system to the russian empire."
60. Mendeleev, D., 1877. "L'Origine du pétrole". Revue Scientifique, 2e Ser., VIII, pp. 409–416.
61. Alexander Vucinich, "Mendeleev's Views on science and society," ISIS 58:342–351.
62. Francis Michael Stackenwalt, "Dmitrii Ivanovich Mendeleev and the Emergence of the
Modern Russian Petroleum Industry, 1863–1877." Ambix 45.2 (1998): 67–84.
63. Vincent Barnett, "Catalysing Growth?: Mendeleev and the 1891 Tariff." in W. Samuels, ed.,
A Research Annual: Research in the History of Economic Thought and Methodology (2004)
Vol. 22 Part 1 pp. 123–144. https://doi.org/10.1016/S0743-4154(03)22004-6 Online (https://
www.emerald.com/insight/content/doi/10.1016/S0743-4154(03)22004-6/full/html)
64. Woods, Gordon (2007). "Mendeleev – The Man and his Legacy" (https://edu.rsc.org/feature/
mendeleev-the-man-and-his-legacy-/2020190.article).
65. Nathan M. Brooks, "Mendeleev and metrology." Ambix 45.2 (1998): 116–128.
66. Michael D. Gordin, "Measure of all the Russias: Metrology and governance in the Russian
Empire." Kritika: Explorations in Russian and Eurasian History 4.4 (2003): 783–815.
67. Don C. Rawson, "Mendeleev and the Scientific Claims of Spiritualism." Proceedings of the
American Philosophical Society 122.1 (1978): 1–8.
68. Sainsburys: Russian Standard Vodka 1L (http://www.sainsburys.co.uk/shop/gb/groceries/rus
sian-standard-vodka-1l) Linked 28 June 2014
69. Evseev, Anton (21 November 2011). "Dmitry Mendeleev and 40 degrees of Russian vodka"
(http://english.pravda.ru/science/mysteries/21-11-2011/119683-dmitry_mendeleev_vodka-
0/). Science. Moscow: English Pravda.ru. Retrieved 6 July 2014.
70. Meija, Juris (2009). "Mendeleyev vodka challenge". Anal. Bioanal. Chem. 394 (1): 9–10.
doi:10.1007/s00216-009-2710-3 (https://doi.org/10.1007%2Fs00216-009-2710-3).
PMID 19288087 (https://pubmed.ncbi.nlm.nih.gov/19288087). S2CID 1123151 (https://api.s
emanticscholar.org/CorpusID:1123151).
71. ВНИИМ Дизайн Груп (13 April 2011). "D. I. Mendeleyev Institute for Metrology" (https://we
b.archive.org/web/20170530140108/http://vniim.ru/index.en.html). Vniim.ru. Archived from
the original (http://www.vniim.ru/index.en.html) on 30 May 2017. Retrieved 20 August 2012.
72. Saint-PetersburgState University. "Museum-Archives n.a. Dmitry Mendeleev – Museums –
Culture and Sport – University – Saint-Petersburg state university" (https://web.archive.org/
web/20100315023344/http://www.eng.spbu.ru/university/culture/museums/mendeleev/).
Eng.spbu.ru. Archived from the original (http://www.eng.spbu.ru/university/culture/museums/
mendeleev/) on 15 March 2010. Retrieved 19 August 2012.
73. "D. Mendeleyev University of Chemical Technology of Russia" (https://web.archive.org/web/
20170109151210/http://www.muctr.ru/en/). Archived from the original (http://www.muctr.ru/e
n/) on 9 January 2017. Retrieved 4 July 2012.
74. "Mendeleevite-Ce" (https://www.mindat.org/min-40154.html). Mindat.org. Retrieved
13 December 2019.
75. "Mendeleevite-Nd" (https://www.mindat.org/min-46701.html). Mindat.org. Retrieved
13 December 2019.
76. "Academy website" (https://translate.googleusercontent.com/translate_c?depth=1&nv=1&rur
l=translate.google.com&sl=auto&sp=nmt4&tl=en&u=http://www.ras.ru/about/awards/awdlist.
aspx%3Fawdid%3D21&usg=ALkJrhhNA2JFhri6Rbmzfw41Fy4nadp-qg).
77. "Dmitri Mendeleev's 182nd Birthday" (https://doodles.google/doodle/dmitri-mendeleevs-182
nd-birthday/). www.google.com. Retrieved 9 February 2023.

Works cited
Gordin, Michael (2004). A Well-Ordered Thing: Dmitrii Mendeleev and the Shadow of the
Periodic Table (https://archive.org/details/wellorderedthing00gord). New York: Basic Books.
ISBN 978-0465027750.
Heilbron, John L. (2003). The Oxford Companion to the History of Modern Science. Oxford
University Press. ISBN 978-0-19-974376-6.

Further reading
Mendeleev, Dmitry Ivanovich; Jensen, William B. (2005). Mendeleev on the Periodic Law:
Selected Writings, 1869–1905. Mineola, New York: Dover Publications. ISBN 978-
0486445717.
Strathern, Paul (2001). Mendeleyev's Dream: The Quest For the Elements. New York: St
Martins Press. ISBN 978-0241140659.
Mendeleev, Dmitrii Ivanovich (1901). Principles of Chemistry (https://archive.org/details/princ
iplesofchem00menduoft). New York: Collier.

External links
Works by Dmitri Mendeleev (https://www.gutenberg.org/ebooks/author/46359) at Project
Gutenberg
Babaev, Eugene V. (February 2009). Dmitriy Mendeleev: A Short CV, and A Story of Life (htt
p://www.mendcomm.org/Mendeleev.aspx) Archived (https://web.archive.org/web/201708250
73835/http://www.mendcomm.org/Mendeleev.aspx) 25 August 2017 at the Wayback
Machine – 2009 biography on the occasion of Mendeleev's 175th anniversary
Babaev, Eugene V., Moscow State University. Dmitriy Mendeleev Online (http://www.chem.
msu.su/eng/misc/mendeleev/welcome.html)
Original Periodic Table (http://web.lemoyne.edu/~giunta/EA/MENDELEEVann.HTML),
annotated.
"Everything in its Place" (https://www.nytimes.com/library/magazine/millennium/m1/sacks.ht
ml), essay by Oliver Sacks
Dmitri Mendeleev's official site (http://www.dmitrimendeleev.com/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Dmitri_Mendeleev&oldid=1263623830"

You might also like